
XChor
Choreography Language for Integration of Variable Orchestration Specifications

Selma Suloglu1, Bedir Tekinerdogan2 and H. Ali Doğru 1
1Computer Engineering Department, Middle East Technical University, Dumlupınar Boulevard, Ankara, Turkey

2Computer Engineering Department, Bilkent University, Ankara, Turkey
{Selma, dogru}@ceng.metu.edu.tr, bedir@cs.bilkent.edu.tr

Keywords: Service-Oriented Architecture, Choreography, Choreography Languages, Variability Management,
Variability Metamodel.

Abstract: In this paper, we propose and develop a new choreography language XChor which can be used to support
variability in choreography specifications and integrate these with variability of orchestration specifications.
We describe the metamodel of XChor and illustrate the adoption of the language by specifying user
verification choreography in the adaptable security system. Orchestration and choreography models are
mechanisms to realize service composition and coordination while some of them support variation to deal
with reuse challenge. Several approaches have been introduced to support variability in orchestration and
choreography languages. Unfortunately, variability is not explicitly addressed in current choreography
languages. As such, it is hard to provide a consistent configuration of service composition within and across
business organizations.

1 INTRODUCTION

Several organizations develop, share and reuse
business processes by establishing collaboration
with other organizations in order to fulfill different
stakeholder needs. Being agile is an important
challenge in business process integration context
which requires a dynamic environment. Service-
oriented architecture (SOA) is a promising approach
to realize such environments by designing and
developing distributed systems (Erl, 2005). SOA
aims to facilitate reuse of services and incorporates
service consumers and service providers. A service
is self-contained, and can be independently deployed
in a distributed component.

Building enterprise solutions to realize business
processes typically requires the composition of
multiple existing enterprise services. Composite
services can be further recursively composed with
other services to derive higher level solutions. Two
different types of service compositions are defined:
1: service choreography where the interaction
protocol between several partner services is defined
from a global perspective. 2: service orchestration,
where the interaction logic is specified from the
local point of view of one single participant, called
the orchestrator.

Reuse in SOA can be achieved by managing
variability in different granularity levels, namely
choreography, orchestration and atomic services.
Assuming that all granularity levels can be treated as
services, variability can come from (i) their
interfaces (functions and parameters), (ii) connectors
(the way they interact) and (iii) composition (the
way they are gathered in order to achieve a goal).
Interface variability requires a configuration
mechanism specifying when and how to change its
functions and parameters. Connector variability
needs a relation mechanism to indicate when and
which connector is used between two services.
Composition variability necessiates a tailoring
mechanism to define in which order and how
services are interacting with each other. Services
offer different functionalities regarding their
variability bindings. Therefore, it is the
composition’s responsibility to provide a consistent
variability binding between interacting services.
This requires a mechanism to establish variability
associations which determines when and how
interacting services bind to specific variants. In other
words, composition is responsible for handling
consistent variability binding of interacting services
and providing a configuration infrastructure.

Addressing and fulfilling all these variability

121
Suloglu S., Tekinerdogan B. and Dogru A.
XChorChoreography Language for Integration of Variable Orchestration Specifications.
DOI: 10.5220/0004774601210130
In Proceedings of the Third International Symposium on Business Modeling and Software Design (BMSD 2013), pages 121-130
ISBN: 978-989-8565-56-3
Copyright c© 2013 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

needs to provide seamless integration of services. To
cope with such challenges several approaches have
been introduced. However, explicit introduction of
variability integrated with choreography languages
is not addressed. Specification of consistent
variability binding and configuration of interacting
services are not considered in the choreography
language level. Moreover, there is a lack of support
to reuse existing choreographies.

In this article, we first analyse and discuss
existing orchestration and choreography languages
with respect to variability management. We identify
the problems and the requirements for variability in
choreography languages. To support interface and
composition variability in choreography
specifications we developed a new domain specific
language called XChor.

The remainder of the paper is organized as
follows. Section 2 firstly describes variability
management in existing choreography and
orchestration languages. Then the requirements for
managing variability in choreography languages are
defined and problems in existing languages are
stated. Section 3 introduces the metamodel
developed by authors for supporting variability in
choreography specifications and integrating these
with variability of orchestration specifications.
Section 4 describes the XChor language and
demonstrates its usage through an example. Finally
section 5 provides the conclusions.

2 VARIABILITY MANAGEMENT
IN EXISTING
ORCHESTRATION AND
CHOREOGRAPHY
LANGUAGES

Obviously for small systems we could handle
orchestration specifications using traditional
approaches such as interaction diagrams. Variable
parts and their relations can be modeled and
implemented by data and through ‘if’ control
structures. However, for integration of large scale
systems soon the traditional approaches are less
expressive and not tractable. Therefore, to cope with
variability in choreography, orchestration, and
atomic services various language approaches have
been introduced. We have listed the popular
approaches in Table 1. We evaluate these
approaches with respect to the following criterias:
 Composition Approach: Defines whether the

language supports choreography and/or
orchestration. Orch is the abbreviation of
orchestration and Chor is that of choreography.

 Variability Support: Defines whether the
language supports variability. ‘Yes’ indicates
that the language provides explicit language
mechanisms for variability. ‘Implicit’ indicates
that although the language does not provide
explicit mechanisms, variability is supported
implicitly. ‘No’ means that there is no variability
support.

 Tool Support: Availability of tools.
 Modelling Approach: Defines the adopted

modelling approach which can be either based on
interaction or interconnection. Modeling based
on interaction represents definition of one
building block (document or specification) for
the whole system, whereas interconnection
suggests modeling control flow logic per
participant. Intera is the abbreviation of
interaction and Interc is that of interconnection.

BPEL (OASIS 2007), VxBPEL (Koning et al.,
2009), Jolie (Montesi et al., 2007) and Jorba (Lanese
et al., 2010) purely target orchestration as the
composition approach and interconnection as the
modelling approach. Among them VxBPEL has an
explicit variability model. On the other hand, Jorba,
a rule-based approach to dynamic adaptation
implemented on top of the Jolie language, provides a
mechanism without explicit specification of
variability.

WSMO (Fensel et al., 2007), BPMN (OMG
2011) and Reo (Arbab, 2004) target orchestration
and choreography specification. While WSMO
provides an interconnection model, Reo and BPMN
include interaction and interconnection models.
Among them, Reo offers variability support by
hyper-graph transformation.

BPEL abstract processes, WS-CDL (W3C,
2005), Let’s Dance (Zaha et al., 2006), MAP
(Barker et al., 2009), BPEL4Chor (Decker et al.,
2007), and an extension of it – BPELgold (Kopp et
al., 2010) all target choreography for service
composition. An interaction modelling approach is
followed by WS-CDL, Let’s Dance and MAP,
whereas interaction model is applied in BPEL
abstract processes, BPEL4Chor and BPELgold.
Moreover, MAP supports an interaction model by
separating choreography definition to peers related
with services.

According to Table 1, the languages supporting
variability are VxBPEL, Jorba and Reo. VxBPEL
language seems to be the only language which

Third International Symposium on Business Modeling and Software Design

122

provides explicit support for variability mechanisms
based on ConIPF Variability Modeling. Framework
(COVAMOF) (Sinnema, Deelstra, Nijhuis, Bosch,
2004.). The approach extends BPEL with variability
constructs, such as <<VariationPoint>> and
<<Variant>>. However, the language does not
support variability of choreography. In parallel,
there is no mechanism to inspect the global view of
variability when more than one VxBPEL
orchestration interacts.

Table 1: Comparison of existing orchestration and
choreography languages.

C
om

po
si

ti
on

A

pp
ro

ac
h

V
ar

ia
bi

li
ty

S

up
po

rt

T
oo

l S
up

po
rt

M
od

el
li

ng

A
pp

ro
ac

h

BPEL 2.0 Orch No Yes Interc
VxBPEL Orch Yes No Interc

Jolie Orch No Yes Interc
Jorba Orch Implicit Yes Interc

Reo
Orch
Chor

Implicit Yes
Interc
Intera

WSMO
Orch
Chor

No Yes Interc

BPMN 2.0
Orch
Chor

No Yes
Interc
Intera

WS-CDL Chor No No Intera
Let’s Dance Chor No No Intera
BPEL4Chor

BPELgold
Chor No Yes Intera

MAP Chor No Yes
Interc
Intera

On top of the Jolie orchestration language, Jorba
defines adaptation interfaces specifying function
replacements whenever a change in service interface
and parameter is needed. However, the relationship
between rules and the coverage of variability is
implicit and the management of rules as a separate
variability model is usually difficult to manage.
There is no mechanism to explicitly specify
variation points and variants as in VxBPEL tags.

Reo, a comprehensive approach to service
composition proposes a hyper-graph transformation
approach to manage change. Services as nodes are
connected via edges. In other words, variability is
provided by reconfiguration of services which is
seen as an internal part of the system. Therefore,
there is no explicit variability model defined to
intervene and change the composition, accordingly
no explicit specification of relations between
variability of services taking part in the composition.

2.1 Problem Statement

The analysis of the existing choreography languages
shows that variability in both orchestration and
choreography is not supported in any of the
languages. Besides, interface and composition
variability support is not explicitly addressed with a
single variability model covering choreography,
orchestration and atomic services. Concretely we
can identify the following problems:

 Lack of explicit expressiveness of variability in
choreography specifications

There is no language that explicitly represents
variability in choreography in order to integrate
orchestration specifications. Moreover, variability
modelling in choreography, orchestration and atomic
services as a whole is not explicitly covered in one
single model. This impedes the consistent
configuration of choreography and orchestration
specifications with regard to variability.

The lack of explicit abstractions for variability
easily leads to the scattering of variability concerns
over service compositions. Likewise, enabling or
disabling a variability results in reorganization of the
composition. This complicates the understanding of
variable parts, relations amongst them and the
overall goal for business process engineers and
developers. Tracing these scaterred variations can be
achieved to a certain degree, but in large scale
systems traceability and understandability decrease
gradually. As a result, this scattering reduces the
maintenance of the system.

 Lack of explicit specification of variability
associations between interacting services

Choreography interrelates a set of orchestrations,
atomic services and establishes connection with
other choreographies. Interacting services’
variability constraints and shapes possible
choreography abilities and composition. Likewise,
variability of choreography dictates proper service
variability bindings and specified configurations
resulting service interfaces with different
functionality and parameters. In order to reveal these
dependencies and relations between choreography
and services, an explicit association and mapping
should be defined. In other words, configuring
choreography requires configuring other services in
order to consistently collaborate with each other.
Therefore, configuration and binding of service
variability requires an integrated model comprising
choreography, orchestration specifications, and
atomic services with variability. There is no
language supporting such integrated configuration

XChor - Choreography Language for Integration of Variable Orchestration Specifications

123

model dealt with variability of all granularity levels.

 Lack of support for reusing existing
choreographies

The importance of reusing existing choreographies
is addressed in some approaches, but reusing as a
part of the other choreography is not emphasized
sufficiently. There are ways to handle choreography-
to-choreography relationships such as collaborating
via exposed choreography interfaces. In case of
variability, it is more difficult to utilize
choreography specifications with proper bindings.
Therefore, the way to bind to other choreographies
should be specified.

Although several choreography languages
address some of the above stated concerns, no single
orchestration or choreography language covers all of
them. Moreover, there is no specified mechanism to
associate and map orchestration and choreography
variability for consistent integration. Even if
variabilities for choreography, orchestration and
atomic services are explicitly specified, seamless
and consistent mapping cannot be achieved due to
different concepts and capabilities of different
variability models. In that, one variability model can
constrain the other one. For instance, COVAMOF
model used in VxBPEL orchestration specification
does not have external variation definition and can
not be completely mapped with a model providing
external variation. Therefore, the modeling of
variability in choreography consistent with
orchestration and atomic services cannot be
achieved easily. To support the systematic
management of variability and the consistent
composition of choreography specifications, a
choreography model that incorporates variability
concepts is needed.

3 A METAMODEL FOR
VARIABILITY MANAGEMENT
IN CHOREOGRAPHY

To enable integration of orchestrations, atomic
services in the scope of choreography, we propose a
metamodel in which atomic services and
orchestrations are evaluated under service concept.
The main difference in specification between
orchestrated and atomic service comes from
revealing external behavior to service environment.
That is, orchestrated service can define external
interaction with other services if required. Moreover,
there is no constraint that an atomic service can not
specify its interaction. Therefore, atomic services

and orchestrations are treated as services in our
metamodel.

The metamodel basically enables to define
choreographies and services, to specify variability of
each one and to integrate these variabilities in order
to provide a consistent collaboration. Figure 1
depicts the overview of service and choreography
relations based on our metamodel so as to support
interface and composition variability. Two main
blocks are depicted; choreography and service.

Figure 1: Overview of choreography and service relations
based on our metamodel.

Both choreography and service, interfaces
without variation are defined fulfilling all possible
functional requirements. Choreography interface is
only configured with regard to its own variability
specification, whereas service interface is configured
via both its own variability specification and
variability specification of choreography that takes
part in. Configuration of service is achieved by
activating/deactivating functions and
setting/unsetting parameters. With this mechanism,
different choreographies utilize different interfaces
of the same service which brings service reusability.

Choreography variation leads to proper bindings
of variations of other choreography and services via
mapping so as to provide interacting interface
consistency. Choreography and external behavior
specification of services include inline references of
their own variability to point out the changeable
parts.In this way, choreographies and services
include a set of possible required behavior in order
to fulfill different composition needs, which enables
reuse of choreography and services.

3.1 Variability Specification

The rightmost part of the metamodel in Figure 2
presents the variability specification constructs. This
part has been defined based on existing variability
metamodels in the literature. A comparative
literature study has been conducted in (Lianping et
al., 2009). Based on this part of the metamodel,
choreography and services can define their internal

Third International Symposium on Business Modeling and Software Design

124

Variation
Point Variant

Set

Configuration
Variation

Point

External
Variation

Point

Internal
Variation

Point

Configuration
Variants with

Choices

refers to

Variant

Constraint

Numerical Logical

constraints

Variability Specification

Variability
Configuration

Model

Variability
Configuration

Model For
Choreography

Variability
Configuration

Model For
Service

Variability
Mapping

Variability
Attachment

refers to

refers to

Choreography

Parameter
Setting

Context
Element

assigns value

Composite
Interaction

Interface

Choreography
Interface

Service
Interface

configures

refers to
Atomic

Interaction
Message

inline

inline

Methods And
Parameter

Activation for
Configuration

has

Choreography to Variability Mapping

Select
Interaction

Sequence
Interaction

Repeat
Interaction

Choreography Specification

constraints

refers to

uses

refers to

Paralel
Interaction

refers to

refers to

BINDING

imports

Figure 2: The metamodel for variability management in choreography.

and external variation points, related variants and
constraints among them. A special type of variation
point, configuration variation point eases
management and understanding of variability
mechanism by holding details of internal variation
point bindings.

For different variation point relationships,
contraints provide a mechanism to establish a
convenient binding and selection by defining
numerical and logical constraints.

3.2 Choreography Specification

The leftmost part of the metamodel represents the
elements to define a choreography composition and
interfaces of choreography and services.
Choreography comprises a set of services and
choreographies, identifying composability via
service interactions. Service interactions specify the
way how the services collaborate which is realized
by atomic and composite interactions.

Choreography and service interfaces expose a set
of functions without variability specifications. Other
than services, a choreography interface states
required functions from other services and
choreographies.

3.3 Choreography to Variability
Mapping

The middle part of the metamodel represents the
concepts to define the mapping between

choreography and variability constructs. Mainly
these constructs are responsible for configuration of
interfaces, establishment of variability associations
and representing variability references in
composition.

Variability configuration model for service and
choreography includes a set of variation points,
constraints among them and service interactions (for
services only). Variability Association facilitates
choreography to identify proper bindings of utilized
service and choreography variability.

Methods And Parameter Activation for
Configuration provides a configuration mechanism
to define method activation/deactivation and
parameter setting/unsetting of referred service
interface.Variability attachment specifies conditions
of variation point and variant selections used in
choreography composition. Tagging with variability
attachment specifications, the parts of the
composition gains dynamicity that changes the
behavior of choreography. When conditions are
satisfied, the part is added to the final composition.

4 XChor LANGUAGE

The authors have developed a new domain specific
language, XChor, based on the metamodel that we
have described in the previous section. XChor
(XChor, 2012) has been implemented using Xtext
(Xtext, 2012) in the Eclipse development

XChor - Choreography Language for Integration of Variable Orchestration Specifications

125

environment.
XChor Language facilitates to create three

different models. Configuration interface models
cover variability specifications stated in (Nguyen et
al., 2011). Choreography model can specify twelve
service interaction patterns described in (Barros et
al., 2005).

The basic elements of XChor is shown under
three model to cope with variability in
choreography. Models are exemplified based on a
part of a real life case study, verification of a user in
adaptable security system.

Adaptable Security System is an authentication
system residing between customers and third party
applications or institutions that supports different
authentication types of data, including software and
hardware (biometric device) parts. The system has
the ability to be integrated and applied to a military
installation or to a banking system, which requires
fulfilling different stakeholder needs. Applicability
to different stakeholder systems requires different
functionality support and behaviour. User
verification can be done offline or online by a third
party authority such as web services or certain
devices like: PDA, PC, ATM, or mobile phone. The
third party authority gets different types of data as
required user credentials: (1) username and
password, (2) username and password with instant
mobile text, (3) e-sign, (4) biometric data;
fingerprint, finger vein, and/or iris. Then, according
to the online and offline verification result, the
system will allow or ban users entering the
integrated application.

Device support is important as different devices
have different capabilities. ATM, PDA and mobile
phone can be used with (1), (2) and (3). PC supports
(1), (2), (3) and (4). Therefore, the system should
change verification processing functions according
to used devices and parameters to be verified.

While modeling this system, user verification is
treated as a choreography utilizing other
choreographies and services. In the following
sections, (i) configuration interfaces for defining and
managing variability of choreographies and services,
(ii) interfaces of user verification choreography and
interrelated services, and (iii) user verification
choreography are depicted.

4.1 Configuration Interface

Configuration interface model covers service and
choreography variability specifications internally
and externally to depict possible abilities, to
configure others and to be configured by others. To

depict possible abilities; Choreography can specify
internal, external and configuration variation points,
whereas services can only depict external variation
points. The external ones are used to be configured
by choreographies and services. Capabilities to
configure its own interface or other services’
intefaces as activating/deactivating and
setting/unsetting parameters are also specified in this
model. Numerical or logical constraints among
variability specifications are depicted.

Different user authentication types such as
biometric authentication, supported authentication
modes (online and/or offline), transaction types (real
or fake transaction) are the system’s behaviours need
to be configured differently. Therefore, each is
treated as variability in configuration interface of
user verification choreography.

To enable authentication variability, both types
of authentication and parameters used in encryption
function are changed with regard to the usage of
biometrics or not. For this purpose a configuration
variation point named as “authentication_type” as
external and two internal variation points
“i_auth_type” and “i_encryption_parameters” are
defined. Binding of “authentication_type”
configures consistent bindings of “i_auth_type” and
“i_encryption_parameters”.

“i_auth_type” is specified with “internalVP”
keyword (line 5). “username_passw” is a mandatory
variant, whereas “onetimepassw” (line 9) and
“esign” (line 10) are optional in other words can be
selectable. At least one and at most two variants can
be selected among the following alternatives:
"fingerprint” (line 12), “fingervein” (line 13), “iris”
(line 14), and “face” (line 15). The binding time of
this variation point is runtime (line 17).
“authentication_type” is specified as external (line
26). The variation point has two optional variants
specified (lines 29-30); “userinfo” and “biometrics”.
“userinfo” variant is realized (line 33) by selection
of “defaultparams” variant of
“i_encryption_parameters” variation point.

For “biometrics”, the realization requires two
selections at the same time: (i) minimum one variant
among “fingerprint fingervein iris face” set should
be selected from “i_auth_type” variation point (line
35) and “setparams” variant of
“i_encryption_parameters” variation point (line 36).
Default variant of the “authentication_type”
configuration variation point is “userinfo” (line 37).
Configuration type is parameterization and it is
bound at development time represented as “devtime”
(line 39).

Third International Symposium on Business Modeling and Software Design

126

1 Configuration interface vconf_verification of choreography userverification
2
3 //determines number of different biometric authentication types
4 @composition
5 internalVP i_auth_type:
6 mandatory
7 variant username_passw
8 optional
9 variant onetimepassw
10 variant esign
11 alternative
12 variant fingerprint
13 variant fingervein
14 variant iris
15 variant face
16 (min:1,max:2)
17 bindingTime runtime
18 //determines authentication mode
19 @composition
20 internalVP i_auth_mode:
21 optional
22 variant mode_online:activateMethods(service:thirdparty,funct:getconnection,savehasheddata,verify)
23 variant mode_offline:activateMethods(service:storage,funct:get_hashed_data)
24 bindingTime devtime
25
26 configuration authentication_type:
27 varType externalVP
28 optional
29 variant userinfo
30 variant biometrics
31 realization "it is realized by i_encryption_parameters and i_auth_type variability points"
32 confvariant userinfo mapping
33 VPName i_encryption_parameters selectedVariants(defaultparams)
34 confvariant biometrics mapping
35 VPName i_auth_type selectedVariants(fingerprint fingervein iris face; min:1, max:1)
36 VPName i_encryption_parameters selectedVariants(setparams)
37 defaultVariant userinfo
38 type parameterization
39 bindingTime devtime

Figure 3: Configuration interface of user verification choreography.

 1 Constraints
 2 i_auth_type requires i_auth_mode selectedVariants(mode_online)
 3 i_auth_mode mode_online const protocol = "https"
 4 i_auth_type esign const i_encryption_parameters defaultparams = "username,password and esign"
 5
 6 Parameter Settings
 7 parameter noofbiometricauthtypeselected = #ofSelectedVariants{fingerprint fingervein iris face} Of i_auth_type
 8 parameter defaultparams = [username_passw] + [selected{onetimepassw,esign}]

Figure 4: Constraint and parameter setting specification in configuration interface of user verification choreography.

Any variant can activate required functions in
service and choreography interfaces.
“i_auth_mode”, internal variation point (line 20) is
responsible for activation of different functions of
storage and thirdparty services when its related
variants are selected. For instance, “mode_online”
varaint activates “getconnection, savehasheddata,
verify” functions of thirdparty service when selected
(line 22).

Constraints includes a logical constraint (line 2),
stated that “i_auth_type” variation point requires
“mode_online” variant of “i_auth_mode” variation
point to be selected. In lines 3-4 numerical
constraints are depicted in which “mode_online”
variant of “i_auth_mode” variation point contraints
the “protocol” property to be set to “https”.

Moreover, any variability in choreography
configuration interface that affects context elements
in choreography can be defined in Parameter
Settings part. Their values are set when the

choreography is configured. For instance,
“noofbiometricauthtypeselected” in Figure 5 (line
31) identifies the number of times for extracting
features from biometric data. Its value is assigned
(line 7) when variants of “i_auth_type” is selected.

4.2 Choreography

Choreography model includes composition
constructs with variability attachments, context
elements and variability associations between
interacting services and choreographies. User
verification choreography composes nine different
services and interacts with three other
choreographies. Importing collaborating
choreographies and services with or without their
own configuration interfaces provides an
opportunity to utilize them with different
configuration interfaces, that is with different service
interfaces.

XChor - Choreography Language for Integration of Variable Orchestration Specifications

127

1 choreography userverification
2
3 import configuration vconf_verification
4
5 use choreography chor_warning
6 use choreography chor_warning
7 use choreography chor_connection
8
9 import service encryption with configuration vconf_encryption
10 import service imageretrieval
11 import service credentials
12 import service storage
13 import service attemptcalc
14 import service comparison with configuration vconf_comparison
15 import service responsewindow
16 import service interfaceprep with configuration vm_interfaceprep
17 import service thirdparty with configuration vm_thirdparty
18
19 Context Elements
20 wrongattempts 0
21 fakeinterface false
22 noofbiometricauthtypeselected 0
23
24 Choreography Variability Mapping
25 VP i_encryption_parameters maps service encryption VP encryption_params
26 Variant defaultparams maps Variant withdefaultparams
27 Variant setparams maps Variant withparams
28 ...
29 Function verify:
30 sequence (
31 #vp i_auth_type ifOneSelected(fingerprint fingervein iris)# repeat noofbiometricauthtypeselected times
32 (
33 imageretrieval receive message extractfeatures(biometric_data) refers imageretrieval.extract_features
34)
35
36 ...
37 #vp i_auth_mode ifSelected(mode_offline)# sequence (
38 encryption send{storage} referedDestinations (comparison) message sendstoreddata() refers storage.get_hashed_data
39 #vp i_transaction_type ifSelected(faketransaction)# storage send{comparison} message compare(hasheddata) refers
 comparison.compare
40)
41 comparison send{attemptcalc} message calculateworngattemps(result) refers attemptcalc.calculate_wrong_attempts
42 %comp wrongattempts = attemptcalc.calculate_wrong_attempts%
43 ...
44)

Figure 5: User verification choreography specification with XChor.

1 Service interface encryption
2
3 function encrypt
4 precondition(sessioncreated == true)
5 postcondition(data_encrypted == true)
6 input(credentials)
7 output hasheddata
8
9 function setparams
10 precondition(params_required ==

true)
11 postcondition(set_params == true)
12 input(parameters)
13
14 portName encryption binding hostname:8082

1 Choreography interface chor_verification of userverification
2
3 function verify
4 precondition(authentication_mode_selected == true)
5 postcondition (verification_result_set == true)
6 input(user_info)
7 output response
8
9 portName verifyuser binding hostname:8082
10
11 required interfaces
12 from chor_warning function { warn }
13 from chor_connection function { closeconnection }
14 from chor_alert function { alert }

Figure 6: Encryption service and user verification choreography interfaces.

Variables defined with their default values based
on the Context Elements part are affected by service
interactions. For instance, “wrongattempts” is newly
specified here to store the number of wrong attempts
to limit verification trials.

User verification choreography associates its
internal variation points and related variants to those
of utilized services’ in order to configure service
interface variability. The association between lines
25-27 ensures that when “i_encryption_parameters”

variation point is bound to one of its variants,
“encryption_params” variation point of encryption
service is bound accordingly to provide a consistent
interaction. With this, when defaultparams is
selected, encryption service interface is configured
with regard to withdefaultparams variant.

User verification choreography carries out
“verify” functionality (line 29) comprising a set of
interactions. Atomic and composite interactions are
tagged with variability attachments whenever the

Third International Symposium on Business Modeling and Software Design

128

part of the composition is changeable with regard to
variability. In Figure 5, the lines 31-34, 37-40, and
39 include attachments referring to specified
variation declarations in the configuration interface
of the user verification choreography. “#vp
i_auth_mode ifSelected(mode_offline)” to depict the
point which composition can change (line 37).

4.3 Service and Choreography
Interface

Service and choreography interface model comprises
only interface specifications without variability.
Each choreography and service has its own interface
including all possible functionalities to be
configured by configuration interfaces.

The interface of encryption service utilized in
user verification choreography is shown in the left
hand side of Figure 6. Exposed functionalities
“encrypt” (line 3), and “setparams” (line 9) with pre-
post conditions, input and outputs are depicted.
Other services and choreographies can collaborate
with it using “encryption” port (line 14).

Interface of user verification choreography;
“chor_verification” depicts its functionality “verify”
with pre-post conditions, input and output
parameters. Different from encryption service
interface, it explicitly states required choreographies
with a list of functions.

4.4 Tool Support

Xtext is used to implement XChor Language which
provides a development environment for domain
specific languages to developers with Eclipse IDE
integration. XChor files created from three models
are: (i) choreography interface, (ii) service interface,
(iii) configuration interface for choreography, (iv)
configuration interface for service, and (v)
choreography specification. These files can be
categorized under configuration, services, and
choreographies packages respectively in order to
increase understandability.

Choreography, orchestration and atomic services
are defined with variability specifications in Xtext.
Binding variability and revealing a consistent
collaboration require association analysis between
variability specifications. This analysis requires
considering variability constraints, choreography
and service configurations (coming from
configuration interfaces) with regard to variation
selections. For this purpose, XChorS tool is provided
 to analyse variability associations which reveal

configuration effects on orchestration and service

interfaces,
 to configure choreographies and services with

regard to variant selections, and
 to output configured XChor files in a specified

destination folder.

XChorS tool employs parsing, variability association
analysis, and configuration phases. It also includes
some utilities for developers; binding time analysis
and variation point redundancy analysis.

The tool parses related XChor files, discovers
dependencies and constraints between them which
are specified in configuration interfaces and
choreography specification. The variability
association analysis shows which variation points
are related with which services and service
functions.

It helps in the configuration phase to determine
which services interact with each other and which
functions should reside with which parameters in
their interfaces. According to variation selections,
the tool (i) configures interfaces by enabling and
disabling its functions and parameters, (ii) prepares
choreography compositions and external behaviour
specifications of orchestration by examining whether
the parts with variation attachments are included.
Finally, the tool outputs configured choreography
and related services and configuration interfaces if
there are variation points that will be bound at
runtime.

5 CONCLUSIONS

Existing orchestration and choreography languages
do not address interface and composition variability
explicitly.

Moreover, a single variation model covering all
granularity levels, namely choreography,
orchestration and atomic services is not proposed.
Our approach is based on reusing existing
architecture via explicit variability definition and
management in SOA proposing a solution to fulfill
interface and composition variability requirements.
Taking into account challenges of variability
scattered throughout the architecture, making
feasible to develop variable service-oriented
systems, and integrating variable orchestration
specifications, a new variability meta-model and
language; XChor is constructed and explained in
detail. Variability constructs are treated as first class
entities and can be defined in all granularity levels.

As a result of our contributions, we improve
development of variable service-oriented systems

XChor - Choreography Language for Integration of Variable Orchestration Specifications

129

reducing their complexity while providing consistent
service interaction with regard to variability
specifications. We think that in addition to
modelling variable choreographies and relating them
to orchestrations and services, verification of the
model is important. So, verification of variable
choreography is taken into consideration as a future
work. Moreover, a runtime environment for XChor
and relation with standard modelling languages are
our current ongoing research.

REFERENCES

Arbab F., 2004. Reo: a channel-based coordination model
for component composition, In MSCS, Journal of
Mathematical Structures in Computer Science.
Cambridge University Press.

Barker A., Walton C. D., Robertson D., 2009.
Choreographing Web Services, In Journal of IEEE
Transactions on Services Computing. IEEE.

Barros A.P., Dumas M., ter Hofstede, A. H. M., 2005.
Service Interaction Patterns, In 3rd International
Conference on Business Process Management.
Springer.

Decker G., Kopp O., Leymann F. and Weske M., 2007.
BPEL4Chor: Extending BPEL for Modelling
Choreographies, In ICWS’07, 5th International
Conference on Web Services, IEEE Computer Society.

Erl T., 2005. Service-Oriented Architecture: Concepts,
Technology, and Design, Printice Hall, Indiana, 1st
edition.

Fensel, D., Lausen, H., Polleres, A., Bruijn, J. de,
Stollberg, M., Roman, D., Domingue, J., 2007.
Enabling Semantic Web Services, The Web Service
Modeling Ontology. Springer.

Lanese I., Bucchiarone A., and Montesi F., 2010. A
Framework for Rule-Based Dynamic Adaptation, In
TGC 2010, 5th Symposium on Trustworthy Global
Computing. Springer.

Montesi F., Guidi C., Lucchi R. and Zavattaro G., 2007.
JOLIE: a Java Orchestration Language Interpreter
Engine, In Journal of Electronic Notes in Theoretical
Computer Science. Elsevier.

OASIS, 2007. Web Services Business Process Execution
Language Specification, WS-BPEL. OASIS.

OMG, 2011. BPMN 2.0 Specification. OMG.
Koning M., Sun C., Sinnema M., Avgeriou P., 2009.

VxBPEL: Supporting variability for Web services in
BPEL. In Journal of Information & Software
Technology. Elsevier.

Kopp O., Engler L., Lessen T., Leymann F., Nitzsche J.,
2010. “Interaction Choreography Models in BPEL:
Choreographies on the Enterprise Service Bus”, In S-
BPM ONE 2010 - the Subjectoriented BPM
Conference.

Lianping C., Babar A., Nour M. A., 2009. Variability
management in software product lines: a systematic

review, In SPLC'09, 13th International Software
Product Line Conference. Carnegie Mellon
University.

Nguyen T., Colman A., Talib M. A., Han J., 2011.
Managing service variability: state of the art and open
issues, In VaMoS '11, 5th Workshop on Variability
Modeling of Software-Intensive Systems. ACM.

Sinnema M., Deelstra S., Nijhuis J., Bosch J., 2004.
COVAMOF: A Framework for Modeling Variability
in Software Product Families, In SPLC3, 3rd Software
Product Lines Conference. Springer.

W3C, 2005. Web Services Choreography Description
Language Specification, W3C.

XChor 2012. XChor Language Representation in Xtext,
available at: http://www.xchor.com/XChorLanguage-
xtext.pdf.

Xtext, 2012. Xtext 2.3.1, available at
http://www.eclipse.org/Xtext/.

Zaha J. M., Barros A. P., Dumas M., Arthur H. M., 2006.
Let's Dance: A Language for Service Behavior
Modeling, In OTM 2006, 4th On the Move to
Meaningful Internet Systems Conference. Springer.

Third International Symposium on Business Modeling and Software Design

130

