
Generating a Tool for Teaching Rule-based Design

Stef Joosten and Gerard Michels
Department of Computer Science, Open University The Netherlands, Valkenburgerweg 177, Heerlen, Netherlands

{stef.joosten, gerard.michels}@ou.nl

Keywords: Business Rules, Requirements Engineering, Software Generation, Computer Science Education.

Abstract: Software generation from a formal requirements specification has enabled a small research team to develop
a tool set for educational design exercises and didactical research. This approach was needed to obtain a
development environment, which is responsive to changing requirements due to maturing didactics and future
research questions. We use Ampersand, a rule-based design methodology, to specify and generate the tool set
called the Repository for Ampersand Projects (RAP). RAP is being used in a course on Ampersand for master
students of computer science and business management. Analytic tools have been interconnected to RAP to
obtain analytics about student activities in RAP. So, Ampersand is both the subject of teaching and research
as well as an asset used to develop and maintain RAP. In this paper we present how RAP has been generated
with Ampersand and reflect upon the value of this design choice.

1 INTRODUCTION

The authors have developed a Repository for Amper-
sand Projects (RAP) to facilitate teaching Ampersand
as well as research on that subject. Ampersand is a
methodology to design information systems and busi-
ness processes as a formal collection of rules. RAP is
a tool set for Ampersand design exercises, which fea-
tures rule-based interfaces to connect analytic tools in
a way that preserves semantics of data. The analytic
tools use semantic data in RAP to produce unambigu-
ous measurement results for our research. The objec-
tive of our research is to understand how to teach Am-
persand to master students of computer science and
business management. The first study using data from
RAP has been accepted for publication (Michels and
Joosten, 2013).

This paper reflects on our choice to use Amper-
sand to generate RAP from functional requirements.
Ampersand was a prerequisite in this choice c.q. the
question is whether rule-based design has brought us
closer to our research objective. The answer is posi-
tive. By using Ampersand we have obtained a devel-
opment environment for RAP, that enables us to re-
spond to changing requirements in a controlable and
timely fashion. We can adopt new didactical insights
in the exercise tool and facilitate our current and fu-
ture studies with unambiguous analytics from RAP.
Thus, this paper presents the fundament of our envi-
ronment to study and improve the teaching of Amper-
sand i.e. the generation of RAP with Ampersand.

Section 2 provides a background on using rules as
requirements. Section 3 introduces Ampersand as a
rule-based approach on a formal language to design
information systems. Section 4 describes the generic
and specific issues of generating RAP with Amper-
sand e.g. rule-compliant processes, customized data
access. We conclude with a reflection on our accom-
plishments with RAP up to date and expectations for
the future.

2 RULES AS REQUIREMENTS

This paper argues that a rule-based design approach
can reduce the gap between the owners of require-
ments (end users, patrons, auditors, etc.) and the de-
sign of information systems, by giving compliance
guarantees to these owners and by giving the appro-
priate tools to requirements engineers. The Business
Rules Community (Ross, 2003b) has argued since
a long time that natural language provides a bet-
ter means for discussing requirements than graphical
models (e.g. UML (Rumbaugh et al., 1999)). This
vision is the fundament of profound assets like the
Business Rules Manifesto (Ross, 2003a), the Busi-
ness Rules Approach (Ross, 2003b), the SBVR stan-
dard (Object Management Group, Inc., 2008) and
RuleSpeak (Business Rule Solutions, LLC., 2013).
Rule-based design goes beyond requirements by for-
malizing business rules and using them as require-
ments to partially automate information system de-

230
Joosten S. and Michels G.
Generating a Tool for Teaching Rule-based Design.
DOI: 10.5220/0004775902300236
In Proceedings of the Third International Symposium on Business Modeling and Software Design (BMSD 2013), pages 230-236
ISBN: 978-989-8565-56-3
Copyright c© 2013 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

velopment.
Rule-based design uses the word business rule to

denote a formal representation of a business require-
ment. Business rules have been represented in many
different ways. Prolog (Clocksin and Mellish, 1981)
is an early rule-based approach that uses Horn-clauses
as a means to write computer programs. Widespread
are also Event-Condition-Action (ECA) rules of ac-
tive databases, such as (Dayal et al., 1988; Paton and
Dı́az, 1999; Widom, 1996), which represent success-
ful results of earlier research into functional depen-
dencies between database transactions in the seven-
ties and eighties. Expert systems and other develop-
ments founded in ontology (Gruber, 1993; Berners-
Lee et al., 2001) can be regarded as ways to represent
business processes by means of rules. Approaches
based on event traces, such as Petri Nets (Reisig,
1985) and ARIS (Scheer, 1998), have dominated the
90’s and are still popular to date (Green and Rose-
mann, 2000). The information systems community is
aware (e.g. (Ram and Khatri, 2005)) that mathemat-
ical representations of business rules can be useful.
For example, Date’s criticism of SQL for being un-
faithful to relational algebra (Date, 2000) advocates a
more declarative approach to information system de-
sign, and puts business rules in the center of the de-
sign process.

This paper argues that business requirements are
sufficient to generate a functional prototype of an in-
formation system. The word ‘sufficient’ suggests that
requirements engineers need not communicate with
the business in any other way. This suggestion is seri-
ously flawed. Models are still useful, but their role
changes. In Ampersand, models are artifacts, pre-
ferrably produced automatically, that document the
design. If desired, a requirements engineer can avoid
to discuss these artifacts (data models, etc.) with the
business, but they are available and undeniably useful
as documentation in the design process. Ampersand
shifts the focus of the design process to requirements
engineering, because a larger part of the process is
automated.

Controlling design processes directly by means of
business rules has consequences for requirements en-
gineers, who will encounter a simplified design pro-
cess. From their perspective, the design process is de-
picted in figure 1. The main task of a requirements en-
gineer is to collect rules to be maintained. These rules
are to be managed in a repository (RAP). From that
point onwards, a first generator (G) produces various
design artifacts, such as data models, process models
etc. These design artifacts can then be fed into another
generator (an information system development envi-
ronment), that produces the actual system. That sec-

Figure 1: Rule-based design process (engineer).

ond generator is typically a software development en-
vironment, of which many exist and are heavily used
in the industry. Alternatively, the design can be built
in the conventional way as a database application. A
graphical user interface on the repository and gener-
ator will help the requirements engineer by storing,
managing and checking rules, to generate specifica-
tions, analyze rule violations, and validate the design.

From the perspective of an organization, the de-
sign process looks like figure 2. At the focus of at-

Figure 2: Rule-based design process (organization).

tention is the dialogue between a problem owner and
a requirements engineer. The former decides which
requirements he wants and the latter makes sure they
are captured accurately and completely. The require-
ments engineer helps the problem owner to make re-
quirements explicit. Ownership of the requirements
remains in the business. The requirements engineer
can tell with the help of his tools whether the re-
quirements are sufficiently complete and concrete to

Generating a Tool for Teaching Rule-based Design

231

make a buildable specification. The requirements en-
gineer sticks to the principle of one-requirement-one-
rule, enabling him to explain the correspondence of
the specification to the business.

3 AMPERSAND

The purpose of Ampersand is to have the right inter-
action with stakeholders to define the right business
rules and represent them unambiguously. Ampersand
looks at business rules not only as an agreement be-
tween parties, but uses them as functional require-
ments to automate an information system as well.
That is: these rules are to be maintained by all parties
at all times and the IT must support that. Maintaining
these rules is done either by people (of any party) or
by computers.

A requirements engineer using Ampersand de-
fines a suitable relational information structure to de-
fine rules upon. A meaningful specification of rules
in Ampersand can be incomplete or even contain
no business rule at all. In that matter, Ampersand
clearly differs from more common relational speci-
fication languages like Alloy (Jackson, 1999). No
business rules on an information structure represent
ultimate freedom when using that information struc-
ture in business processes. This kind of freedom is
explicitly useful in experimental contexts like the ed-
ucational design exercises in RAP. For example, a stu-
dent can first define an information structure and add
rules one-by-one while studying the impact of adding
another rule. More practical reasons to omit a busi-
ness rule are disagreement between stakeholders, ir-
relevance of the rule, or unawareness of the rule.

Ampersand uses a relation algebra (Maddux,
2006) as a language in which to express business
rules. Relation algebras have been studied extensively
and are well known for over a century (Schröder,
1895). The use of existing and well described theory
brings the benefit of a well conceived set of operators
with well known properties.

The Ampersand syntax consists of constant sym-
bols for (business) concepts, (business) elements, re-
lations and relation operators. Relation terms can be
constructed with relations and relation operators.

Let C be a set of concept symbols. A concept is
represented syntactically by an alphanumeric charac-
ter string starting with an upper case character. We
use A, B, and C as concept variables.

Let U be a set of atom symbols. An atom is repre-
sented syntactically by an ASCII string within single
quotes. All atoms are an element of a concept, e.g.
’Peter’ is an element of Person. We use a, b, and c

as atom variables.
Let D be a set of relation symbols. A relation sym-

bol is represented syntactically by an alphanumeric
character string starting with a lower case character.
For every A,B∈C, there are special relation symbols,
IA and VA×B. We use r, s, and t as relation variables.

Let ¬, t, t, and o
9 be relation operators of arity 1,

1, 2, and 2 respectively. The binary relation opera-
tors u,⇒ and ≡ are cosmetic and only defined on the
interpretation function.

Let R be the set of relation terms. We use R, S,
and T as variables that denote relation terms.

R is recursively defined by

IA,VA×B,r,¬R,Rt,RtS,R o
9 S ∈ R

provided that R,S ∈ R,r ∈ D, and A,B ∈ C
An Ampersand script for context C is a user-

defined collection of statements where
• RUL ⊆ R is a collection of relation terms called

rules.
• REL is a collection of r : A∼ B for all r ∈ D such

that A,B ∈ C. The instances of REL are called
relation declarations.

• POP is a collection of a r b such that a ∈ A,b ∈ B
and (r : A∼ B) ∈ REL.

The relation declarations define the conceptual struc-
ture and scope of C. Relation elements define facts
in C. POP is called the population of C. Rules are
constraints on that population.

The interpretation function I(R) defines the se-
mantics of a relation term R. This function interprets
relation terms based on POP and a relation algebra
〈R,∪, , ; ,`,I〉 where R ⊆ P (U). All relation sym-
bols used in a relation term are either declared by the
user in REL or IA or VA×B. So, the relation algebra
on R is configured by the user through REL. The in-
terpretation of all relation symbols in D is completely
user-defined through POP. Thus, given some REL
and some POP, I(R) determines whether some rela-
tion holds between two elements.

Given some C, the interpretation function of rela-
tion terms is defined by

relation I(r) = {〈a,b〉 | a r b ∈ POP}
(1)

identity I(IA) = {〈a,a〉 | a ∈ A} (2)
universal I(VA×B) = {〈a,b〉 | a ∈ A, b ∈ B}

(3)

complement I(¬R) = I(R) (4)

converse I(Rt) = I(R)` (5)
union I(RtS) = I(R)∪I(S) (6)

composition I(R o
9 S) = I(R);I(S) (7)

Third International Symposium on Business Modeling and Software Design

232

(the interpretation of the mentioned cosmetic relation
operators)

intersection I(RuS) = I(¬(¬Rt¬S)) (8)
implication I(R⇒ S) = I(¬RtS) (9)
equivalence I(R≡ S) = I((R⇒ S)u (S⇒ R))

(10)

Relations need to have a type to be more practi-
cal for requirements engineers (Michels et al., 2011).
This way, only a relation term R∈R with a type T(R)
has an interpretation. A relation term without a type
T(R) is said to have a type error or to be (seman-
tically) incorrect. Compilers for Ampersand scripts
must reject relation terms with a type error. A require-
ments engineer might call a relation term without a
type nonsense.

Van der Woude and Joosten (van der Woude and
Joosten, 2011) have enhanced the typing function
with subtyping of concepts. Subtyping is useful to
confront two different, but comparable concepts with-
out being rejected as a type error. For example, a re-
quirements engineer can model the concept Client
and Provider to be comparable over a more gen-
eral concept. This might make sense when a client
can be a provider as well. A course book on Amper-
sand (Wedemeijer et al., 2010) also discusses alter-
native patterns in Ampersand to model apparent sub-
types of concepts.

4 GENERATING RAP

RAP includes first and second generator functions
and the repository (RAP) of figure 1. The genera-
tor functions are part of a command-line tool called
the Ampersand compiler. A web application of RAP
for design exercises provides access to the repository
and generator functions. The Ampersand compiler is
manually coded in Haskell. Source and binary files
of the Ampersand compiler are freely available via
wiki.tarski.nl. The web application and reposi-
tory are generated with the compiler from an Amper-
sand script for RAP. RAP and its full script are freely
available at request.

We claim that the Ampersand compiler can gen-
erate a compliant information system from business
requirements in an Ampersand script. Early versions
of the Ampersand compiler could already generate
a trivial, but compliant system. Such a trivial sys-
tem consists of a relational database, a web interface,
and a rule engine. The database model contains a ta-
ble of two columns for each relation declaration in
the script, to hold its population. An initial popu-
lation for the database is checked to be free of vio-

lations. The web interface provides a user with ba-
sic data functions for the database. A rule engine
checks all the rules before committing changes to the
database in order to remain compliant with the rules
c.q. the requirements. The current version of the Am-
persand compiler takes rules into account and uses
simple syntactic Ampersand constructs to derive more
practical system components. Examples of Amper-
sand constructs for practical enhancements are: an in-
terface construct to customize data access; attributes
to customize violation handling; and plain text at-
tributes to attach meaning or purpose to formal ele-
ments for traceability. In the next subsection we ad-
dress a generic issue: How do business rules yield a
compliant business process? In the remaining subsec-
tions we describe how a system, RAP, could be gen-
erated, which has shown to be sufficiently practical
for studies on and design exercises of a course at the
Open University. We use examples from the Amper-
sand script for RAP.

4.1 Compliant Processes

Whenever and whereever people work together, they
connect to one another by making agreements and
commitments. These agreements and commitments
constitute the rules of the business. The role of infor-
mation technology is to help maintain business rules.
This is what compliance means. If any rule is vio-
lated, a computer can signal the violation and prompt
people or trigger a computer to resolve the issue. This
can be used as a principle for controlling business pro-
cesses. For that purpose two kinds of rules are distin-
guished: rules that are maintained by people and rules
that are maintained by computers. A rule maintained
by a computer is an automated activity within a busi-
ness process.

Since all formalized rules (both the ones main-
tained by people and the ones maintained by comput-
ers) are monitored, computers and persons together
form a system that lives by those rules. This es-
tablishes compliance. Business process management
(BPM) is also included, based on the assumption that
BPM is all about handling cases. Each case (for in-
stance a credit approval) is governed by a set of rules.
This set is called the procedure by which the case is
handled (e.g. the credit approval procedure). Actions
on that case are triggered by signals, which inform
users that one of these rules is (temporarily) violated.
When all rules are satisfied (i.e. no violations with
respect to that case remain), the case is closed. This
yields the controlling principle of BPM, which im-
plements Shewhart’s Plan-Do-Check-Act cycle (often
attributed to Deming) (Shewhart and Deming, 1939).

Generating a Tool for Teaching Rule-based Design

233

Assume the existence of an electronic infrastructure
that contains data collections, functional components,
user interface components and whatever is necessary
to support the work. An adapter observes the busi-
ness by drawing digital information from any avail-
able source. The observations are fed to a rule en-
gine, which checks them against business rules in a
repository. If rules are found to be violated, the rule
engine signals a process engine. The process engine
distributes work to people and computers, who take
appropriate actions. These actions can cause new sig-
nals, causing subsequent actions, and so on until the
process is completed. This principle rests solely on
rules, yielding implicit business processes which di-
rectly follow from the rules of the business. In com-
parison: workflow management derives actions from
a workflow model, which models the procedure in
terms of actions. Workflow models are built by mod-
elers, who transform the rules of the business into ac-
tions and place these actions in the appropriate order
to establish the desired result.

4.2 Rule-based Structure of RAP

RAP is an application on a repository of Ampersand
scripts. If RAP was just a storage for scripts, then its
Ampersand structure could remain limited to only one
concept Script ∈ C; no rules; no relations. However,
we want RAP to have functions to facilitate certain
activities. For those functions, concepts, relations and
rules need to be added to the script of RAP.

We have used RAP as:

• a design exercise tool for students. A student user
of RAP has a facility to upload a script to RAP, a
structured view on a script in RAP, and access to a
few compiler functions to run on a script in RAP.
The second release of the exercise tool anticipates
on more roles than students, which are teachers,
advanced students, and requirements engineers.
The second release introduces rule-guided editing
of a script in the structured view;

• a data source for measurements to study student
behaviour;

• a data storage for measurement results to use in
the exercise tool for learning.

No additional structure was needed in the script of
RAP to use RAP as a data source for measurements.

If the results of measurements need to be stored in
RAP, then we need at least a univalent relation from
the source of the measure to the result. For example,
the structured view on a script includes the counters
of rules, relations and concepts, which are measure-
ments needed for a design activity called cycle chas-

ing. Each counter is a functional relation in the script
of RAP e.g. count rules : Script→Number.

Most of the script of RAP relates to student ac-
tivities in the exercise tool. The upload facility is a
handcoded component of RAP, and is thus excluded
from the script of RAP. The structured view follows
the syntactic structure of a script as implemented by
the script parser of the compiler. The compiler in-
cluding parser is coded in Haskell, which is a func-
tional programming language. The functional struc-
ture of a script in Haskell could easily be transposed
into a relational structure in Ampersand, because a
relation is less strict than a function. The view also
contains derivates from a script like conceptual di-
agrams, a diagnosis on the typing function(Michels
et al., 2011), or a report of rule violations. For ex-
ample, the source concept of a relation declaration
is a functional relation in the script of RAP, source :
Concept→Declaration. In the Haskell code of the
compiler, the data structure Declaration has an at-
tribute of type Concept to hold its source concept.
A compiler function on a script is implemented as
a functional relation from a script to a web location
where the compiler output is accessible. For exam-
ple, the script of RAP contains a relation to gener-
ate a functional specification from a script, gen fspec :
Script→FSpec.

4.3 Custom Data Access

An interface construct exists in the Ampersand lan-
guage to access the population of relations by means
of relation algebraic expressions. An interface is a
tree of labeled expressions where each node connects
a parent R and child S with a composition operator
R o

9 S. The interface provides an easy way to config-
ure data access with the full power of the relation al-
gebra. The relation algebra also has restrictions, for
instance numerical calculations are not possible. At-
tributes can be set to customize data access like who
may use an interface and which relations in an inter-
face can be altered with that interface.

We demonstrate how to configure an interface by
an example from RAP. The following interface is used
to generate a web page for students to view a context.
-1- INTERFACE "CONTEXT" FOR Student:I[Context]
-2- BOX ["name" : ctxnm
-3- ,"PATTERNs" : ctxpats
-4- ,"concepts" : ctxcs
-5- ,"ISA-relations" : ctxpats;ptgns
-6- ,"relations" : ctxpats;ptdcs
-7- ,"RULEs" : ctxpats;ptrls]

The text elements in double quotes are labels. The
text after a colon is an ASCII-encoded relation al-
gebraic expression. The first line defines a root

Third International Symposium on Business Modeling and Software Design

234

node with the identity relation of a concept Context.
This means that the interface can be used to view
or alter relations of any instance of the domain of
the identity relation of Context. This interface is a
view-only interface, because the attribute to grant ac-
cess to edit certain relations in the interface is not
set. The optional FOR-attribute restricts usage of
this interface to a Student user only. Each instance
of Context represents a context C, that could have
been parsed from a script by the compiler. The
box of line 2 to 7 connects six sibling nodes to the
root by means of a composition operator. The re-
lation ctxnm : Context→ContextName holds the re-
lation of user-friendly names for a C. The relation
ctxpats : Context ∼ Pattern holds the relation to
patterns in the C. Patterns are syntactic containers
for rules, declarations and ISA-relations i.e. ptrls :
Pattern ∼ Rule, ptdcs : Pattern ∼ Declaration,
and ptgns : Pattern ∼ Gen. The relation ctxcs :
Context∼ Concept holds the relation to concepts in
the C.

4.4 Configure Layout

The layout of a web page generated from an interface
is configured in Cascading Style Sheets (CSS). These
web pages contain labels and textual data.

Little efforts were needed to customize the default
style sheets to suit RAP. We experienced that solu-
tions to improve the user experience and comfort are
more difficult to implement in a generated page than
in a hand coded page. But when such a solution is im-
plemented on a good design, then you can easily take
advantage of it in any page.

For example, RAP needs to display non-textual
data like images and handlers to execute parameter-
ized software functions. A view on a concept is in-
vented that allows the requirements engineer to com-
pose non-textual HTML elements based on instances
of a concept. For example instances of the concept
ConceptualDiagram are urls to actual images, which
are embedded in an HTML element to display images.
Likewise, all software functions on data in RAP are
encapsulated by the only manually coded web page
of RAP (index.php). RAP has a concept G refering to
the G in figure 1, which contains software functions to
compose HTML links to execute software like com-
piler functions. The Ampersand code below config-
ures a view on an instance of G.
VIEW G:
G(PRIMHTML

"<a href=’../../index.php?operation="
,operation ,PRIMHTML "&file="
,applyto;filepath ,applyto;filename
,PRIMHTML "’>" ,functionname
,PRIMHTML "")

PRIMHTML becomes actual HTML on the gener-
ated web page. Functional relations with the in-
stance of G as a source fill the parameters of the
url. The relation operation : G→Operation relates
instances of G to an operation number. The rela-
tion applyto : G→Script relates instances of G to
the script to which the operation of G must be ap-
plied. The relations filepath : Script→FilePath and
filepath : Script→FilePath relate the script to a lo-
cation on a file system. The relation functionname :
G→String relates instances of G to a textual element
to click on in order to execute a software function.

4.5 Manage Measurements for
Research

The most prominent advantage of using RAP for mea-
surements in our experience is the documentation and
qualitity of input data. The quality of data in RAP is
high, because data is embedded in a formally defined
information structure. The information structure of
data has a clear and compliant relation with business
requirements, such that the purpose and meaning of
data can be documented and verified easily.

Measurements do not need to be part of the script
of RAP to use RAP as a data source for measure-
ments. This makes it easy to adapt to new measure-
ments, because no development efforts are required.
We do have added a univalent relation for each of our
measurements for studies to the script of RAP. Adding
a univalent relation is a small effort with hardly any
impact on RAP. A small advantage is gained because
measurements can be documented and managed in a
structured way. We have experienced control over our
measurements in their implementatation and use.

Measurements have been implemented as exten-
sions on the compiler and in spreadsheets.

5 CONCLUSIONS

In this paper we have presented an application of rule-
based design to obtain a development environment for
RAP.

Does RAP fulfill its purpose to facilitate teach-
ing Ampersand as well as research on that subject?
We have shown that the functional requirements for
RAP can be formalized by means of an Ampersand
script, such that RAP can be generated. Section 4
describes all the details of how RAP has been con-
structed. About 50 students per year have used RAP
to complete a design exercise which defines 80% of
the final grade of a master course on rule-based de-
sign. A first study has been accepted for publication

Generating a Tool for Teaching Rule-based Design

235

(Michels and Joosten, 2013), which uses analytics
from RAP based on 52 students who have used RAP
in the period between April 2010 and May 2011. This
publication reports on six hypotheses based on those
analytics in order to explore the possibilities to study
student behaviour with RAP. From the above obser-
vations we conclude that:
• RAP has been generated with Ampersand;
• RAP is sufficiently practical for teaching and re-

search.
For further research we have planned to identify di-
dactical requirements for the exercise tool for stu-
dents. Current analytics in RAP will be taken into
account. The objective is to upgrade the ’sufficiently
practical exercise tool’ to a ’teaching exercise guide
for students’.

Has the application of Ampersand brought us
closer to understand how to teach Ampersand to mas-
ter students of computer science and business man-
agement? With the development environment of RAP
we created, we are ready to adopt RAP to new didacti-
cal insights and produce unambiguous analytics. Our
first study has produced preliminary results on how to
teach Ampersand. Thus, our research has progressed
due to the application of Ampersand because:
• with Ampersand we have created a responsive and

controlable environment for research;
• with Ampersand we could produce unambiguous

analytics to show that meaningful research with
RAP is feasible (Michels and Joosten, 2013).

The next step in research is to define didactical stud-
ies on how to teach Ampersand, which are based on
analytics in RAP.

REFERENCES
Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The

semantic web. Scientific American, 284(5):34–43.
Business Rule Solutions, LLC. (2013). RuleSpeak.

Retrieved Februari 27, 2013, from http://www.
rulespeak.com.

Clocksin, W. F. and Mellish, C. (1981). Programming in
Prolog. Springer.

Date, C. J. (2000). What Not How: the Business Rules Ap-
proach to Application Development. Addison-Wesley
Longman Publishing Co., Inc., Boston.

Dayal, U., Buchmann, A. P., and McCarthy, D. R. (1988).
Rules are objects too: A knowledge model for an
active, object-oriented database system. In Dittrich,
K. R., editor, OODBS, volume 334 of Lecture Notes
in Computer Science, pages 129–143. Springer.

Green, P. F. and Rosemann, M. (2000). Integrated pro-
cess modeling: An ontological evaluation. Inf. Syst.,
25(2):73–87.

Gruber, T. R. (1993). A translation approach to portable on-
tology specifications. Knowl. Acquis., 5(2):199–220.

Jackson, D. (1999). A comparison of object mod-
elling notations: Alloy, UML and Z. Tech-
nical report, Retrieved Februari 27, 2013,
from http://people.csail.mit.edu/dnj/
publications/alloy-comparison.pdf.

Maddux, R. (2006). Relation Algebras, volume 150 of Stud-
ies in logic. Elsevier, Iowa.

Michels, G. and Joosten, S. (2013). Progressive develop-
ment and teaching with RAP. Accepted at CSERC’13.

Michels, G., Joosten, S., van der Woude, J., and Joosten,
S. (2011). Ampersand: Applying relation algebra in
practice. In Proceedings of the 12th conference on Re-
lational and Algebraic Methods in Computer Science,
Lecture Notes in Computer Science 6663, pages 280–
293, Berlin. Springer-Verlag.

Object Management Group, Inc. (2008). Semantics of Busi-
ness Vocabulary and Business Rules (SBVR), v1.0.
Technical report, Retrieved Februari 27, 2013, from
http://www.omg.org/spec/SBVR/1.0/PDF.

Paton, N. W. and Dı́az, O. (1999). Active database systems.
ACM Comput. Surv., 31(1):63–103.

Ram, S. and Khatri, V. (2005). A comprehensive framework
for modeling set-based business rules during concep-
tual database design. Inf. Syst., 30(2):89–118.

Reisig, W. (1985). Petri Nets: an Introduction. Springer-
Verlag New York, Inc., New York, NY, USA.

Ross, R. G. (2003a). The Business Rules Manifesto.
Retrieved Februari 27, 2013, from http://www.
businessrulesgroup.org/brmanifesto.htm.

Ross, R. G. (2003b). Principles of the Business Rule Ap-
proach. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Rumbaugh, J., Jacobson, I., and Booch, G., editors (1999).
The Unified Modeling Language reference manual.
Addison-Wesley Longman Ltd., Essex, UK, UK.

Scheer, A.-W. W. (1998). Aris-Business Process Frame-
works. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2nd edition.

Schröder, E. (1895). Algebra und Logik der Relative. Vor-
lesungen über die Algebra der Logik (Exakte Logik) /
Ernst Schröder. Teubner.

Shewhart, W. and Deming, W. (1939). Statistical Methods
from the Viewpoint of Quality Control. Dover Books
on Mathematics Series. Dover Publications, Incorpo-
rated.

van der Woude, J. and Joosten, S. (2011). Relational hetero-
geneity relaxed by subtyping. In Proceedings of the
12th conference on Relational and Algebraic Methods
in Computer Science, Lecture Notes in Computer Sci-
ence 6663, pages 347–361, Berlin. Springer-Verlag.

Wedemeijer, L., Joosten, S., and Michels, G. (2010). Rule
Based Design. Open Universiteit Nederland, 1st edi-
tion.

Widom, J. (1996). The starburst active database rule system.
IEEE Trans. on Knowl. and Data Eng., 8(4):583–595.

Third International Symposium on Business Modeling and Software Design

236

