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Abstract: Innovations are introduced in several cycles, or steps which are of stochastic character. Successful 
completion of each cycle results in the beginning of the next one. Initial stages are connected with expenses 
of risk (venture) capital and the investments are returned in the final stages, usually with quite big profit. A 
helpful approach for control of the innovation process is the use of Markov decision processes which have 
proved to be an efficient tool for control of multi state stochastic processes. Those stages may be 
summarizes as: 1 – prestart stage; 2 – start stage; 3 – initial expansion stage; 4 – quick expansion stage; 5 – 
stage of reaching liquidity of venture investments; 6 – stage of project failure and its cancelling. The 
transition from state to state may be controlled through control techniques of Markov Decision Processes so 
that maximum profit is achieved in shortest time. The stages are conditional and some of them may be 
united, e.g. 1 and 2, or 3 and 4. 

1 INTRODUCTION 

It is known that the innovations’ introduction 
through the respective innovation cycles as a rule is 
accompanied with considerable uncertainty and it is 
of definitely expressed stochastic character. As the 
successful completion of each innovation project 
very often results in considerable profit this 
stimulates the investment of considerable venture 
(risk) means. A very important task arises for 
preliminary careful considering and calculating the 
stochastic character of the on going processes. 

A multi step discrete Markov decision process 
with mixed policies is proposed in the present work, 
for the innovation risks interpretation. The 
innovation process is accomplished, and probably 
finished, as a rule, in a cycle of the following 6 
stages: 1 – prestart and start stage; 2 – initial 
expansion stage; 3 – quick expansion stage; 4 – 
preparatory stage; 5 – stage of reaching liquidity of 
the venture investment; 6 – stage of project failure 
and its liquidation (Grossi, 1990, Cormican, 2004, 
Bernsteina, 2006). Besides, the process at each stage 
may be in different states where the decision maker 
may undertake different actions which result in the 
transition to a new state with respective profits and 
losses. The first three stages are connected with 
initial investments and respective losses. The 

objective is they to be minimized. The last three 
stages may generate profit and ensure full return of 
the investments and considerable gains, but it may 
also result in considerable loss if the innovation 
product is a failure. It is to be clearly noticed that the 
innovation introduction is a risky enterprise and not 
each attempt is successful and winning. 

It should be explicitly noticed that the innovation 
process may only pass from a given stage to the next 
one and can never return to a previous stage. No 
other stages except the last ones – success or failure, 
are absorbing - i.e. the innovation process may not 
stay for ever in any of the initial stages or it fails. 
The process may stay in a given stage for some time. 
It is a responsibility of the decision maker to 
undertake such control actions that the process 
leaves as soon as possible the first three stages, 
which generate expenses, with min losses and 
reaches the final stage, which generate profit.  

It is to be also noted, that depending on the 
decision makers actions a stage may be omitted, e.g. 
to pass directly from stage r to stage r+2. I.e. stages 
so described are to some degree conditional but 
nonetheless the process may develop in only forward 
direction. 
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2 MARKOV DECISION MODEL 
FOR THE INNOVATION 
PROCESS 

We consider an innovation process, which might be 
at any of the six stages of implementation of a new 
product. Of course this is for purposes of 
methodology. In fact one should begin from the first 
stage and reach the last one. 

We introduce the following denotation: 
1 jjN  where the right hand part of the upper 

equation is a reverse mapping of node j of the graph 

from Figure 1. k
ijP denotes the transition probability 

of the innovation process to pass from state Ni  

to state Nj  when using control iKk  , where 

iK  is the set of possible policies from state i. As 

leaping across or going back to stages of the 
innovation process is impossible, then: 
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By k
ix  will be denoted the probability the 

innovation process to fall in state i , at using control 

iKk   from this state. 

An important feature of the innovation process is 
that at transition from one stage to the next one in 
the first three stages resources are spent, and the 
transition from stage to the other in the last three 
stages increasing profit is gained, i.e.: 
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Then the maximum restoration of the venture funds 
initially invested will be obtained at optimal choice 
of control actions from each possible state of the 
process, i.e.: 

 

}/*{ ri NiKk  . 
 

This optimal control selection from the separate 
states corresponds to maximization of the objective 
function: 
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Different methods of linear and dynamic 
programming (Mine, 1975) may be used for finding 
the optimal solution of the objective function above 
with the existing linear probability constraints. 

The specific structure of the proposed here multi 
step discrete Markov decision process corresponds 
to a sufficient degree to the processes of realization 
of innovations and provides possibilities for efficient 
control of venture financing of innovations at their 
realization. 

3 NUMERICAL EXAMPLES 

Next Figure 1 illustrates a Markov Decision Process 
for control of the development of an innovation 
through the 6 stages. The set of arcs U show the 
possible transition from one stage (state) of the 
innovation process to another one. The denotations 
on the arcs of the decision graph should be decoded 
as follows: 

lk
jiP ,  - the probability for transition from stage i to 

stage j using control action kl in state i. 
In the final two stages, 5 and 6, which are 

ergodic there is one only possible action. At the 
other stages we accept for illustration that there are 
two possible control actions with the respective 
transition probabilities. 

 Formally this means that the possible actions 
{kj} in each state Nj  are defined in the 

following way: 
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The initial probability the process to be in state 
Ni  is equal to: 
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The problem for finding optimal policies for the 
Markov Decision Process shown in Figure 1 may be 
reduced to the following linear programming 
problem with objective function (2) and constraints: 





jKk

k
ix 1, if i = 1           (3) 

 

Innovation Cycles Control through Markov Decision Processes

287



)( 2
3,1

1
3,1 PP  

)( 2
2,1

1
2,1 PP

2 

P1
2,3(P

2
23) 

3 

P1
3,5(P

2
3,5) 

P1
3,4(P

2
3,4) 

4 

P1
4,5(P

2
4,5) 

5 

P1
2,4(P

2
2,4) 

6 
P1

3,6(P
2

3,6)

P1
4,6(P

2
4,6) 

P1
5,5=1 

P1
6,6=1 

 
Figure 1: Exemplary transition graph for an innovation process. 
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If we take as a base the graph in Figure 1, then the 
equations (2) and (3) to (5) will acquire the 
following form: 
 

 1
4

1
4

2
3

2
3

1
3

1
3

2
2

2
2

1
2

1
2

2
1

2
1

1
1

1
1 xrxrxrxrxrxrxr

max1
6

1
6

1
5

1
5

2
4

2
4  xrxrxr  

(6)

 

under the constraints: 
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Let the profits (expenses) }{ k
ir  have the following 

values: 
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The transition probability values are defined in the 
following table: 

Table 1: Transition probabilities. 

STATE 1 STATE 2 
Policy 1 Policy 2 Policy 1 Policy 2 

1
2,1P  0,8 2

2,1P  0,9 1
3,2P  0,7 2

3,2P  0,8 

1
3,1P  0,2 2

3,1P  0,1 1
4,2P  0,3 1

4,2P  0,2 

STATE 3 STATE 4 
Policy 1 Policy 2 Policy 1 Policy 2 

1
4,3P  0,6 2

4,3P  0,5 1
5,4P  0,8 2

5,4P  0,7 

1
5,3P  0,3 2

5,3P  0,3 1
6,4P  0,2 2

6,4P  0,3 

1
6,3P  0,1 2

6,3P  0,2     

STATE 5 STATE 6 
Policy 1 - Policy 1 - 

1
5,5P  1 - 1

6,6P  1 - 

 
The respective transition probabilities are shown 

above the arcs of the graph shown in Figure 1, when 
using different possible policies. If only policy 1 or 
respectively – only policy 2 is used, then the 
transition probabilities tables will have the following 
form: 
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Table 2: Transition probabilities for policy 1. 

 1 2 3 4 5 6 
1. 0 0,8 0,2 0 0 0 
2. 0 0 0,7 0,3 0 0 
3. 0 0 0 0,6 0,3 0,1 
4. 0 0 0 0 0,8 0,2 
5. 0 0 0 0 1 0 
6. 0 0 0 0 0 1 

Table 3: Transition probabilities for policy 2. 

 1 2 3 4 5 6 
1. 0 0,9 0,1 0 0 0 
2. 0 0 0,8 0,2 0 0 
3. 0 0 0 0,5 0,3 0,2 
4. 0 0 0 0 0,7 0,3 
5. 0 0 0 0 1 0 
6. 0 0 0 0 0 1 

 
Table 2 reflects transition probabilities for policy 

1 and Table 3 – for policy 2 respectively. 
At least two classes may be distinguished in this 

matrix – one quasi block diagonal ergodic, and one 
absorbing, corresponding to states 5 and 6. When the 
process being controlled falls in one of the latter 
states it remains there for ever. 

At defining the optimal control through relations 
(5) to (13) in the rows of both matrices #3 and #4 
will be used, in general with different probabilities, 
i.e. both pure and mixed policies will be used, as 
seen in the solving of the particular problem. 

The linear programming problem (6) to (14) 

includes 10 variables }{ k
jx  and 8 constraints. Its 

solution results in the following optimal values of 
the variables: 

Table 4: Linear programming problem solution. 

Variables Optimal values 
1
1x  1 

2
1x  0 

1
2x  0,8 

2
2x  0 

1
3x  0,76 

2
3x  0 

1
4x  0 

2
4x  0,696 

1
5x  0,7152 

1
6x  0,248 

 

It is seen from the table above, that in the 
example considered the optimal solution leads to 
pure optimal policies of both types – 1 or 2. Next 
table shows the optimal pure policy and the 
respective optimal strategy. 

Table 5: Optimal pure policy and respective strategy. 

State Ni  1 2 3 4 5 6 

Optimal policy iKk *  1 1 1 2 1 1 

Optimal strategy 

}/{ * NiKk i   
{1, 1, 1, 2, 1, 1} 

 
The following matrix of the achieved optimal 

transition probabilities of the Markov process may 
be drawn up on the base of the optimal policies. 

The new (optimal) transition probabilities matrix 
thus constructed also consists of a quasi diagonal 
ergodic class and an absorbing class of two states. In 
it one row (the fourth) of Table 4 is used, 
corresponding to policies 2. The remaining rows are 
from Table 3, corresponding to policies 1. In this 
sense it is mixed by using both policies – 1 and 2. 

Table 6: Optimal transition probabilities matrix. 

 1 2 3 4 5 6 
1. 0 0,8 0,2 0 0 0 
2. 0 0 0,7 0,3 0 0 
3. 0 0 0 0,6 0,3 0,1 
4. 0 0 0 0 0,7 0,3 
5. 0 0 0 0 1 0 
6. 0 0 0 0 0 1 

 
The Markov process thus constructed will flow 

step by step according to the transition probabilities 
from Table 6. In the next Figure 2 its stochastic 
parameters are shown for the purpose of clearness – 
on the arcs the respective probabilities }{ ijP  are 

shown for falling from the initial state 1 into state 
Nj  at passing through the previous state Ni , 

and in squares next to the vertices the final 
probabilities }/{ , Njji   are shown for the 

process to fall from the initial state 1 into the 
corresponding state .Nj  

The final probabilities are also shown in the 
following table: 

Table 7: Final probabilities. 

Final 
prob. 

π1,1 π1,2 π1,3 π1,4 π1,5 π1,6 

Values 1 0,8 0,76 0,69 0,72 0,28 
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Figure 2: Markov process stochastic parameters from state to state and in the states. 

On the base of the optimal values of the variables 

}{ k
jx  of Table 4 through (6) the maximum value of 

the objective function is computed to be - 0,328. 
The results obtained provide the possibility some 

conclusions to be made: 
I. When teaching one of the two final states – 5 

or 6 the investment made is not paid off in full as 
0,328 units remain to be paid off. If the process has 
fallen in state 5, then the project is successful and in 
may go on further to pay off the investments made 
and to produce profit. In case that the process fell in 
state 6, the project is a failure and it is almost sure it 
will be cancelled. The amount of 0,328 units should 
be registered as a loss in this case. 

II. Even at optimal decisions for leading the 
stochastic innovation process, the end the end of the 
project cannot be certainly predicted – a 
considerable probability (in the case considered 
almost 0,3) exists it to end as a failure. This reflects 
the real conditions in similar class of processes, 
which are always of explicitly expressed stochastic 
character. 

III. The method proposed for innovation 
processes control on the base of Markov decision 
processes has another important advantage - optimal 
policies and strategies may be recomputed on the 
base of new and more refined data after each step 
completed step of the process and the state it falls 
into. This may result in better final result by 
improving the strategy initially computed. 

IV. It is possible to use more precise classes of 
Markov decision, e.g. by using profit discount at 
each step at each step, with constrained capacity or 
through Markov flows or Markov games (Sgurev, 
1993). 

4 CONCLUSIONS 

In conclusion the following general inferences may 
be drawn: 

1. The innovation processes are highly stochastic 
and uncertain, which results to highly imprecise 
prognostication of their completion. And this is 
connected with a big risk at the venture financing of 
such processes. 

2. The method proposed in the present work for 
using multistep Markov decision processes for 
description of the innovation processes provides a 
possibility their stochastic character to be recognized 
to a considerable degree and an effective procedure 
to be proposed for their behavior control. 
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