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Abstract: Image analysis is significant from the standpoint of image description. A well described image has merits
in different research areas, e.g., image compression, machine learning, computer vision etc. This paper is an
attempt to analyze graylevel images through shifted orthogonal polynomial moments, computed on a discrete
disc. This removes the difficulty of computing the moments on an analytic disc. Excellent rotational invariance
as well as illumination invariance is observed.

1 INTRODUCTION

Image analysis through moments has recently gained
a good amount of attention during the last two
decades in the community of image processing, com-
puter vision and pattern recognition, though its initi-
ation was made in 1962 when Hu (Hu, 1962) did his
pioneering work on moment invariants. Afterwards,
various works based on both non-orthogonal and or-
thogonal moments were carried out. Among the non-
orthogonal moments, some of the reported works
can be found in (Prokop and Reeves, 1992), (Reddi,
1981), (Abu-Mostafa and Psaltis, 1984). Similarly,
works based on orthogonal moments can be found
in (Teague, 1980), (Teh and Chin, 1988), (Z.L. Ping
and Sheng, 2002), (H. Ren and Sheng, 2003) and
(T. Xia and Luo, 2007). Attempts on discrete orthog-
onal moments using Chebyshev moments were made
by (P.T. Yap and Ong, 2003) and (R. Mukundan and
Lee, 2001), while Zhu et al. (H.Q. Zhu and Coatrieux,
2007) introduced a kind of orthogonal polynomials
defined on non-uniform lattice, known as Racah poly-
nomials. A good survey of works on moments can be
found in the article of Shu et al. (H. Shu and Coa-
trieux, 2007) and (Jan Flusser and Zitova, 2009). In
the present paper, moment-based rotational invariance
using orthogonal shifted polynomials on discrete disc
(Biswas and Chaudhuri, 1985) is proposed. Shifting
function bijectively maps the interval[0,1] to the in-
terval [−1,1]. Shifted polynomials are, therefore, or-
thogonal on[0,1], i.e.,on the unit disc. It should be
noted that it is difficult to use analytic disc because of
the pixel mapping problem on the analytic disc. On

the other hand, using discrete disc has many advan-
tages. The mapping is unique and straightforward be-
cause of the mathematical description of the discrete
disc. This makes the algorithms straightforward. Re-
sults show excellent behavior of invariance under ro-
tation and different conditions of illumination. This
facilitates significant image description through or-
thogonal shifted polynomial image moments.

Below in Section 2, we briefly discuss discrete
circles, rings and discs to help readers understand
the mapping on discrete disc. Section 3 describes
the proposed three different methods, while Section 4
demonstrates results and discussion. Finally, in Sec-
tion 5 we present our conclusion.

2 DISCRETE CIRCLE, RING AND
DISC

Consider a 2-dimensional discrete array space ofm×
n points or pixels so that any point or pixel (x, y),
0 ≤ x ≤ m− 1 , 0 ≤ y ≤ n− 1. x,y,m,n ∈ I (set of
integers) can be mapped to the continuous real plane
by a unit square about the center point (x± 1

2, y± 1
2).

Also, for simplicity and convenience, let the radii of
the discrete circle, ring and disc be integer valued with
center of the unit squares.

Discrete Circle (dc)
A dc is a discrete space approximation to the circle
defined in Euclidean geometry. In the present scheme
of generation, a dc is defined as follows

411Biswas R. and Biswas S..
Image Analysis through Shifted Orthogonal Polynomial Moments.
DOI: 10.5220/0004648004110416
In Proceedings of the 9th International Conference on Computer Vision Theory and Applications (VISAPP-2014), pages 411-416
ISBN: 978-989-758-003-1
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



Definition 1. A dc with radius r and center (α, β) is
a setSr of 8-connected pixels so that each pixel (x, y)
satisfies the inequality

r− 1
2
< |

√

(x−α)2+(y−β)2|< r+
1
2

(1)

Uniqueness of a dc under the above definition may be
easily established.

Rings and Discs
Since a pixel covers a square area in real space, a dc
has some width in real space. A ring or a disc can
therefore be generated by the union of circles of radii
r,r+1, · · · · · · ,r+m. However it is interesting to ob-
serve the following properties in connection with the
generation of a ring and a disc by the present method.

Definition 2. A discrete ring (dr) with integer radius
r1 andr2, r2 > r1 and integer center(α, β) is given
by

R(r1, r2, α, β) =
r2⋃

r=r1

Sr (2)

if r1 = 0 a discrete disc (dd) is generated. HereS0 is
assumed to be the center pixel itself. It is easy to show
that there exist no hole or gap in the dr or dd generated
according to the definition 2. Thus, a discrete disc
(dd) with integer radiusr and integer center(α,β) is
given by

D(r,α,β) =
r⋃

r=0

Sr (3)

It should be noted that when an image is mapped on
a discrete disc, the circumference of different circles
constituting the disc has different pixels of the image
mapped onto it. As this map is unique, positions of
pixels on each circle are also unique.

3 PROPOSED METHODS

We now examine three different shifted orthogo-
nal polynomials. Proposed polynomials include the
shifted Legendre and shifted Chebyshev polynomi-
als of both the first and second kind. Note that
shifted orthogonal polynomials have certain advan-
tages over their non-shifted versions. The advantages
are centered about the orthogonality on the unit inter-
val [0,1]. Below we discuss these polynomials.

3.1 Shifted Legendre Polynomial

The shifted Legendre polynomial is given by

P∗
n (x) = Pn(2x−1) (4)

Here, the shifting function shiftsx −→ 2x−1. This
shifting function is an affine transformation (i.e., it
preserves straight lines which means all points lying
on a straight line will lie on a line after the transfor-
mation. Ratios of distances between points lying on
a straight line will remain unaffected but it does not
necessarily preserve angles or lengths. Sets of paral-
lel lines will remain parallel to each other). The shift-
ing function is chosen to bijectively map the interval
[0,1] to the interval[−1,1]. As a result, the shifted
Legendre polynomials are orthogonal on[0,1]. Since,

Pn(x) =
1
2n

[n/2]

∑
t=0

(−1)t n!
(n− t)!t!

(2n−2t)!
n!(n−2t)!

xn−2t , (5)

where[n/2] is the maximum integer inn/2, we get

P∗
n (x) =

1
2n

[n/2]

∑
t=0

(−1)t (2n−2t)!
t!(n− t)!(n−2t)!

(2x−1)n−2t.

(6)
The orthogonality condition for this polynomial can
be written as∫ 1

0
P∗

n (x)P
∗
m(x)dx =

1
2n+1

δnm (7)

This orthogonality condition can be suitably changed
to∫ 1

0

√

(2n+1)P∗
n (x)

√

(2m+1)P∗
m(x)dx = δnm. (8)

To show the rotational invariance behavior of a poly-
nomial, it must be converted to polar form, i.e., it must
be expressed as a function of radiusr and polar an-
gle θ. Thus, it should have the form ofV (r,θ) which
in turn, for invariant representation under rotation of
axes about the origin, can be explicitly written into its
radial partRn(r) and polar parteimθ (Bhatia and Wolf,
1954) as

V (r,θ) = g1(r)g2(θ) = Rn(r)e
imθ. (9)

Hence, we must express the shifted Legendre polyno-
mial as the product of two functions. Now, one can
observe the orthogonality of the radial part as∫ 1

0
Rn(r)Rm(r)rdr = δmn (10)

To compute the radial part for the shifted Legendre
polynomial, we equate the integrands from equation
(8) and equation (10), i.e.,
√

(2n+1)P∗
n (x)

√

(2m+1)P∗
m(x) = Rn(r)Rm(r)r,

(11)
or,

Rn(r) =
√

(2n+1)P∗
n (r)r

−1/2,

=
√

(2n+1)r−1/2 1
2n

[n/2]

∑
t=0

(−1)t

(2n−2t)!
t!(n−t)!(n−2t)! × (2r−1)n−2t .

(12)
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Therefore, in polar co-ordinates we finally get

Vnm(r,θ) = Rn(r)e
imθ,

and sinceVnm(r,θ is orthogonal on the unit disc, we
write

∫ 2π

0

∫ 1

0
Vnm(r,θ)Vpk(r)rdrdθ = δnpmk. (13)

If we assumef (x,y) is the digital graylevel image,
then it should be suitably mapped to a discrete disc
to get f (r,θ). The Legendre moment of the image
f (x,y) can be computed by

AP
nm =

∫ 2π

0

∫ 1

0
f (r,θ)Rn(r)e

−imθrdrdθ. (14)

Writing r/rmax = ρ, we getρ = 0 whenr = 0, and
ρ = 1 whenr = rmax. Hence,AP

nm on the discrete unit
disc can be written as

AP
nm =

ρ=1

∑
ρ=0

ρRn(ρ)(
2π

∑
θ=0

f (ρ,θ)e−imθ). (15)

3.2 Normalized Shifted Legendre
Moments

To consider normalized Legendre momentsAL
nm, we

must normalizef (ρ,θ), Rn(r) ande−imθ. We normal-
ize f (ρ,θ) by dividing it by the square root of the sum
of its elements, i.e., the normalized valuef̃ (ρ,θ) is

f̃ (ρ,θ) =
f (ρ,θ)

√

√

√

√

ρ=1

∑
ρ=0

2π

∑
θ=0

[ f (ρ,θ)]2
, (16)

so that
ρ=1

∑
ρ=0

2π

∑
θ=0

[ f̃ (ρ,θ)]2 = 1 (17)

Similarly, we normalizeRn(ρ) by dividing it by the
square root of the product of the maximum value of
n, i.e.,rmax and the sum of the squired values ofRn(ρ).

R̃n(ρ) =
Rn(ρ)

√

rmax ∑
ρ∈D

[Rn(ρ)]2
, (18)

whereD is the discrete unit disc. Finally,|e−imθ|= 1.
Hence, the normalized shifted Legendre moments is
given by

ÃP∗
nm =

ρ=1

∑
ρ=0

ρR̃n(ρ)(
2π

∑
θ=0

f̃ (ρ,θ)e−imθ). (19)

3.3 Invariance and Illumination

It should be noted that equation (19) holds good, in
general, for all shifted orthogonal polynomials.

3.3.1 Invariance

When a graylevel imagef (ρ,θ) rotates about a point
by an angleα, it becomes noisy and blurred to some
extent. Normalized moments are capable of handling
this situation. To observe this, we consider

g(ρ,θ+α) = f (ρ,θ+α)+ n(ρ,θ+α) (20)

Therefore,

ÃL(g)
nm =

ρ=1

∑
ρ=0

ρR̃n(ρ)(
2π

∑
θ=0

g̃(ρ,θ+α)e−im(θ+α)),

=
ρ=1

∑
ρ=0

ρR̃n(ρ)(
2π

∑
θ=0

f̃ (ρ,θ+α)e−im(θ+α))

+
ρ=1

∑
ρ=0

ρR̃n(ρ)(
2π

∑
θ=0

ñ(ρ,θ+α)e−im(θ+α))

≈ ÃL( f (θ+α))
nm .

(21)
L in equation (21), is used forP∗ to indicate the valid-
ity of the equation for all shifted polynomials. since,
the orthogonal moments̃Anm can be viewed as the
correlation between the image and the moment kernel
(Yap and Raveendran, 2004), the second term is zero
because the correlation of the low spatial frequency
moment kernel and the high spatial frequency of the
noise is small. In other words, whenn andm in Ãnm
are low,

ρ=1

∑
ρ=0

ρR̃n(ρ)(
2π

∑
θ=0

ñ(ρ,θ)e−imθ)≈ 0 (22)

Therefore,

ÃL( f (θ+α))
nm =

ρ=1

∑
ρ=0

ρR̃n(ρ)(
2π

∑
θ=0

f̃ (ρ,θ+α)×

e−im(θ+α))

= Tr(α)
ρ=1

∑
ρ=0

ρR̃n(ρ)(
2π

∑
θ=0

f̃ (ρ,θ)×

e−im(θ+α))

=
ρ=1

∑
ρ=0

ρR̃n(ρ)(
2π

∑
θ=0

Tr(α) ˜( f )(ρ,θ)×

e−im(θ+α))

= ÃL(Tr(α) f (θ))
nm e−imα

(23)
whereTr(α) is the rotational transformation on the
image in the discrete domain. Thus,

|ÃL( f (θ+α))
nm | ≈ |ÃL( f (θ))

nm | (24)
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3.4 Illumination

When the illumination changes by a factor of c, the
new imageg(x,y) = c f (x,y). In polar co-ordinates
g(ρ,θ) = c f (ρ,θ). Now,

g̃(ρ,θ) =
c f̃ (ρ,θ)

√

√

√

√

ρ=1

∑
ρ=0

2π

∑
θ=0

|c f (ρ,θ)|2
= f̃ (ρ,θ) (25)

Thus, under illumination change

ÃL(g)
nm =

ρ=1

∑
ρ=0

ρR̃n(ρ)(
2π

∑
θ=0

g̃(ρ,θ)ẽ−imθ),

= ÃL( f )
nm .

(26)

It is already established that moments can serve well
as features. From the computational point of view,
low order normalized moments can be computed very
quickly and hence the high order normalized mo-
ments can be easily obtained. We consider the ratio
of high to low order moments as our feature. Low

order moment is chosen asMl =

√

(
N−1

∑
n=0

M−1

∑
m=0

|Ãnm|2,

while the high order moment isMh = 1− Ml . Ml
andMh correspond to the low spatial frequency (low-
pass) and high spatial frequency (high-pass) compo-
nents of the image. The ratio of these two moments,
RM = Mh/Ml can be taken as an effective feature.

To consider this ratio feature of moments for other
orthogonal polynomials, we simply consider the un-
derlying polynomials and their radial form. Compu-
tation of moments for them is self explanatory.

3.5 Shifted Chebyshev Polynomial of
First Kind

Shifted Chebyshev polynomial of the first kind is
defined byT ∗

n (x) = Tn(2x − 1), whereTn(x) is the
Chebyshev polynomial of the first kind and is de-
scribed by

Tn(x) =
n
2

[n/2]

∑
t=0

(−1)t (n− t −1)!
t!(n−2t)!

(2x)n−2t . (27)

Hence,
T ∗

n (x) = Tn(2x−1),

= n
2

[n/2]+1

∑
t=0

(−1)t (n− t−1)!
t!(n−2t)!

×[2(2x−1)]n−2t.

(28)

The orthogonality condition is∫ 1

0
(x− x2)−1/2T ∗

n (x)T
∗

m(x)dx = π
2δnm,n 6= 0

= πδnm,n = 0
(29)

Therefore, in the polar form, the radial polynomial
can be written as

Rn(r) =
√

π(r− r2)−
1
4 r−

1
2 n

2

[n/2]+1

∑
t=0

(−1)t×
(n−t−1)!
t!(n−2t)! [2(2r−1)]n−2t , f or n = 0.

(30)
It should be noted that the shifted Chebyshev polyno-
mial of the first kind is orthogonal on the interval[0,1]

with respect to the weight functionw(x) = (x−x2)−
1
2 .

In the polar form this becomesw(ρ) = (ρ− ρ2)−
1
2 .

Obviously, whenρ = 1, w(ρ) becomes infinite. It
is therefore, clear that on the unit discrete disc, the
shifted Chebyshev polynomial moments of first kind
on the circumference are undefined and hence cannot
be used for recognition features. However, one can
easily get over this problem by computing the mo-
ments on a discrete unit ball because a ball does not
consider its circumference. To enhance accuracy, one
can consider the value ofρ = rmax/(rmax +1) when
r = r/rmax = 1.

3.6 Shifted Chebyshev Polynomial of
Second Kind

Shifted Chebyshev polynomial of second kind,U∗
n is

free from any kind of computational problem because
it is orthogonal on the interval[0,1] with respect to

the weight functionw(x) = (x− x2)
1
2 . And,

U∗
n (x) = Un(2x−1),

=
[n/2]+1

∑
t=0

(−1)t (n− t)!
t!(n−2t)!

×[2(2x−1)]n−2t.

(31)

Un(x) is the shifted Chebyshev polynomial of second
kind. The corresponding radial polynomial can be
computed as

Rn(r) = U∗
n (r)r

−1/2

=
√

8/π(1−r
r )

1
4

[n/2]+1

∑
t=0

(−1)t (n− t)!
t!(n−2t)!

×[2(2r−1)]n−2t,
(32)

4 EVALUATION OF THE MERIT
OF THE WORK

Almost all the authors have computed moments of
Chebyshev polynomials on a rectangle. Ping et
al. (Z.L. Ping and Sheng, 2002) introduced shifted
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(a) (b)

(c) (d)

Figure 1: (a) Lena image,c = 1.0 (b) Map on the discrete
disc (c)Lena image,c = 0.6 (d)Lena image,c = 0.4.

Chebyshev polynomial moment of the second kind
on an analytic disc. As the discrete points or pixels
are defined on a rectangular grid, this needs a spe-
cial mapping technique to find the pixel position on
a disc. One of the solutions is to use a polar raster.
The problems with the polar raster and the errors of
the reconstruction are analyzed in detail in (Mikola-
jczyk and Schmid, 2004). Our method uses a dis-
crete disc for unique mapping of pixels. As a result,
computation in our case becomes easy and straight-
forward, and removes the difficulty of mapping pix-
els on an analytic disc. Besides, in addition to ex-
amining shifted Chebyshev polynomial of the second
kind, we have also examined the feasibility of us-
ing the shifted Chebyshev polynomial of first kind
and shifted Legendre polynomial. Result shows all
of them are equally efficient.

5 RESULTS AND DISCUSSION

Fig. 1 shows the Lena image and its map on a discrete
disc, while Fig. 2 shows the straw image at differ-
ent illuminations. Table 1 describes the result of rota-
tional invariance withθ = 0 and varyingα in equation
(24), while Table 2 describes the result of illumination
invariance with varyingc in equation (25).

6 CONCLUSIONS

Image description through moments of orthogonal
shifted polynomials has been proposed. This descrip-
tion is rotationally invariant as well as illumination

(a) (b)

(c) (d)

Figure 2: (a)Straw image,c = 1 (b)Straw image,c = 0.6
(c)Straw image,c = 0.4 (d)Straw image,c = 0.2.

Table 1: Rotational Invariance for Lena Image,N = M = 6.

Polynomial Image Value of RM
α in eqn.(24)

0o 1.556585e+2
30o 1.555999e+2
60o 1.552167e+2

Shifted 90o 1.556327e+2
Legendre Lena 120o 1.556154e+2

150o 1.552846e+2
180o 1.556736e+2
210o 1.553731e+2
240o 1.554150e+2
270o 1.555708e+2
0o 6.023204e+1
30o 6.025693e+1
60o 6.004949e+1

Shifted 90o 6.033060e+1
Chebysheb Lena 120o 6.035521e+1
First Kind 150o 6.011921e+1

180o 6.030006e+1
210o 6.007316e+1
240o 6.006964e+1
270o 6.016374e+1
0o 1.981176e+1
30o 1.976791e+1
60o 1.974387e+1

Shifted 90o 1.974037e+1
Chebysheb Lena 120o 1.972534e+1

Second Kind 150o 1.972488e+1
180o 1.977120e+1
210o 1.978165e+1
240o 1.980989e+1
270o 1.981933e+1

invariant. Therefore, it can be used in many appli-
cations, such as, compression, computer vision and
recognition purposes. We have investigated the in-
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Table 2: Illumination Invariance for textured images,N = M = 6.

Polynomial Image Value ofc RM Image Value ofc in eqn.(25) RM

Shifted 1.0 1.819310e+2 1.0 1.556327e+2
Legendre 0.8 1.811447e+2 0.8 1.551542e+2

Straw 0.6 1.799795e+2 Lena 0.6 1.544699e+2
0.4 1.782080e+2 0.4 1.536190e+2
0.2 1.765312e+2 0.2 1.547770e+2

Chebysheb 1.0 7.114174e+1 1.0 6.023204e+1
First Kind 0.8 7.058486e+1 0.8 5.985514e+1

Straw 0.6 6.972407e+1 Lena 0.6 5.929079e+1
0.4 6.825735e+1 0.4 5.837455e+1
0.2 6.548399e+1 0.2 5.715533e+1

Shifted 1.0 1.974037e+1 1.0 1.981176e+1
Chebysheb 0.8 1.972534e+1 0.8 1.986103e+1

Second Kind Straw 0.6 1.972488e+1 Lena 0.6 1.996325e+1
0.4 1.981933e+1 0.4 2.023949e+1
0.2 1.981933e+1 0.2 2.160718e+1

variance through computation of global moments of
images. For invariance, we have computed the ratio
features of moments. It is found that the computa-
tion of invariance through ratio of moments over lo-
cal subimages is more powerful than that computed
computed over the entire image. Such features can be
used in correspondence problem. Our future work is
based on such local invariance of patches in images.
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