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Abstract: A new algorithm to detect straight edge parts which form the contour of an object presented in an image is 
discussed in this paper. This algorithm is very robust and can detect true straight edges even when their pix-
el's locations are not straight due to natural noise at the object borders. These straight edges are than used to 
report and classify contour's corners according to their angle and their adjacent segments lengths. A new 
technique for polygonal approximation is also presented to find the best set among these corners to con-
struct the polygon vertices that best describe the approximating contour. It starts by eliminating the corners, 
one after the other using Iterative Corner Suppression (ICS) process. This in turn enables us to obtain the 
smallest possible error in the approximation. Experimental results demonstrate the efficiency of this tech-
nique in comparison with recently proposed algorithms. 

1 INTRODUCTION 

The problem of straight edge detection can be de-
fined as follows: Given a binary image of edges ex-
tracted from a real image using an existing edge de-
tector based on Sobel, Prewitt, Kirsh or Canny algo-
rithms (Prewitt 1979, Sobel 1978, Kirsh 1971 and 
Deriche 1987), find the parts of an edge that can be 
classified as straight edges or segments of length 
greater than a given threshold. The importance of 
developing an algorithm that can detect these 
straight edges remains a very important task in com-
puter vision and pattern recognition (Loncaric 1998). 
In addition, straight edges are encountered a lot in 
human made internal and external urban environ-
ments and objects. For example, Herman in (Herman, 
Kanade and Kuroe 1984) presents an application for 
an aerial robot to form and update of a 3D map of a 
sequence of aerial scenes. The dedicated objects to 
be detected in these images are the buildings. So he 
identified them by their straight edges and their in-
tersection at the corners. Other applications are in-
door applications where a robot tries to build a map 
of its environment and localize itself in it which is 
called the SLAM problem. The target objects, used 
for this purpose, are identified by their straight edges 
like doors and walls intersection. In other applica-
tion, a combination of straight edges is used 

(Bouchafa and Zavidovique 2006) to form specific 
shapes like V-shape, W-shape and Z-shape. Each 
shape is invariant under a specific image transfor-
mation. For this reason, it is used for image registra-
tion.  

The most important objective of extracting 
straight edges is their role in identifying corners that 
are used as interest points in a lot of algorithms in 
image processing. A corner (Nachar, Inaty, Bonnin 
and Alayli 2012) can be defined as intersection of 
non collinear straight edges with appropriate length. 
From here, correct detection of straight edges will 
lead to efficient corners detection.  

After extracting the image corners based on 
straight edges of a shape, we have developed a new 
technique for "polygonal approximation" that con-
sists of selecting a number of well chosen corners to 
construct the polygon that best approximates the 
contour of that shape. Polygonal approximation is 
widely used in object recognition (Ayache and 
Faugeras 1986) because it smoothes the contour of 
the objects in the images without loss of critical in-
formation.  Related works to this algorithm are cited 
in the next section. 

The rest of the paper is organized as follows: 
Section 2 presents some related works on polygonal 
approximation. Section 3 describes the edge extrac-
tion and the chain code of every edge point. Section 
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4 explains our proposed algorithm using polygonal 
approximation. Experimental results are revealed in 
Section 5. The conclusion is shown in Section 6. 

2 RELATED WORKS 

A large number of methods were proposed so far 
(Dunham 1986). Pavlidis in (Pavlidis 1982) presents 
an algorithm, known as split and merge technique. It 
divides an edge into a set of segments that has each 
one a maximal distance to the edge less than a given 
threshold d as shown in Figure 1.  

 

Figure 1: Polygonal Approximation. 

The parameter used in this technique is the maximal 
distance dmax between the segment and the edge as 
described in Figure 2. If dmax is greater than the 
threshold d, the segment [AB] is divided into two 
segments; [AM] and [MB] where M is the edge 
point corresponding to dmax. 

 

Figure 2: Segment division according to maximal distance. 

Wall and Danielsson in (Wall and Danielsson 1984) 
presented another algorithm that tries to find the 
segment [AB] shown in Figure 2 by moving its end-
point B starting from the edge point A along the 
edge until a certain criterion is no longer verified. 
The criterion used here is the maximal area per unit 
of length of the deviation between the edge and the 
corresponding approximated segment that should be 
less than a given threshold. Another technique for 
obtaining a polygonal approximation of an object's 
contour based on an updated Hough Transform is 

presented in (Gupta, Chaudhury and Parthasarathy 
1992). On the other hand, the method in (Mikheev , 
Vincent and Faber 2001) is dedicated for the pol-
yline representation of a scanned text or graphic 
objects. Kolesnikov in (Kolesnikov 2008, 2009, 
2011) focused on the approximation of a polygonal 
edge or curve P of N vertices by another polygonal 
edge Q with a minimal number of segments or verti-
ces M (M<N) while conserving a given criterion so 
that the resulting error does not exceed a given 
threshold. The error is the sum of the square distanc-
es of the N vertices of curve P relative to the curve 
Q. Pinheiro in (Pinheiro 2010) searched for edge 
points, called curvature extremes, that correspond to 
a change in the direction of the curve (edge) using a 
curvature function which form the polygon vertices. 
These extremes are selected at different scale level 
of the smoothed image. When the scale level in-
creases, the edge details become smoother so the 
number of extremes will be reduced. Parverz and 
Mahmoud in (Parvez and Mahmoud 2010) searched 
for cut-points on the contour of the studied shape. 
These points correspond to a deviation in the con-
tour direction. Then the algorithm tries to minimize 
the number of detected cut-points until a terminating 
condition is satisfied. The final approximated poly-
gon will have these cut points as extremes.  

In (Carmona-Poyato, Madrid-Cuevas , Medi-
naCarnicer and Munoz-Salinas 2010), the authors 
presented a technique based on detecting dominant 
points on the contour and then iteratively suppress-
ing the redundant ones in order to obtain the best 
approximated polygon with the minimal number of 
segments. The algorithm of Masood in (Masood  
2008) also detects first dominant points called break 
points then starts to eliminate the ones with minimal 
error value based on global measure. The optimal 
result is not guaranteed even with the usage of an 
optimization procedure. Finally, Marji and Siy in 
(Marji and Siy 2004) presented a very similar tech-
nique to the one used in (Masood 2008) but it differs 
by the measure of error of each dominant point. 
Here, a dominant point is characterized especially by 
its strength that means its non collinearity with re-
spect to its direct neighbors. 

We have proposed in this paper an approach in-
spired by that presented in (Marji and Siy 2004 and 
Masood 2008). We have searched for dominant cor-
ners that best approximate a given shape by a poly-
gon having these corners as vertices. The differences 
between our work and their works are in the nature 
and stability of the selected points and in the method 
used to select these points among others. On the 
other hand, the error measure used to eliminate or to 
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keep a corner is based on the Integral Square Error 
between an edge part and the straight segment ap-
proximating it. So, it is similar to the criterion used 
by Wall and Danielson (Wall and Danielsson 1984) 
that relies on the area of the region included between 
the edge part and its approximated segment rather 
than only relying on the maximal distance like in the 
method of Pavlidis (Pavlidis 1982). 

3 EDGE EXTRACTION AND 
CHAIN CODE 

3.1 Edge Points Extraction 

Given an original image, the extraction of edge 
points is performed in several steps: 
 Gradient computation: in norm (magnitude of the 

edge) and direction (normal to the edge direction). 
 Threshold on gradient norm, to extract initial edge 

points. 
 Thinning edge points to thin thick edges to one 

pixel width. 
 Prolongation of edge points to close open edges. 
 Linking edge points to obtain edges (lists of 

hooked edge points) from edge points.  
Three possibilities to obtain gradient computation, in 
norm and direction, which are: 
1) Either Prewitt (Prewitt 1979) or Sobel Algorithm 

(Sobel 1978), which consist in two steps : 
 Compute the gradient projections on X and Y ax-

is, using two masks : Gx and Gy, 
 then compute the norm and the direction using a 

rectangular to polar transform, 
2) Kirsh algorithm (Kirsch 1971), which obtains 

directly the gradient in norm and direction, by 
choosing the best approximation among the four 
projections: horizontal, vertical, and two oblics 
using four masks: Gx, Gy and G+45 and G-45. 

3) Canny edge detector (Canny 1986 and Deriche 
1987) using the first derivative of a Gaussian 
function. The zero-crossing points are the edge 
points. 

3.2 Edge Chain Codes 

Linking an edge pixel C consists of identifying the 
direction of transfer from it to one of its eight neigh-
bors, who has the greatest gradient norm. This direc-
tion is one of the eight Freeman directions coded in 
Figure 3. 

 

Figure 3: Freeman Codes. 

As a result, a linked edge can be viewed as a chain 
of Freeman codes of length equal to the number of 
linked edge pixels (edge length) minus one. As an 
example, Figure 4 shows a particular edge of nine 
pixels with its chain codes. 

 

Figure 4: An edge with its chain codes. 

4 POLYGONAL APPROXIMA-
TION 

The main goal of this paper is to introduce an opera-
tor that is able to extract a polygon that best approx-
imate an object's contour. The operator's algorithm is 
composed of three functions that work sequentially 
as shown in Figure 5. 

 

Figure 5: Algorithm's Block Diagram. 

4.1 Straight Edge and Corner 
Detectors 

Our objective is to detect edge parts that can be con-
sidered straight using only their chain codes. Then, 
the intersection edge points of every two non collin-
ear edge parts are detected as corners. To do that, we 
must introduce the chain codes of straight edges. 

4.1.1 Perfect Straight Edges 

A perfect straight edge is an edge whose chain code 
is composed of one code or two codes at maximum. 
There are eight different straight edges correspond-
ing to a unique code among the eight Freeman codes. 
For example, a perfect horizontal straight edge has a 
chain code of only 0 or 4 and a perfect straight edge 
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along the first diagonal has a chain code of 1 or 5 as 
shown in Figure 6. 
In addition to these eight cases, a perfect straight 
edge has a chain code composed of two codes: one 
primary and the other secondary with a difference 
equal to one between them. The classification of 
these two codes is done according to their frequency 
of occurrence in the edge's chain code. This is illus-
trated in Figure 7. 
 

 

Figure 6: Straight Edges with unique code. 

In Figure 7, five edges are considered starting 
from one origin O. Edges1 and edge5 are those that 
have a unique code 0 and 1 respectively, and their 
slope are 0o and 45o. Edge3 is the one that have dou-
ble codes 0 and 1 of the same frequency of occur-
rence so its slope is 22.5o and it is the bisector of the 
angle formed by edge1 and edge5. Edge2 is near to 
edge1 and has also double codes 0 and 1 but with 
different frequency of occurrence. Code 0 is primary 
and code 1 is secondary. Same result can be seen in 
edge4 that has code 1 as a primary and code 0 as 
secondary. 

 

Figure 7: Straight edges with double Freeman codes. 

As a conclusion, we can say that the perfect straight 
edges that have double codes are of two kinds. The 
first kind of edges has double codes of same fre-
quency (edge3). It is equidistant between two 

straight edges of unique code (edge1 and edge5). 
The second kind of edges also has double codes but 
of different frequency (edges2 and4) and it is also 
between two straight edges of unique code corre-
sponding to the primary or secondary code. Here, 
the nearest one's code forms the primary code. In 
Figure 7, Edge1 is the nearest to Edge2, so the pri-
mary code for Edge2 is 0. 

4.1.2 Algorithm Explanation and Real 
Straight Edges 

In real images, the chain code of a straight edge that 
should be composed of one or two successive codes 
has usually more than two codes. Our goal is to 
identify which of them are the primary and second-
ary codes and reject the remaining codes. This prob-
lem is due to natural noise at the object borders.   

Real straight edges are shown in Figure 8 (a) 
where some perturbations, circled in the image of 
edges Figure 8 (b), are encountered along these edg-
es. The challenge is to build an intelligent algorithm 
that can identify these perturbations and detect real 
straight edges that meet at corner points as shown 
with their angles in Figure 8 (c). 

Our algorithm can be initiated at any edge point 
E. The purpose is to test the existence of a real 
straight edge with successive noisy pixels less than 
m and of a length greater than a threshold d. The 
idea behind the algorithm is to start testing an image 
edge starting from its head to its tail. Consider the 
first encountered edge direction as primary direction 
and the next encountered edge direction as second-
ary edge direction. While moving the current pixel 
to the tail, increment the frequency of primary or 
secondary directions when the current pixel's direc-
tion corresponds to primary or secondary directions, 
respectively. Or increment the frequency of noisy 
pixels, if the current pixel's direction differs from 
them. If the number of noisy pixels exceeds a given 
threshold m, the edge test stops at the current pixel. 
Now, if the edge length is greater than another 
threshold d, the edge traversed so far is considered 
as a straight edge. 

Let us define the variables used in the algorithm: 

- pdir: edge primary direction. 
- pdirfreq: frequency of pdir. 
- sdir: edge secondary direction. 
- sdirfreq: frequency of sdir. 
- cdir: current pixel direction. 
- InfectedCount: number of noisy pixels en   coun-

tered so far. 
- el: edge length. 
- SecondaryFound: a flag that is set when a second
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ary direction is found. 
- diff: absolute difference between cdir and pdir 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8: (a) Real image, (b) image of edges, (c) detected 
corners. 

The algorithm details can be listed as follows: 
 Record the first edge direction at E (Freeman 

code) as pdir and initialize pdirfreq = 1. Initial-
ize InfectedCount = 0, el=1 and Second-
aryFound = false and proceed to the next linked 
pixel. 

 Iterate until the current pixel C reaches the tail 
of the edge. 
 Calculate diff . 

 If (Not SecondaryFound): 
 if (diff==1), record cdir as sdir, initialize 
sdirfreq = 1 and put SecondaryFound = true. 
 else if (cdir==pdir) than increment pdirfreq. 

 else increment InfectedCount. 

 Else 
 If(diff>=2)or((diff==1)and(cdir!=sdir

))current pixel is a noisy pixel than in-
crement InfectedCount. 
o if (InfectedCount>m): meaning 

that we are reached the maximum 
allowable noisy pixels: stopping 
criterion=>Ends of straight edge 
test: 

 if(el>=d) than the current edge 
is a real straight edge. 

 else if (cdir==pdir) than increment 
pdirfreq and set InfectedCount=0. 

 else if (cdir ==sdir) than increment 
sdirfreq. 

 update pdir and sdir: pdir is the direc-
tion that has the maximum frequency 
between (pdir, pdirfreq) and (sdir, 
sdirfreq). 

 el++. 

A noisy pixel is an edge pixel, located on a real 
straight edge, whose edge direction is different than 
those of the corresponding perfect edge. From here, 
the variable diff is introduced. Next, the search is for 
the edge direction, if exists, that differs by one from 
the primary direction pdir knowing that a perfect 
straight edge can have a chain code composed at 
maximum of two codes with difference equal to one. 
The variable InfectedCount is incremented each time 
a noisy pixel in encountered and it is cleared only if 
the current edge pixel direction cdir is equal to pdir. 
On the other hand, if cdir is equal to sdir, the varia-
ble InfectedCount should not be cleared. In Figure 9 
(a), consider the example of a straight edge whose 
pixels are in black. It is linked with pdir = 1 and sdir 
= 2. At point A, the cdir is 3 so InfectedCount is 
incremented. Next at point B, the cdir is 2 and it is 
clear that the remaining edge in gray forms a differ-
ent straight edge. If we reset InfectedCount at B 
when cdir = sdir = 2, the algorithm will not stop and 
will consider both edges, in black and in gray, as one 
straight edge which is incorrect. A final point should 
be discussed which is the need to update pdir and 
sdir. The logical reason for this case is that a straight 
edge primary direction is not necessary the first en-
countered cdir as shown on the straight edge in Fig-
ure 9 (b). Initially pdir = 4 and sdir = 5. But after 
traversing the remaining edge pixels, it is clear that 
pdir should be 5 and sdir should be 4. 
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Figure 9: Two straight edges. 

Finally, after the detection of straight edges the cor-
ner detection process starts by considering the inter-
section points of every two non collinear straight 
edges as corners. 

4.2 Polygonal Approximation using 
Iterative Corner Suppression 

In this section, we develop a novel technique based 
on corner points called Iterative Corner Suppression 
(ICS). Here, the corners, reported by the corner 
detector, are characterized by the lengths of its two 
sides (straight edges) and by its angle between its 
two sides. The corners for the chromosome shape in 
Figure 10 are shown in the linked edge image in 
Figure 10 (b) with their angle directions. 
 

 
(a) 

 
(b) 

Figure 10: Detected corners for a chromosome shape: (a) 
Chromosome shape, (b) Linked edge image. 

The global algorithm starts with the straight edge 
detector, detects the straight edges of every contour 
in the image, and reports the intersection of every 
two non collinear straight lines as corners. Then, the 
polygonal approximation algorithm examines every 
contour, selects from its corners the dominant ones 
that form a polygon that best fit it.   

Thus, the goal of our polygonal approximation 
algorithm is to find the optimal polygon, approxi-
mating the contour of a given shape, given a re-
quired compression ratio CR: 

ܴܥ ൌ ݊ ݊ܿ⁄  (1)

where n is the number of shape's edge points and nc 
is the number of selected corners called dominant 
corners that form the polygon vertices. At a given 
CR, the objective function is to minimize the global 
integral square error (ISE) which is the sum of 
squared distance of each contour's edge point to the 
nearest approximated polygon segment. The ISE of 
a polygon's segment corresponds to the area of the 
region bounded between it and the corresponding 
edge part. For a particular shape as in Figure 11, 
since n is constant CR becomes a function of nc only. 
Therfore, the problem is limited to obtain the mini-
mal possible ISE for a given number of dominant 
corners nc. In general, the entry of the algorithm is 
the parameter CR, nc will be calculated automatical-
ly for every contour. 

 

Figure 11: Polygonal Approximation at various nc. 

Figure 11 shows the approximated polygon of the 
chromosome shape used in Figure 10 at various nc. 
The global ISE decreases while nc increases. 

Two parameters are used in the algorithm and 
should be understood at the beginning. The first one 
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is the local ISE which is the ISE corresponding to a 
given polygon's segment. The second one is the local 
ISE variation "LISEV" due to the removal of a cor-
ner from the list of polygon's vertices. In Figure 12, 
at iteration i+1, the LISEV due to the removal of 
corner Cor3 has the same meaning as LISEV due to 
the introduction of segment [Cor2Cor4]. The algo-
rithm can be summarized as follows: 
 For a given contour of n edge points and m cor-

ners, select all the detected corners as polygon's 
vertices following the linking order. 

 The number of dominant corners nc = m. 
 Iterate until the current CR = n/nc becomes 

greater than or equal to a specified threshold. 
 For each current corner "Corc" from the list 

of selected corners: 
 Find the previous and next selected corners 

"Corp" and "Corn". 
 Calculate the LISEV due to its removal:  

LISEVc = new segment LISE – old segments 
LISEs (see illustration in Figure 12). 
 If any of the previously removed corner lo-

cated between "Corp" and "Corn" has a 
greater LISE variation (LISEVr) than rese-
lect this corner, remove the current corner 
"Corc" from the list of vertices and set the 
final LISEV as LISEVr.  

 Remove the corner that corresponds to the 
minimal LISEV from the list of selected corner. 

 Decrement nc by 1. 
 Calculate the global ISE for the entire polygon 

which is the sum of LISEs of introduced seg-
ments. 

 

Figure 12: Corner Suppression. 

Starting by considering all the corners as 
polygon's vertices, the idea behind the ICS algorithm 
is to decrease the number of vertices iteratively of 

the approximated polygon. Here, the suppressed 
corner (vertex) is the one that its suppression will 
cause the minimal increase to the current global ISE 
and this will ensure the selection of the optimal pol-
ygon at every iteration (at every value of nc). Con-
sider the case presented in Figure 12. We have four 
selected corners at iteration i so there are three 
polygon's segments with their corresponding LISE 
represented by the areas A, B and C. The idea is to 
calculate the LISEV caused by the removal of one of 
the two corners Cor2 or Cor3, for example, at itera-
tion i+1. D is the area that represents the LISE of 
Cor3 and E is the one that represents the ISE of Cor2. 
The removal of Cor3 will add a new polygon's seg-
ment [Cor2Cor4] and eliminate two others 
[Cor2Cor3] and [Cor3Cor4]. Therefore, we can 
write 

LISEVଷ ൌ D െ ሺB  Cሻ (2)

Same procedure will apply for calculating the 
LISEV caused by the removal of Cor2 with:  

LISEVଶ ൌ E െ ሺA  Bሻ (3)

If LISEV3 is smaller than LISEV2 than Cor2 will be 
removed otherwise Cor3 will be removed. 

 

Figure 13: Corner Reselection. 

While the corners are suppressed one after the other, 
the LISEV of a corner that depends on the current 
corner "Corc" and the directly selected neighboring 
corners (previous one "Corp" and next one "Corn"), 
may change since "Corp" or "Corn" may also 
change. So we should always update and then check 
the LISEV of even the suppressed corners to ensure 
the optimality of the suppression at each iteration. 
This can be illustrated using the list of corners 
shown in Figure 13 where all the five corners are 
selected initially. This is a tested case by the algo-
rithm where C4 (Figure 13 (a)), C5 (Figure 13 (b)) 
then C3 (Figure 13 (c)) are suppressed iteratively 
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first and the remaining polygon has only C1, C2 and 
C6 as vertices. Now if we calculate the LISEV of 
removing C2 and that of removing C3, C4 and C5 
taking C1 as "Corp" and C6 as "Corn", we find that 
the LISEV of removing C3 is the greatest one. So 
we should suppress C2 and reselect C3 (Figure 13 
(d)). Then, the LISEV resulting from adding [C1C6] 
is that of removing C3 and it will be compared with 
the LISEV of removing the remaining selected cor-
ners existing on the whole contour  to deselect the 
corner with the minimal one. 

5 EXPERIMENTAL RESULTS 

Our proposed algorithm is tested on three different 
shapes shown in Figure 14: (a) Chromosome, (b) 
Leaf and (c) semicircles (The and Chin 1989). The 
results obtained are compared to those presented in 
various papers (Parvez and Mahmoud 2010, Carmo-
na-Poyato, Madrid-Cuevas, MedinaCarnicer and 
Munoz-Salinas 2010, Marji and Siy 2004 and 
Masood 2008). 

Other than the ISE, a new parameter is intro-
duced for the comparison: the weighted sum of 
square error WE given by 

ܧܹ ൌ ܧܵܫ ݊ܿൗ  (4)

Since our algorithm requires a colored or grey image 
as an input not only a digital image or edge image 
while the others are tested directly on a digital image, 
we need a unique platform for comparison. From 
here, we have selected manually on the edge image 
derived by our algorithm the vertices of the polygon 
reported by each method in (Parvez and Mahmoud 
2010, Carmona-Poyato, Madrid-Cuevas, Medi-
naCarnicer and Munoz-Salinas 2010, Marji and Siy 
2004 and Masood 2008), then calculate the corre-
sponding ISE and show the results in Table 1. 

From Table 1, it can be seen clearly that our algo-
rithm has better ISE and WE compared to others. 
This is due to three main reasons. The first one is the 
excellent location of the corners due to the efficient 
straight edge detector. So, the optimal polygon is the 
one whose vertices are selected among these corners. 
The second one is the efficient technique to select 
the best corners as polygon vertices that will lead to 
the minimal error (ISE) at a specific nc. The third 
one is the update of the LISE, at each iteration, even 
for previously suppressed corners. This feedback 
will ensure that, when eliminating a corner or select-
ing a new segment, the maximal LISE is set for this 
segment. This fact will show the real LISEV caused 

by selecting this segment and as a result will ensure 
the selection of the segment with the real minimal 
LISEV. 

Table 1: Comparative Results for the Chromosome, Leaf 
and semicircle shapes. 

 

 
(a) (b) (c) 

Figure 14: Tested Shapes and their polygonal approxima-
tions at a particular nc. 

For a real image that contains more than one shape 
or contour, nc cannot be fixed and considered as an 
input for the algorithm since existing contours may-
be best approximated by polygons of different num-
ber of vertices. In other words, nc cannot be fixed 
for all contours. Here, CR or WE plays the big role 
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and must be used both or at least one of them as in-
puts. By specifying a threshold for the WE parameter 
used as an input, the role of a polygonal approxima-
tion algorithm becomes to find the greatest nc per 
contour that corresponds to the greatest WE less than 
the specified threshold. Here the CR is an output. On 
the other hand, by specifying a threshold for CR 
used as an input, the goal still to find the greatest nc 
per contour, that corresponds to the minimal CR 
greater than the threshold. In this case, WE is an 
output. So the choice of selecting which parameter 
or maybe both depends on the specific application. 

Finally, Figure 14 shows the polygons approxi-
mating the tested shapes at a given nc. It can be seen 
clearly that the results are very precise.    

Finally, we suggest an application based on DCs 
which is shape recognition of 2D objects dedicated 
for a robot embedded with a vision system where 
our polygonal approximation's algorithm is imple-
mented. The goal is to present first a 2D shape to the 
robot and then it tries automatically to locate it in a 
simple scene.  

To simulate this experiment, we present two im-
ages to the algorithm; the first one is a training im-
age, shown in Figure 15, containing only the desired 
shape and the second one is a test image containing 
a scene of multiple shapes as shown in Figure 16 (a). 

For the training image, the algorithm detects the 
DCs located on the shape's contour. For the test one, 
it detects and groups the DCs per contour represent-
ing each shape. After that the matching procedure 
starts by comparing every test group of DCs with the 
trained DCs using the DC angle and ratio of the 
lengths of their sides as matching parameters. 

 

Figure 15: Training image. 

This matching criterion remains feasible when the 
image transformation that relates the two images is a 
translation-rotation, similarity or conditioned affinity. 
In general, an affine transformation preserves ratio 
but does not preserve angles (Hartley and Zisserman, 
2003) so the matching criterion does not hold for 
this type of transformation only if the camera plane 

and the shape plane are parallel (Hartley and Zis-
serman 2003); in this case, the angles are nearly pre-
served. This is the conditioned affinity. 

The result of matching is shown in Figure 16 (b) 
where the DCs are shown only on the matched 
shape's contour which is the star shape. 

 

 
(a) 

 
(b) 

Figure 16: (a) Test image. (b) Corresponding Image of 
contours with DCs shown on matched contour. 

6 CONCLUSIONS 

In this paper, a new polygonal approximation tech-
nique is proposed. It is composed of two procedures. 
The first is called "Straight Edges Detector" which 
examines all the contours existing in the input image 
and detects the edge parts that can be considered as 
straight edges. These straight edges are straight lines 
that exist frequently at the borders of various objects 
in real scenes especially human made environments 
like buildings, cars, doors… The importance of de-
tecting these straight edges remains in their role of 
detecting edge corner points. The intersection of two 
non collinear straight edges of appropriate length 
(greater than a threshold) is reported as a corner. 

The second part of our work is a polygonal ap-
proximation algorithm that takes the detected cor-
ners as an entry. By fixing an entry parameter like 
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Compression ratio CR or weighted sum error WE, 
the algorithm starts, per contour, by removing itera-
tively the corners that introduce the minimal possi-
ble ISEV to the global ISE measure until reaching 
the stopping criterion. At the end, the remained cor-
ners form the vertices of the polygon that can best 
approximate the current contour. 

The experimental results have shown good re-
sults in comparison with other existing methods. In 
our opinion, this is due to the efficient straight edge 
detector that explores all the contour corners effi-
ciently and then to the iterative polygonal approxi-
mation algorithm that removes, at each iteration, the 
corner with the smallest LISEV and at the same time 
updates and reexamines the LISEV of already re-
moved corners. This way, we can ensure that the 
remained corners form the polygon that best fit their 
contour.  

Finally, as a future work, we suggest an image 
registration application that can benefit from detect-
ed straight edges and corners. These image features 
can be combined together in a certain number to 
form specific shapes or primitives that can have in-
variant measures versus different image transfor-
mation. 
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