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Abstract: This paper suggests one method to process fMRI time series based on Bayesian inference for group analysis. 
The method uses multilevel divided by session, subject and group as pair comparison to reinforce posterior 
probability in group analysis from single subjects as priors. And also it combines classical statistics, i.e., t-test 
to obtain voxel activation at subject level as prior for Bayesian inference at group level. It effectively solved 
computation expensive and complexity. And it shows robust on Bayesian inference for group analysis. 

1 INTRODUCTION 

In the past decades, functional Magnetic Resonance 
Images (fMRI) technology has been obtained greatly 
attention all over the world, especially in brain 
science field. Most researches have explored brain 
principles from the structural to effective 
connectivity. Especially for clinical, fMRI would 
provide more help for diagnosis and curing brain 
diseases, e.g., Alzheimer’s disease, depression, 
schizophrenia, sclerosis and non-communicative 
brain damaged patients (Margulies et al., 2010).  

Functional MRI is a non-invasive technique for 
studying brain activities (Lindquist, 2008). It 
analyses blood oxygen level dependent (BOLD) 
hemodynamic response to identify brain activation 
by stimulus. It characters hemodynamic response 
function (HRF) to measure brain spatial distribution 
based on BOLD signals about neural activity by 
vascular hemodynamic changing. The goal of fMRI 
analysis is to detect, in a robust, sensitive and valid 
way, those parts of the brain that show increased 
intensity at the points in time that stimulation was 
applied (Smith and Dphil, 2004). They include 
functional segregation, functional connection and 
effective connectivity.  

Most analysis methods of fMRI data are divided 
into two categories: model driven and data driven. 
For model driven, commonly it uses traditional 
statistics methods to measure fMRI data time series. 
For data driven, it is based on image density to 

compute distance, similarity or features, e.g., Cluster 
analysis, Independent Component Analysis (ICA) 
and self-organization mapping etc. Statistics 
methods are based on a general linear model (GLM) 
model to estimate parameter for each voxel and 
compute p-value, under null hypothesis and obtain 
p-value probability distribution mapping. And then it 
maps the probability of each voxel for whole brain 
to make statistics parameter mapping (SPM). Due to 
issues on classical method, for instance, it never 
rejects alternative assumption meaning activation 
always occurred, and has false positive ratio (FDR) 
for multiple comparison problems. On the contrary, 
alternative method is Bayesian which can give the 
probability that the effect is greater than some 
threshold under voxel activation to avoid above 
issues.  

In Bayesian theory, the posterior distribution 
captures all information inferred from the data about 
the parameters. As such (Woolrich, 2012) it 
proposed the first Bayesian group inference 
approach using a hierarchical model. Bayesian uses 
high-level estimation as prior and then enable 
posterior inferences of the parameters in low-level. 
Then inference is based on the posterior distribution 
of the parameters from given the data.  

This paper suggests a multilevel Bayesian 
inference for group analysis based on hierarchical 
model. The multilevel group method is proportional 
to multiple levels according to session level, subject 
level and group level with comparing individual 
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subjects as selected prior. We use classical statistics 
and Bayesian 1st level to compare variances to 
inspect prior for individual subjects. Through 
different subjects, it passes the estimated parameters 
from session level parameters in one subject as prior 
to compute posterior of next subject. For group level 
analysis, it uses the effects of single subject as prior 
to provide next subject analysis based on Bayesian 
posterior probability. This can reduce computation 
cost and complexity.   

For the paper structure, section II describes 
Bayesian inference theory and estimation in 
multilevel group analysis. Section III shows an 
fMRI case analysis with lower level of individual 
subject as prior and passing statistics value to higher 
level of group. In the last part we specify Bayesian 
methods for fMRI dynamic analysis in the future. 

2 BAYESIAN METHODS 

Bayesian statistics approach is to use conditional or 
posterior inference based upon the posterior 
distribution of the activation by observed data. A 
fully Bayesian statistics approach as the first paper 
considered the full posterior probability distribution 
was appeared in 1998 (Woolrich, 2012).  

In (Friston et al., 2002a, 2002b), it describes 
Bayesian on hierarchical linear model to form first 
level recursively. And it combines hierarchical 
model with classical and Empirical Bayesian, called 
all in one (Woolrich et al., 2004), to show two 
methods based on the same principle by covariance 
components and EM.  

For group analysis based on Bayesian, most 
methods relay on prior selection. Usually prior is 
from temporal or spatial perspectives, or both of 
observed data. Temporal prior is commonly 
designed by hierarchical model divided into session 
level, subject level and group level under two levels. 
In (Woolrich et al., 2004, Beckmann et al., 2003), 
they use two levels and fully Bayesian framwork, 
passing summary statistics from first level to second 
level. And also in (Neumann and Lohmann, 2003) it 
gives different relation between subject level and 
group level according to Bayesian principles guided 
by (Box and Tiao, 1992). It passed a random subject 
as prior to estimate parameters for other subjects. In 
(G’omez-laberge et al., 2011) it uses Bayesian to 
cluster analysis which proposes a Bayesian 
hierarchical model to describe the correlation 
structure of the observed voxel clusters. For spatial 

prior, some use regions or areas (Lei et al., 2009) in 
Brain to characterize the spatial features of the HRF 
over the regression coefficients (Penny et al., 2003). 
And in (Ahn et al., 2011), it demonstrated that 
hierarchical Bayesian analysis outperforms 
conventional maximum likelihood estimation in 
recovering true parameters no matter individual or 
group analysis. 

As (Woolrich, 2012) showing the all procedures 
of Bayesian in fMRI analysis, Bayesian methods 
become popular method as statistics inference about 
activation voxels and group analysis. Through the 
above analysis on group methods based on Bayesian, 
we combine Bayesian with hierarchical linear model 
to estimate parameters from observed data by EM 
algorithm. And about prior selection, we suggest that 
prior is selected from comparing different individual 
subjects analysed by classical method and Bayesian 
level. 

2.1 Model 

For groups analysis, we may construct different 
levels from session, cluster, subject and group 
perspectives. As shown in Figure 1, we can divid 
data into hierarchical levels by the session, subject 
and group levels. 

We accept hierarchical linear model to construct 
parameters among groups including session-level 
and group-level. According to the hemodynamic 
response with observed data under stimulus, the 
hierarchical linear model is defined for individual 
subject as below Equation (1). 
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The equation is consisted by three parts: 
observed data Y which includes each voxel time 
series with n scans, design matrix X which has 
contrast regression coefficients with interest and 
error. And also it uses β to describe amplitude as 
parameters of explanatory.  
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Figure 1: Group hierarchical components. 

In group analysis, these subjects have the same 
scanning environment and also have similar 
background, i.e., age, gender, education, health. 
Through these similarities of group, we assume that 
they have similar contrast regression of interest 
effects. It shows Hierarchical linear model as below 
equation (2) for group analysis.  

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

ۉ

ۈ
ۈ
ۈ
ۇ

ଵݕ
ሺଵሻ

ଶݕ
ሺଵሻ

.

.

.
௡ݕ
ሺଵሻی

ۋ
ۋ
ۋ
ۊ

ۉ

ۈ
ۈ
ۈ
ۇ

ଵݕ
ሺଶሻ

ଶݕ
ሺଶሻ

.

.

.
௡ݕ
ሺଶሻی

ۋ
ۋ
ۋ
ۊ

.

.

.

ۉ

ۈ
ۈ
ۈ
ۇ

ଵݕ
ሺ௠ሻ

ଶݕ
ሺ௠ሻ

.

.

.
௡ݕ
ሺ௠ሻی

ۋ
ۋ
ۋ
ۊ

ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

ൌ ൮

	ଵଵݔ … 	ଵ௣ݔ
	ଶଵݔ 	… 	ଶ௣ݔ

……
	௡ଵݔ 	… 	௡௣ݔ

൲

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

ۉ

ۈ
ۈ
ۈ
ۇ

ଵߚ
ሺଵሻ

ଶߚ
ሺଵሻ

.

.

.
௣ߚ
ሺଵሻ
ی

ۋ
ۋ
ۋ
ۊ

ۉ

ۈ
ۈ
ۈ
ۇ

ଵߚ
ሺଶሻ

ଶߚ
ሺଶሻ

.

.

.
௣ߚ
ሺଶሻ
ی

ۋ
ۋ
ۋ
ۊ

.

.

.

ۉ

ۈ
ۈ
ۈ
ۇ

ଵߚ
ሺ௠ሻ

ଶߚ
ሺ௠ሻ

.

.

.
௣ߚ
ሺ௠ሻ

ی

ۋ
ۋ
ۋ
ۊ

ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

൅

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

ۉ

ۈ
ۈ
ۈ
ۇ

ଵߝ
ሺଵሻ

ଶߝ
ሺଵሻ

.

.

.
௡ߝ
ሺଵሻی

ۋ
ۋ
ۋ
ۊ

ۉ

ۈ
ۈ
ۈ
ۇ

ଵߝ
ሺଶሻ

ଶߝ
ሺଶሻ

.

.

.
௡ߝ
ሺଶሻی

ۋ
ۋ
ۋ
ۊ

.

.

.

ۉ

ۈ
ۈ
ۈ
ۇ

ଵߝ
ሺ௠ሻ

ଶߝ
ሺ௠ሻ

.

.

.
௡ߝ
ሺ௠ሻی

ۋ
ۋ
ۋ
ۊ

ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

 (2) 

The equation (2) describes one group with m 
subjects, single subject with n scans and each subject 
with different estimated parameters and errors.  

For fMRI data, Bayes directly obtains posterior 
distribution of parameters combined prior with 
observed data under unknown parameters and easily 
to compute the probability of parameters by 
Bayesian rules. For prior unknown, the estimation 
processing is referred to as empirical Bayes 
(Ashburner et al., 2003). And inference is based on 
the posterior distribution of the parameters given the 
data (Morris, 1983; Casella, 1985). According to the 
Bayesian inference based on hierarchical linear 
model, the procedure of computation in details is 
shown as Figure 2.  

 

Figure 2: Multilevel group analysis procedures. 

These priors can be estimated from given the 
data and we have multiple subjects of the effect 
interested explanatory variants. Bayesian uses 
high-level estimate as prior and then enable posterior 
inferences about the parameters in low-level by 
Bayesian rule.  

2.2 Bayesian Rule 

According to the two levels model, we use Bayesian 
rule to reduce posterior probability distribution by 
prior distribution. Bayesian is to calculate the 
posterior distribution by prior information and some 
new observed data on the first level. By Bayes’ rule, 
the posterior of data y is given by equation (3): 

pሺθ|yሻ ൌ
ሻߠሺ݌ሻߠ|ݕሺ݌

ሻݕሺ݌
 (3)

Where  pሺy|θሻ  is marginal likelihood or 
evidence and pሺθሻ  as prior. As ݌ሺݕሻ  be 
known, Bayesian rule becomes the equation (4):  

pሺθ|yሻ ∝ pሺy|θሻ ∗ 	pሺθሻ (4)

All marginal likelihood functions have the same 
distribution as prior distribution fitting to normal 
distribution. At first, according to the prior 
distribution as normal distribution 	θ~Nሺμ, ߬ଶሻ , it 
gives pሺθሻ  and pሺθ|yሻ  likelihood functions as 
below (5). 
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And about prior with normal distribution is 
shown in (6): 
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pሺθሻ= ଵ
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Putting together, we obtain the P(θ|y) probability 
density function in (7). In details reduction, it is 
specified at (Box and Tiao, 1992). 
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With the mean ad variance are shown as below 
(8). 
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Combining the hierarchical linear model with 
Bayesian rule in group, it has basic formulation as 
below (9).  
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This reduction is from (Bradley, 1996). Thus, it 
combines all formulations into multilevel in group 
analysis to show posterior and prior relation as (10).  

ሺ௜ሻ൯ߚ൫݌ ൌ ሺ௜ିଵሻሻݕ|ሺ௜ିଵሻߚሺ݌
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(10)

For prior selection, some suggest spatial prior 
(Penny et al., 2005) and some use wavelet 
coefficients as prior (Sanyal and Ferreira, 2012). As 
like Stephan (Neumann and Lohmann, 2003) 
described, “Today’s posterior is tomorrow’s prior” 
which we use the rule as one subject parameters as 
prior for next subject in group analysis to decrease 
computation cost and complexity. 

2.3 Estimation 

We use an empirical Bayes methodology to estimate 
the hyperparameters which are shared by all subjects. 
Parametric empirical Bayes can be formulated 
classically in terms of covariance component 
estimation (e.g. within subject vs. between subject 
contributions to error) (Morris, 1983; Casella, 1985).     
Through P(θ|y), we estimate posterior mean and 
posterior covariance. To estimate the covariance 

components, many different computation methods 
are used, for example, some use point estimation, 
some use maximum a posterior probability (MAP) 
with MCMC under numerical integration 
unavailable. In (Friston et al., 2002b), it uses EM 
algorithm to estimate error and prior covariance. It 
has two basic steps in EM algorithm as equation (11). 
For two steps, one is E-step and the other is M-step.  

E-step: 

Q൫θหߠሺ௜ሻ൯ ൌ ,ݕ|ሻሻߠ|ݕሺlogሺ݂ሺܧ  ሺ௜ሻሻߠ

M-step: ߠሺ௜ାଵሻ ൌ  ሺ௜ሻሻߠ|ߠሺܳሺݔܽ݉݃ݎܽ

(11)

E-step computes likelihood function according to ith 
effect or initial value by the first subject and M-step 
makes likelihood function maximum to obtain new 
parameters. And iteratively it obtains estimator 
through the two steps iteratively until convergence. 

2.4 Inference 

This section describes the construction of posterior 
probability maps that enable conditional or Bayesian 
inferences about regionally-specific effects in 
neuroimaging. All the procedure is focused on 
posterior probability computation. At the same time, 
Bayesian inference requires prior known or 
unknown estimated from given data. This posterior 
density can be computed, under Gaussian 
assumptions, using Bayes rules.  

Posterior probability maps (PPMs) are images of 
the probability or confidence that activation exceeds 
some specified threshold, given the data. PPMs 
require the posterior distribution of a contrast of 
conditional parameter estimates by given the data 
(Ashburner et al., 2003). It will make mean as 
Bayesian estimator to compute p by the equation 
(12). 

P=1-Фሺ
ఊି஼೅ఎഇ|೤

ට஼೅஼ഇ|೤஼
ሻ (12)

 .  is the cumulative density function of the 
unit normal distribution (Friston and Penny, 2003). 
An image of these posterior probabilities constitutes 
a PPM. According to the p-value, it will map PPMs 
to show the activation distribution about voxels on 
confidence 95%. The probability that activation has 
occurred, given the data, at any particular voxel is 
the same (Friston and Penny, 2003).  

At the first level of the hierarchy, it corresponds 
to the experimental effects at session-level and 
obtains the probability of voxel activation. And at 
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the second level of the group, it comprises the 
effects over subjects through the first level of the 
individual subject effects. We describe the Bayesian 
inference procedure shown in Figure 3. 

 
Figure 3: Bayesian inference with PPMs procedure. 

3 EXPERIMENT 

3.1 Data Collection 

In this experiment, we choose the dataset which 
consists of 24 contiguous slices, 64×64×24 in each 
volume with 2×2×2 mm3 voxels in thickness 5mm in 
whole brain BOLD response acquired using 3.0T 
fMRI system. For block design, it includes blocks of 
6 scans with 12 blocks by removing the first 6 scans 
in TR 2s. We design the task with the condition for 
successive blocks alternated between rest and visual 
picture stimulation from the beginning of rest.  

3.2 Preprocessing 

During scanning for fMRI data, although usually 
subject is required to fix in a frame to avoid motion 
to reduce images artifacts, due to machine heating 
effects, physical effects as cardiac and respiration, 
and moving from subjects, these images from 
scanning include some noises. Some noises from 
machine heating with high frequency are eliminated 
by high frequency filters and some artifacts from 
motion can be corrected by preprocessing.     

The key issues of preprocessing in SPM are 
mainly involved: (1) realignment: It completes 

motion correct by align images according to the first 
image in the each session and align other sessions 
according to the first session; (2) coregistration: 
Match images from same subject but different 
modalities by coregistration. It supplies mean images 
in data to register structural image solving 
consistence between functional images and structural 
images; (3) segmentation: It segments structure T1* 
image to grey matter, white matter and CSF. And it 
obtained some parameters for normalize functional 
images; (4) normalization: Make results from 
different studies compared by aligning them to 
standard space it can deal with different Talairach 
problems. It normalizes functional images onto 
template images, for example, EPI template; (5) 
smoothing: Through removing lower frequency 
noises, it extends larger spatial SNR in spatial 
overlap by blurring over minor anatomical 
differences and registration errors; Smoothing can 
average neighbouring voxels suppresses noise and 
increase sensitivity to effects of similar scale to 
kernel.  

For our experiment, we choose realignment and 
normalize to reduce motion artifacts and make data 
being consistence. And also we use classical 
inference which needs smoothing as preprocessing to 
improve SNR; we separate data without smoothing 
for Bayesian 1st level.  

3.3 Results 

Efficient computation at the second-level requires 
full access to the first-level parameter estimates and 
associated covariance. This involves both the 
variances of the parameter estimates and the 
covariance between different parameters.  

PPMs show posterior probability p value about 
activation in group analysis. According to the 
activation, is given the results in PPMs which plot a 
map of effect sizes at voxels where it is 99% sure 
that the effect size is greater than 2% of the global 
mean. And it compares the similar covariance 
among group in Table 1. 

Table 1 is arranged columns which are from right 
to left as: (i) region of interest; (ii) voxel-level 
t-value; (iii) Z-value; (iv) means; and (v) standard 
deviate. The maximum intensity projection (MIP) of 
the statistical map is displayed (Friston, 
2002).Throughout the Figure 4, it is shown the fitted 
response through even-relative response results 
among some subjects. With the activation on voxels 
for  individual subjects, we  can compare different  
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Figure 4: Comparison event-relative response among group. 

Table 1: Group Bayesian estimate by prior iterative from 
all subjects. 

Region (ROI) t Z mean 
Standard 
deviate 

L Heschl gyrus 3.54 3.42 0.32 0.02 
R Heschl gyrus 3.49 -3.83 -0.35 0.02 
L hippocampus 4.20 4.54 0.16 0.01 
R hippocampus 4.34 -4.20 -0.11 0.01 
Loccipital gyrus 3.23 3.34 0.13 0.01 
Roccipital gyrus 3.45 -4.12 -0.12 0.01 

subjects in the group with similar variances and then 
we can choose the some subjects as priors for next 
group computation. 

5 CONCLUSIONS 

Any approach to variance estimation can easily be 
combined with the multilevel GLM to provide a 
practical multilevel method (Beckmann et al., 2003). 
Indeed, Bayesian approaches present the significant 
effects by combination hierarchical model with 
posterior probability. And we can set prior as 
multiple levels by comparing subjects as prior in 
group analysis to increase computational speed and 
more precise effects.  

All the above ideas would be the objectives for 
next research hot points.  Furthermore, Bayesian 
would be served for brain science.   
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