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Abstract: Present work analyses the continuous self-calibration of extrinsic parameters of a stereo vision system for 
safe visual odometry applications in vehicles at urban environments. The calibration method determines the 
extrinsic parameters of a stereo vision system based on knowing the geometry of the ground in front of the 
cameras. The slight changes of the road profile cause variations in the extrinsic parameters of stereo rig that 
are necessary to filter and maintain between tolerance values. Then, height, pitch and roll parameters are 
filtered, to eliminate pose outliers of the stereo rig that appear when a vehicle is maneuvering. The reliable 
approach at urban environment is firstly composed of the calculation of the road profile slope, the 
theoretical horizon, and the slope of the straight line in the free map. Secondly, the nonlinear filtering is 
applied using Unscented Kalman Filter to improve the estimation of height, pitch and roll parameters. 

1 INTRODUCTION 

The advanced driver assistance systems (ADAS) and 
autonomous vehicles require safe applications to be 
integrated progressively in vehicles towards the 
burgeoning driverless vehicle industry. These safe 
applications are mainly based on stereo vision 
systems (Musleh et al., 2012b; Llorca et al., 2012). 
In-vehicle stereo vision systems are fostering the 
development of new applications for Intelligent 
Vehicles, allowing these vehicles to aid the driver in 
maneuvers such as pedestrian safety in urban 
environments. The advancements in these mentioned 
technologies are being extended nowadays to solve 
complex tasks in the forthcoming Intelligent 
Transportation Systems, which require normally the 
combination of sensors and computation to 
accomplish a reliable solution. Then vision-based 
sensors have to cope with the correspondence 
between the position of the objects in the world and 
its projection in the image plane, and it is possible 
by means of the intrinsic and extrinsic parameters of 
the camera. The intrinsic parameters are those 
related to the camera-optic set and are normally 
determined by stereo rig maker. 

The extrinsic parameters are formed by height 
and orientation related to the ground in front of the 
cameras to compose the pose of the stereo vision 
system. The utilization of in-vehicle stereo rig 

implies changes of these extrinsic parameters 
according to the road profile, the trajectory of the 
vehicle and vehicle dynamics (Dornaika and Sappa, 
2009; Turnip et al., 2009). The estimation of the 
pose of the in-vehicle stereo vision system can be 
calculated by the use of a calibration pattern that is 
positioned on the ground (Marita et al., 2006; Hold 
et al., 2009a), or painted in the hood of the vehicle 
(Broggi et al., 2001). There are authors that prefer to 
use the landmarks of the road (Hold et al., 2009b), 
(Li and Hai, 2011), such as traffic lines (Collado et 
al., 2006), making easier the calibration process and 
updating continuously the extrinsic parameters. 
However, the landmarks cannot be detected caused 
by degraded landmarks or occluded by other 
elements, such as parked vehicles. The method that 
is utilized in this work is based on the geometry 
estimation of the ground in front of the vehicle 
(Labayrade and Aubert, 2003; Wang et al., 2010). 
So, road geometry makes possible to calculate the 
extrinsic parameters avoiding the use of a calibration 
pattern or landmarks on the road. 

The nonlinear filtering used in this work is based 
on Unscented Kalman Filter (UKF) that improves 
the estimation of height, pitch and roll parameters. 
The typical approach with respect to estimation 
algorithms has traditionally involved Extended 
Kalman Filters (EKF) to linearize the process and 
measurement models, usually involving highly 
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nonlinear equations to relate coordinate frame 
transformations in the measurement model. 
However, this model relies on linear approximation 
of a nonlinear system, a complicated mathematical 
task that sometimes leading to bad performance 
(Wagner, 2005). Nowadays, with the availability of 
more computation power, recent works have 
employed more advanced techniques, like the 
Unscented Kalman Filter to avoid linearization 
while providing estimates that capture the statistics 
of the target distribution more accurately (Crassidis 
and Markley, 2003; Zhou et al., 2010). An integrated 
approach to simultaneous attitudinal and positional 
estimation is described by Van der Merwe (Van der 
Merwe et al., 2004), who apply a UKF to estimate a 
joint Gaussian distribution over orientation and 
position for an unmanned aerial vehicle (UAV). The 
resulting filter is found to be more accurate than an 
EKF used for the same purpose. A constrained 
unscented Kalman filter algorithm has been 
proposed in (Li and Leung, 2003) to fuse differential 
GPS, INS (gyro and accelerometer) and digital map 
to localize vehicles for ITS applications. The state 
vector includes accelerometer and gyro biases, and 
the UKF nonlinear character is employed to include 
some state constraints from the surface geometry. 
Other advanced nonlinear filtering has been applied 
recently in navigation, e.g., the context-aided sensor 
fusion for enhanced urban navigation (Martí et al., 
2012), where the main contribution is the proposal 
of a robust and adaptable solution, exploiting the 
good trade-off between nonlinear estimation and 
efficiency of UKF, and including explicit domain 
knowledge. 

This paper presents a self-calibration method 
based on nonlinear filtering to determine 
continuously the extrinsic parameters of a stereo 
vision system using the geometry of the road ground 
in front of the in-vehicle stereo rig. The disparity 
map (Scharstein and Szeliski, 2002) and the u-v 
disparity (Labayrade et al., 2002; Hu et al., 2005) are 
used in order to distinguish between image points 
belonging to the ground and the ones which belong 
to the obstacles (Musleh et al., 2012a). Moreover, 
two methods have been selected for comparison, the 
first one uses Hough Transform (HT) and the second 
one the Random Sample Consensus (RANSAC) 
(Fischler and Bolles, 1981). These methods allow 
both calculations of the road profile slope (Cr), the 
theoretical horizon (vΔ0), and the slope of the straight 
line in the free map (C), that lead to both estimations 
of the height (h), pitch (θ) and roll (ρ) using 
Unscented Kalman Filter for each frame of stereo rig 
and considering constant in-vehicle yaw deviation. 

This paper is organized as follows: Section 2 
describes data set and vehicle parameters. The 
section 3 explains the self-calibration method to 
obtain continuously the extrinsic parameters. Section 
4 describes the nonlinear method based on 
Unscented Kalman Filter for filtering extrinsic 
parameters. Finally, Section 5 provides results to 
demonstrate the proposed method, and conclusions 
are presented in Section 6. 

2 DATA SET AND VEHICLE 
PARAMETERS 

In-vehicle stereo rig images have been extracted 
from the visual odometry benchmark of Karlsruhe 
Institute of Technology that consists of 22 stereo 
sequences (Geiger et al., 2012), where we have 
selected the sequence 7 to test our self-calibration 
method. The sequence 7 is captured by 2 Grayscale 
cameras, 1.4 Megapixels, Point Grey Flea 2 (FL2-
14S3M-C), and is composed with 1100 stereo rig 
images, that have been acquired when a Volkswagen 
Passat B6 performs a trajectory of approximately 0.7 
km in Karlsruhe residential environment. Cameras 
are mounted approximately level with the ground 
plane and are triggered at 10 frames per second. 
Stereo rig images have a size of 1226 x 370 pixels 
after rectification. Moreover, we can compare the 
result of our continuous self-calibration of extrinsic 
parameters with additional information of this 
dataset, which contains height, pitch and roll 
measurements of the vehicle provided by Inertial 
Navigation System (GPS/IMU OXTS RT 3003). 

3 SELF-CALIBRATION OF 
EXTRINSIC PARAMETERS 

The extrinsic parameters are continuously calculated 
using geometry of the road ground for self-
calibration. So we present here the equations that 
allow us obtain height (h), pitch (θ) and roll (ρ) 
based on geometry of the road ground. The 
equations consider constant in-vehicle yaw deviation 
to simplify demonstration, so we establish constant 
angle estimation in this work. 

The in-vehicle stereo rig has two cameras, where 
image planes are coplanar and epipolar lines are 
parallel. Then, the aim is to obtain the homogeneous 
image coordinates (ui·S, v·S, S, 1) of a world point P 
= (X, Y, Z, 1), equations (1– 6), following Labayrade 
nomenclature (Labayrade and Aubert, 2003). 
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The subindex i can be selected for both cameras 
(r = right camera and l = left camera) and we 
consider εr = 1 and εl = 0, therefore the projection of 
the world point P over the left image plane is (ul, vl) 
and the right image projection is (ur, vr). The 
baseline between both cameras is b, the coordinates 
of the optical center are (u0, v0), and the focal length 
in pixels is indicated by letter α (see Fig. 1). The 
movement of the vehicle implies angle variations of 
the in-vehicle stereo rig related to ground reference, 
so pitch angle rotates around axis X (perpendicular 
direction to moving forward of vehicle) and roll 
angle rotates around axis Z (direction of vehicle 
moving forward). The third extrinsic parameter is 
height, which has a constant value from ground 
when vehicle is stopped, but height oscillates around 
its constant value when vehicle is driving.  

The disparity (Δ) is the difference between the 
horizontal image coordinates of the world point in 
both image planes. The value of ur·S for the right 
camera and ul·S for the left one is calculated through 
(1) to (6). 

Then, we can easily obtain the disparity 
expression (Δ) for each world point P = (X, Y, Z, 1) 

 

Figure 1: Schema of the in-vehicle stereo rig 
configuration. 

by (7). Following, we calculate the inverse 
relationship between world points and left image 
coordinates obtaining inverse expressions (8). It can 
be observed also that road ground in front of the in-
vehicle stereo rig corresponds to every world point 
which world coordinate Y is equal to zero. Thus, we 
would find the expression of world coordinate Y as a 
function of the coordinates of the image, the 
extrinsic and intrinsic parameters of the stereo 
system {α, b, u0, v0, h, θ, ρ}, and the disparity (Δ) 
(8). However, the value of S is a function of the 
world coordinates (X, Y, Z) (1). So, in order to avoid 
the use of the world coordinates, S can be expressed 
as S = -α·b/Δ by means of (7). 
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So, equation (9) shows the relationship between 
the image coordinates (u, v) for the world points of 
the road ground. This equation (9) is a straight line 
whose expression is v = C·u+d for the different 
values of disparity Δ. The roll angle is normally low 
in urban environments, so cosρ ≈ 1 and sinρ ≈ 0, 
which simplifies expression (9) to obtain (10). 
Moreover, equation (10) is another straight line, 
which is achieved from the v-disparity and named 
road profile (Labayrade et al., 2002), which 
describes the relationship between image vertical 
coordinate (v) and disparity (Δ), being v = Cr·Δ+vΔ0, 
where Cr is the slope and vΔ0 is the value of v when 
the disparity is Δ = 0 (theoretical horizon). 
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Finally, we calculate the pitch angle (θ) with 
expression (11) and height (h) by (12) using 
obtained road profile. The roll angle (ρ) is estimated 
by means of the free map, which is only the road 
ground part (without obstacles) of the disparity map. 
Equation (9) is used again, but here is applied to the 
free map to detect another straight line v = Cu+dΔ, 
utilizing a constant value of disparity Δ, extracted 
from a close area of the vehicle. Then, the roll angle 
is estimated knowing the slope C of the free map 
straight line by means of equation (13). 
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Then, the estimation of the road profile slope 
(Cr), the theoretical horizon (vΔ0), and the slope of 
the straight line in the free map (C) using Hough 
Transform or RANSAC in equations (11), (12) and 
(13), allow the continuous estimation of height (Fig. 
2(a)), pitch angle (Fig. 2(b)), and roll angle (Fig. 
2(c)) of the vehicle through whole trajectory. 

4 NONLINEAR METHOD FOR 
FILTERING EXTRINSIC 
PARAMETERS 

The UKF is an algorithm that belongs to Kalman 
family. So, following the basic Kalman filter theory, 

it is a recursive algorithm that estimates the state kx̂  

of discrete-time dynamic system (Julier and 
Uhlmann, 2004), which is composed by observable 
variables (the road profile slope (Cr), the theoretical 
horizon (vΔ0), and the slope of the straight line in the 
free map (C)), and hidden variables (the height (h), 
pitch (θ) and roll (ρ)). Fig. 3 displays the block 
diagram of the estimation process of extrinsic 
parameters of in-vehicle stereo rig. 

 

Figure 2: Height (h), pitch angle (θ) and roll angle (ρ) 
estimation. 

The state vector for UKF filtering of height, 
pitch and roll is expressed as follows (14): 

 Tkkkk hx   (14)

where hk is the height on time step k, θk is the pitch 
angle on time step k, and ρk is the roll angle on time 
step k. 

The estimation is described like a multivariate 
Gaussian distribution with mean xk and covariance 
Pk. The filter uses a mathematical description of the 
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Figure 3: Block diagram with UKF measurement model. 

system evolution over time, that is the prediction 
process (15),  

 kkk vxfx ,ˆˆ 1   (15)

but we unknown the complex dynamic model of 
vehicle that has been used in experiments, so we 
simplify the prediction process considering previous 
state estimation and vk ~ Ν(0, Rv) represents a 
process noise distributed as a Gaussian with mean 
zero and covariance matrix Rv (16): 
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where covariance values are small due to urban 
environment, since we don’t expect large changes in 
process update. So, slightly changes are considered 
around former estimated state in process update. 

However, we know observable variables, which 
are continuously calculated from stereo images. 
These observations of the true state are transformed 
by a known measurement model (17), and perturbed 
by a random sample of the observation noise wk ~ 
Ν(0, Rw) (18). Observation noise matrix is similar to 
that has been applied to process noise, but here 
covariance values are higher to eliminate the outliers 
of the measurements. Following, this information 
due to such observations is integrated into state 
estimation during UKF process update. 
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UKF algorithm allows continuously the 
utilization of a nonlinear measurement model to 
filter outliers of extrinsic parameters. So, the 
purpose of nonlinear UKF is reliable estimation of 
height, pitch and roll extrinsic parameters to 

improve the performance of in-vehicle stereo vision 
systems, using former expressions (11), (12), (13) 
and road geometry: (i) the road profile slope (Cr), 
(ii) the theoretical horizon (vΔ0), and (iii) the slope of 
the straight line in the free map (C). The constants of 
equations, that have been utilized in this work, are: b 
= 0.54 m, v0 = 183.1104 pixels, and α = 707.0912 
pixels. Therefore, we use the UKF filter to estimate 
height, pitch and roll nonlinear signals, which are 
perturbed by outliers that come from road geometry 
estimation of the ground in front of the vehicle. The 
nonlinearity of the extrinsic parameters is expressed 
by the measurement model, which is composed of 
inverse former expressions (19), (20), (21). This 
approach simplifies UKF prediction process, while 
dynamic suspension model of the vehicle is 
unknown. So, it is possible to propagate the current 
state through nonlinear measurement functions to 
obtain the actual measurement. 
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5 RESULTS 

The results of extrinsic parameter self-calibration 
method and their nonlinear filtering are shown in 
this section. The stereo sequence captured by in-
vehicle stereo rig has been processed using two 
methods to obtain the estimation of the geometry of 
the ground in front of the cameras, that is, using 
Hough Transform or RANSAC to obtain Cr, vΔ0, C 
parameters.  So, results are separated, Fig. 4 displays 
extrinsic parameter self-calibration and nonlinear 
filtering using Cr, vΔ0, C parameters from Hough 
Transform, and Fig. 5 shows extrinsic parameter 
self-calibration and nonlinear filtering using Cr, vΔ0, 
C parameters by means of RANSAC. 

Height (Fig. 4(a)), pitch angle (Fig. 4(b)) and roll 
angle (Fig. 4(c)) extrinsic parameters present 
enormous outliers (red color), where it can be 
observed the overall performance of the proposed 
UKF filter (blue color) through whole sequence of 
1100 frames. It is difficult to appreciate local 
performance of the UKF filter in these three graphs, 
so detail of the trajectory are in (Fig. 4(d)), (Fig. 
4(e)), and (Fig. 4(f)) graphs. 

Detail graphs belong to 100 frames of the 
trajectory [640 - 740] that include stopped vehicle 
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from sequence frame 665 to 715. Detail graphs when 
vehicle is stopped, allow to establish comparison 
between Hough Transform and RANSAC methods, 
and comparison with high-accuracy measurements 
(black color) of Inertial Navigation System 
(GPS/IMU OXTS RT 3003). The roll/pitch accuracy 
of OXTS system is 5.236·10-4 rad 1σ. The altitude 
measurements of OXTS device are used to calculate 
the height changes of the vehicle, by simple 
subtraction of consecutive altitude measurements. 
The maximum accuracy of OXTS altitude is 2 cm 
1σ L1/L2. 

Figs. 4(d-f)) display outliers when vehicle is 
stopped and the good performance of UKF filter to 
eliminate wrong estimations of extrinsic parameters. 
In comparison with INS OXTS reference, height 
estimation (Fig. 4(d)) presents a deviation of 0.2 m 
from 1.65 m (height of the in-vehicle stereo rig over 
ground), pitch angle estimation (Fig. 4(e)) has again 
deviation, and roll angle estimation (Fig. 4(f)) shows 
good performance around 0 rad, where it can be 
observed an INS small bias of 0.02 rad caused by 
road slope for water drainage. 

Height (Fig. 5(a)), pitch angle (Fig. 5(b)) and roll 
angle (Fig. 5(c)) extrinsic parameters calculated by 
RANSAC present again outliers, as can be observed 
are different outliers from Hough method, but 

outliers are eliminated again by UKF filter through 
whole sequence. Moreover, the detail graphs show 
better performance than former Hough results. Fig. 
5(d) presents height UKF filtering around 1.65 m 
with minimal error when vehicle is stopped. Pitch 
angle filtering (Fig. 5(e)) shows good result in 
comparison with INS OXTS reference (bias of 0.015 
rad), and roll angle filtering (Fig. 5(f)) presents 
again minimal deviation around 0 rad, as constant 
INS OXTS reference is 0.02 rad. 

6 CONCLUSIONS 

In this article, extrinsic parameters have been 
estimated continuously for the self-calibration of in- 
vehicle stereo rig, as an essential task for Intelligent 
Transportation Systems in urban environments. 
Extrinsic parameter results have demonstrated the 
feasibility of the geometry estimation of the ground 
in front of the vehicle using RANSAC method. 
Moreover, the accuracy  improvement of the height, 
pitch angle and roll angle measurements, by means 
of the elimination of outliers, have been 
accomplished using nonlinear UKF filtering based 
on nonlinear measurement model. These results have  

 
Figure 4: (a) Height, (b) pitch angle, (c) roll angle extrinsic parameters through whole sequence of 1100 frames using 
continuous estimation of Cr, vΔ0, C parameters by Hough Transform method, and (d) height, (e) pitch, (f) roll details from 
100 frames of sequence with stopped vehicle during 50 frames. 
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Figure 5: (a) h, (b) θ, (c) ρ UKF filtering using estimations of Cr,vΔ0,C by RANSAC, and (d) h, (e) θ, (f) ρ details from 100 
frames. 

been validated through time-domain comparison 
with high-accuracy measurements, which have been 
provided by an in-vehicle INS device. 

This approach is composed of continuous 
parameter estimation and UKF filter that will lead to 
use safe applications based on in-vehicle stereo 
vision systems. Such as visual odometry for local 
vehicle positioning that can be used in forthcoming 
urban navigation. 

ACKNOWLEDGEMENTS 

This work was supported by the Spanish 
Government through the CICYT projects GRANT 
TRA2010-20225-C03-01 and GRANT TRA 2011-
29454-C03-02. 

REFERENCES 

Broggi, A., Bertozzi, M., Fascioli, A., 2001. Self-
calibration of a stereo vision system for automotive 
applications. In Proc. IEEE International Conference 
on Robotics and Automation, vol. 4, pp. 3698–3703. 

Collado, J. M., Hilario, C., de la Escalera, A., Armingol, 
J.M., 2006. Self-calibration of an on-board stereo-

vision system for driver assistance systems. In Proc. 
IEEE Intell. Veh. Symposium, pp. 156–162. 

Crassidis, J. L., Markley, F. L., 2003. Unscented Filtering 
for Spacecraft Attitude Estimation. AIAA J. Guid. 
Control. Dyn., vol. 26, pp. 536–542. 

Dornaika, F., Sappa, A. D., 2009. A featureless and 
stochastic approach to on-board stereo vision system 
pose. Image and Vision Computing, vol. 27, pp. 1382–
1393. 

Fischler, M. A., Bolles, R. C., 1981. Random sample 
consensus: a paradigm for model fitting with 
applications to image analysis and automated 
cartography. Com. of the ACM, no. 6, 381–395. 

Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for 
Autonomous Driving? The KITTI Vision Benchmark 
Suite. In Proc. Computer Vision and Pattern 
Recognition (CVPR), USA, pp. 3354–3361. 

Hold, S., Nunn, C., Kummert, A., Muller-Schneiders, S., 
2009. Efficient and robust extrinsic camera calibration 
procedure for lane departure warning. In Proc. IEEE 
Intell. Veh. Symposium, pp. 382–387. 

Hold, S., Gormer, S., Kummert, A., Meuter, M., Muller-
Schneiders, S., 2009. A novel approach for the online 
initial calibration of extrinsic parameters for a car-
mounted camera. In Proc. 12th International IEEE 
Conference on Intelligent Transportation Systems, St. 
Louis, MO, USA, pp. 420–425. 

Hu, Z., Lamosa, F., Uchimura, K., 2005. A complete uv-
disparity study for stereovision based 3d driving 
environment analysis. In Proc. Fifth Int. Conf. on 3-D 
Digital Imaging and Modeling, pp. 204–211. 

Extrinsic�Parameter�Self-Calibration�and�Nonlinear�Filtering�for�in-Vehicle�Stereo�Vision�Systems�at�Urban�Environments

433



Julier, S. J., Uhlmann, J.K., 2004. Unscented Filtering and 
Nonlinear Estimation. Proceedings of the IEEE, 
vol.92, pp. 401 - 422. 

Labayrade, R., Aubert, D., Tarel, J.P., 2002. Real time 
obstacle detection in stereovision on non flat road 
geometry through v-disparity representation. In Proc. 
IEEE Intell. Veh. Sym., pp. 646–651. 

Labayrade, R., Aubert, D., 2003. A single framework for 
vehicle roll, pitch, yaw estimation and obstacles 
detection by stereovision. In Proc. IEEE Intelligent 
Vehicles Symposium, pp. 31–36. 

Li, S., Hai, Y., 2011. Easy calibration of a blind-spot-free 
fisheye camera system using a scene of a parking 
space. IEEE Transactions on Intelligent 
Transportation Systems, vol. 12, no. 1, pp. 232–242. 

Li, W., Leung, H., 2003. Constrained Unscented Kalman 
Filter Based Fusion of GPS/INS/Digital Map for 
Vehicle Localization. In Proc. IEEE 2003 
International Conference on Intelligent 
Transportation Systems, Shanghai, China, 12–15, vol. 
2, pp. 1362–1367. 

Llorca, D. F., Sotelo, M. A., Hellín, A. M., Orellana, A., 
Gavilán, M., Daza, I. G., Lorente, A. G., 2012. Stereo 
regions-of-interest selection for pedestrian protection: 
A survey. Transportation Research Part C, vol. 25, 
pp. 226–237. 

Marita, T., Oniga, F., Nedevschi, S., Graf, T., Schmidt, R., 
2006. Camera calibration method for far range 
stereovision sensors used in vehicles. In Proc. IEEE 
Intelligent Vehicles Symposium, pp. 356–363. 

Martí, E. D., Martín, D., García, J., de la Escalera, A., 
Molina, J.M., Armingol, J. M., 2012. Context-aided 
Sensor Fusion for Enhanced Urban Navigation. 
Sensors, vol. 12, no. 12, pp. 16802-16837. 

Musleh, B., de la Escalera, A., Armingol, J. M., 2012. U-v 
disparity analysis in urban environments. In Proc. 
Computer Aided Systems Theory EUROCAST 2011, 
vol. 6928 of LNCS, pp. 426–432. 

Musleh, B., Martin, D., de la Escalera, A., Armingol, J. 
M., 2012. Visual Ego Motion Estimation in Urban 
Environments based on U-V Disparity. In Proc. 2012 
IEEE Intelligent Vehicles Symposium, Alcalá de 
Henares, Spain, pp. 444–449. 

Scharstein, D., Szeliski, R., 2002. A taxonomy and 
evaluation of dense two-frame stereo correspondence 
algorithms. International journal of computer vision, 
vol. 47, no. 1, pp. 7–42. 

Turnip, A., Nguyen, L.H., Hong, K.-S., 2009. Detection of 
Critical Driving Situations Based on Wheel-Ground 
Contact Normal Forces. In Proc. ICROS-SICE Inter. 
Joint Conf., Japan, pp. 2519–2524. 

Van der Merwe, R., Wan, E.A., Julier, S.I., 2004. Sigma 
Point Kalman Filters for Nonlinear Estimation and 
Sensor Fusion: Applications to Integrated Navigation. 
In Proc. AIAA Guidance, Navigation and Control 
Conf., Providence, RI, USA, pp. 1735-1764. 

Wagner, J. F., 2005. GNSS/INS integration: still an 
attractive candidate for automatic landing systems?. 
GPS Sol., vol. 9, pp. 179–193. 

Wang, Q., Zhang, Q., Rovira-Mas, F., 2010. Auto-
calibration method to determine camera pose for 
stereovision-based off-road vehicle navigation. 
Environ. control in biol., vol. 48, no. 2, pp. 59–72. 

Zhou, J., Knedlik, S., Loffeld, O., 2010. INS/GPS Tightly-
coupled Integration using Adaptive Unscented Particle 
Filter. J. Navig., vol. 63, 491–511. 

VISAPP�2014�-�International�Conference�on�Computer�Vision�Theory�and�Applications

434


