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Abstract: With recent advances in the field, magnetic resonance imaging (MRI) has become a powerful quantitative 
imaging modality for the study of neurological disorders. The quantitative power of MRI is significantly 
enhanced with multi-contrast and high-resolution techniques. However, those techniques generate large 
volumes of data which, combined with the sophisticated state-of-the-art image analysis methods, result in a 
very high computational load. In order to keep the scanner workflow uninterrupted, processing has to be 
performed off-line leading to delayed access to the quantitative results. This time delay also precludes the 
evaluation of data quality, and prevents the care giver from using the results of quantitative analysis to guide 
subsequent studies. We developed a scanner-integrated system for fast online processing of dual-echo fast 
spin-echo and fluid-attenuated inversion recovery images to quickly classify different brain tissues and 
generate white matter lesion maps in patients with multiple sclerosis (MS). The segmented tissues were 
imported back into the patient database on the scanner for clinical interpretation by the radiologist. The 
analysis pipeline included rigid-body registration, skull stripping, nonuniformity correction, and tissue 
segmentation. In six MS patients, the average time taken by the processing pipeline to the final 
segmentation of the brain into white matter, grey matter, cerebrospinal fluid, and white matter lesions was 
~2 min, making it feasible to generate lesion maps immediately after the scan. 

1 INTRODUCTION 

Multiple sclerosis (MS) is an inflammatory 
demyelinating disease of the central nervous system. 
MS affects 2-2.5 million people world-wide, and 
primarily affects females and young adults between 
20-50 years (Milo and Kahana, 2010). Although MS 
is not considered a fatal disease, MS patients 
struggle to lead productive lives. The annual health 
care cost per patient is estimated to be around 
$47,215, including the lost productivity (Kobelt et 
al., 2006). 

MRI is the most sensitive imaging modality for 
MS, and is a key element in the diagnosis and 
management of MS (Sahraian and Eshaghi, 2010). 
Focal white matter (WM) inflammation, the 
hallmark of MS, is detected on MRI as hypo-
intensity on T1-weighted MRI, as enhancing areas 
following the injection of a contrast agent, or as 
hyper-intensity on T2-weighted and fluid-attenuated 
inversion recovery (FLAIR) MRI. MRI enables 

assessing WM lesion load, which is an important 
measure in monitoring disease progression (Popescu 
et al., 2013; Fisniku et al., 2008; Caramanos et al., 
2012).  

MS lesions can be segmented on MRI images 
using fully automated techniques (e.g. (Sweeney et 
al., 2013; Karimaghaloo et al., 2012) and (Datta and 
Narayana, 2013)). However, image analysis consists 
of multiple computationally intensive and time-
consuming operations, and the lesion map is 
typically available only after the patient has left the 
scanner area. The lack of fast quantitative analysis 
prevents the technologist or physician from quickly 
previewing the quantitative MRI metrics of the 
disease or evaluating the data quality in the context 
of the generated quantitative measures. Moreover, 
the time delay precludes the prescription or the 
optimization of the following scans that could 
benefit from the availability of prior lesion 
segmentation.  

The image processing and analysis techniques 
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for detecting WM lesions in MS include the 
following steps. First, all datasets are co-registered 
using a suitable registration technique. Second, the 
extra-meningeal tissues are removed (often called 
skull stripping or brain extraction). Third, images are 
corrected for intensity variations due to field 
nonuniformity. Finally, image segmentation is used 
to classify brain tissue into WM, grey matter (GM), 
cerebrospinal fluid (CSF), and WM lesions. It is 
worth noting that the order of some processing 
operation may change and certain operations could 
be combined together in order to make the analysis 
robust against certain artefacts.  

With the large number of voxels generated in 
MRI, many of these processing operations are 
computationally intensive and very time consuming, 
and performing these operations on the scanner 
computer could significantly affect the scanner’s 
functionality. Consequently, image analysis is 
typically performed off-line after the scan session. 
We recognize  a critical need for a framework that 
can process MRI data in almost real-time to provide 
quantitative brain tissue and lesion maps 
immediately after the scan, and without affecting the 
scanner’s performance. Eliminating the time gap 
between image acquisition and tissue and lesion 
quantification will also allow localized analysis of 
the lesions using specialized acquisitions (e.e. MR 
spectroscopy or high-resolution techniques) for 
improved diagnostic accuracy. In this report we 
describe an optimized framework wherein a fast 
image analysis pipeline is integrated into a clinical 
MRI system for online segmentation of various brain 
tissues in MS patients.  

2 METHODS 

2.1 MRI Acquisition Protocol 

Images from six MS patients were processed for 
tissue classification and T2-hyperintense lesion 
detection (other MS lesions can be analysed in a 
similar fashion). All experiments were done on a 
Philips Achieva 3.0 T system (Philips Healthcare, 
Best, The Netherlands). The MRI protocol for MS 
patients included the acquisition of multi-slice (44-
slices) fat-saturated dual-echo fast spin-echo (FSE) 
sequence with TR/TE1/TE2 = 6800/8.2/90 msec, 
FOV = 256x256x132 mm3, voxel size = 
1.00x1.22x3.00 mm3, scan time 3:24, and multi-slice 
FLAIR with TR/TI/TE = 10000/2600/80 msec, FOV 
= 256x256x132 mm3, voxel size = 1x1x3 mm3, scan 
time 4:20. The dual-echo FSE and FLAIR images 

were reconstructed to the same matrix size 
(256x256x44). The short-echo signal of the dual-
echo FSE is proton density (PD) weighted, while the 
long-echo signal is T2 weighted (T2W). 

2.2 System Layout 

MRI data analysis was performed on a dedicated 
processing workstation (Quad-Core Intel Xeon 
E5640 2.66 GHz with 3.25 GB of memory, running 
on Windows XP) connected to the scanner computer 
through a fast network link. Special software 
modules were added to the scanner console to 
extract data from the patient database into a vendor-
specific compact image format. The data were 
transferred to the processing workstation using a 
HTTP protocol (hypertext transfer protocol).  

Image processing and analysis were performed 
on the workstation using a custom software package 
written in the interactive data language (IDL, Exelis 
Visual Information Solutions, Boulder, CO), Matlab 
(The Mathworks, Natick, MA), and C programming 
languages. The segmentation results were exported 
to the scanner computer and added to the patient 
database (Fig. 1). The segmented images were 
available for preview by the technologist or 
physician, and for review by the radiologist to aid 
the diagnosis. Data transfer to the workstation, 
image analysis, and importing data into the patient’s 
database were all fully automated and integrated 
with the MRI scanner in a seamless way, without the 
need for user interaction. 

2.3 Analysis Pipeline 

The processing steps performed on the dual-echo 
FSE and FLAIR datasets are summarized in Fig. 2. 
First, the FLAIR dataset was co-registered with the 
dual-echo data using a rigid-body transformation 
(Collignon et al., 1995) in SPM8 software 
(Wellcome Department of Cognitive Neurology, 
London, UK). Second, extra-meningeal tissues were  

 

 

Figure 1: Online system for tissue classification and lesion 
segmentation in MS. 

Online�Brain�Tissue�Classification�in�Multiple�Sclerosis�using�a�Scanner-integrated�Image�Analysis�Pipeline

107



 

Figure 2: Image analysis pipeline. 

removed using an automated procedure that utilizes 
the fat-saturated T2W images (Datta and Narayana, 
2011). Third, the PD, T2W, and FLAIR images were 
corrected for field nonuniformity using the N4 
method (Tustison et al., 2010). Finally, segmentation 
was performed to classify brain tissue into WM, 
GM, CSF, and WM lesions using a combination of 
parametric and nonparametric methods as detailed in 
(Sajja et al., 2006) and (Datta et al., 2006). 

Execution times of the various post-processing 
and analysis modules and total processing times 
were recorded for each of the six MS cases studied. 
Note that the segmentation accuracy was not 
compromised, and the results obtained from the 
online pipeline are identical to what would result 
from off-line processing. 

3 RESULTS 

Fig. 3 shows one representative dataset at various 
stages in the analysis pipeline. The corresponding 
tissue classification is shown in Fig. 4, including 
WM lesion segmentation. Table 1 reports the 
processing times used by each of the registration, 
skull stripping, nonuniformity correction, and 
segmentation modules, as well as the total 
processing time. On average, the total processing 
time is 123 sec. All the six dataset were processed in 

under 156 sec, making the results available in almost 
real-time for the care giver. 

4 DISCUSSION 

The proposed online image analysis system allows 
fast computation of quantitative information which 
was traditionally possible only by performing off-
line processing. MS lesions and brain tissues were 
classified and imported back on the scanner in about 
two minutes after the acquisition of the data. 
Importantly, this is achieved without interrupting the 
scanner workflow with the aid of a dedicated 
workstation that was seamlessly integrated into the 
scanner’s software.  

Having the analysis results immediately after the 
scan is a valuable contribution to the imaging 
practice in MS. In addition to quick inspection of the 
quantitative results and the ability to evaluate data 
quality while the patient is still in the scanner, the 
operator can decide on the best flow of the study for 
each individual case based on the results of 

 

 

Figure 3: An axial slice from a representative dataset 
showing the PD (left column), T2W (middle), and FLAIR 
(right) at different stages of the processing pipeline before 
(top row) and after (second row) co-registration, after 
brain extraction (third row), and after nonuniformity 
correction (fourth row). 
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Table 1: Execution times (mean ± standard deviation) for 
different modules in the online image analysis pipeline 
measured in six datasets.  

Processing module Time (sec) 

Registration 43 ± 9 

Brain extraction 3.2 ± 0.2 

Nonuniformity correction 39 ± 13 

Tissue and lesion segmentation 38 ± 2 

Total time 123 ± 18 
 

quantitative analysis. The quantitative results can 
also help determine the optimum parameters for 
subsequent scans. The proposed online analysis can 
be applied for online longitudinal evaluation to 
detect changes in MS lesion activity relative to a 
previous scan using subtraction MRI, which has 
shown a potential to predict the course of the disease 
(Liguori et al., 2011). 

Although the 2-min processing time is 
considerably short compared to the acquisition time 
of the same data (~8 min), shorter processing times 
are still desirable, especially when the protocol 
requires the segmentation results before executing 
the next imaging sequence. Parallel processing using 
graphical processing units (GPU) is becoming 
increasingly popular for medical image analysis 
(Pratx and Xing, 2011), and will be adopted in future 
work for further speedup. 

 

Figure 4: Segmentation results showing masks of white 
matter (top left), grey matter (top right), CSF (bottom left), 
and WM lesions (bottom right) corresponding to the slice 
shown in Fig. 3. 

 

5 CONCLUSIONS 

We have developed and implemented an online 
system for MRI image analysis and demonstrated its 
application for brain tissue classification and WM 
lesion segmentation in MS patients. The online 
image analysis pipeline was integrated into a clinical 
MRI system that allowed a seamless workflow 
wherein the results of quantitative analysis were 
easily incorporated into the patient database and the 
scanner’s user interface. We expect the proposed 
framework to have an impact on patient 
management, bringing what has been largely an 
isolated research activity to be part of the general 
imaging practice.  
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