
Simulation of Surgical Cutting in Deformable Bodies using a Game
Engine

Martin Kibsgaard1, Kasper K. Thomsen1 and Martin Kraus2

1School of Information and Communication Technology, Aalborg University, Aalborg, Denmark
2Department of Architecture, Design, and Media Technology, Aalborg University, Aalborg, Denmark

Keywords: Robotic Simulation, Medical Training, Virtual Reality, Physics Simulation.

Abstract: Simulators as a training tool for surgeons are becoming more important with the increase of minimally inva-
sive surgery and a wish to limit training on animals, especially in the field of robotic surgery. Accessibility
to surgery simulators is currently limited and the ability to cut is restricted. This paper presents a feasibility
study for implementing academic methods in a low-cost game engine. Expanding on previous work, a low-
cost surgery simulator is implemented to adress these issues. We focus on the implementation of cutting in
deformable objects in a game engine. The deformable objects are implemented using a spring mass model
combined with a volumetric tetrahedral mesh. The cutting algorithm is semi-progressive and allows for arbi-
trary cuts in the deformable objects. The prototype was evaluated by a chief surgeon with expertise in robot
surgery and experience with commercial simulators. The low-cost prototype presents a step towards robotic
surgery simulators that are able to simulate complete surgical procedures.

1 INTRODUCTION

Surgery simulators can reduce the amount of surgery
training on animals and patients (Colaco et al., 2012;
Liss et al., 2012). However, accessibility to surgery
simulators is currently limited either because they are
too expensive (Lallas et al., 2005) or because they are
only academic prototypes (Mosegaard, 2006; 2003;
Mor, 2001; Ganovelli & O’Sullivan, 2001). An imple-
mentation of a surgery simulator in a low-cost game
engine, as suggested by Grande et al., can be part of a
solution to both problems (2013).

This paper investigates the feasibility of imple-
menting a surgery simulator in a low-cost game en-
gine. Some of these game engines have functionality
that is needed to create a real-time simulator, which
helps lowering development costs by reusing exist-
ing components such as graphics and physics engines.
We assume that the use of a game engine can ease the
workload for other developers for further research or
commercial products.

To simulate complete surgical procedures, a de-
formable model is needed to simulate tissue. In ad-
dition the deformable model should support cutting,
as dissection of tissue is part of almost every surgical
procedure (Poulsen, 2013).

Only some commercial surgery simulators sup-

port cutting by removing elements from the de-
formable object and robotic surgery simulators are
limited to cutting of one-dimensional objects, e.g.
dissection of a thin vein. On the other hand, some
academic prototypes (Mosegaard, 2006; 2003; Mor,
2001; Ganovelli & O’Sullivan, 2001) support more
advanced cutting of deformable objects.

Our approach tries to reduce the gap between
commercial simulators and academic prototypes by
using a low-cost game engine and thereby reduce de-
velopment costs to make it easier to implement a com-
plete surgical simulator.

Previous work is reviewed in Section 2. The im-
plemented deformable model and cutting algorithm is
described in Section 3. In Section 4 the evaluation of
our solution is described. The paper ends with conclu-
sions in Section 5 and considerations regarding future
work in Section 6.

2 PREVIOUS WORK

This paper builds on research by Grande et al. (2013)
and represents the next step in developing low-
cost surgery simulators for robotic surgery. Grande
et al. (2013) presented a simulation of the controls of

342 Kibsgaard M., K. Thomsen K. and Kraus M..
Simulation of Surgical Cutting in Deformable Bodies using a Game Engine.
DOI: 10.5220/0004670403420347
In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications (GRAPP-2014), pages 342-347
ISBN: 978-989-758-002-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



the da Vinci surgery robot using off-the-shelf hard-
ware, specifically a Razer Hydra game controller.
This paper continues the work, but focuses on the
software needed for cutting in a low-cost surgery sim-
ulator. Like Grande et al. (2013), this project is imple-
mented using the low-cost game engine Unity 4.0 and
focuses on training simulation for the da Vinci surgery
robot.

The da Vinci Skills Simulator from the same com-
pany focuses on teaching surgeons the robot controls
and not actual surgery procedures. This and other
similar training simulators are fairly expensive and
are perceived as unreasonably priced (Grande et al.,
2013). Current surgery simulators have only limited
support of cutting procedures. Two of the most ad-
vanced surgery simulators on the market are LapSim
and SEP Robot but these are mainly focused on tradi-
tional surgery (Surgical Science, 2013) (SimSurgery,
2013). These simulators simulate cutting by remov-
ing entire mesh elements. This approach is simple
and stable but can have too low resolution for preci-
sion cutting. For robotic surgery we have not been
able to find any commercial simulators that support
cutting of more than one-dimensional objects.

To simulate deformable objects, different methods
have been presented. A common and simple method
is the spring mass model. In this model, the object
is represented as a three-dimensional mesh, with ver-
tices representing fractions of the object mass. Edges
in the mesh represent structural springs, that give the
object its deformable properties. Bending springs and
shearing springs can be introduced to increase model
stability and rigidity (Erleben et al., 2005). These
springs can be abstracted to second neighbor springs
for non-grid meshes (Erleben et al., 2005). The spring
mass model creates a system of differential equations
that need an integration method. Mosegaard (2003)
suggests to use a Verlet solver for real time purposes
as it has the best combination of speed and stability.
A different approach to simulate deformable objects
is the finite element method, which is more physically
correct and precise (Georgii & Dick, 2012). However,
it is more difficult to change mesh topology in real
time with this method (Mosegaard, 2006).

Previous research on real-time cutting in de-
formable meshes can be coarsley grouped into three
categories: element removal, vertex moving and pro-
gressive remeshing (Ganovelli & O’Sullivan, 2001).
The simplest method presented is element removal.
This method removes a geometric element, like a
tetrahedron, when it comes into contact with the cut-
ting tool. This method is fast, but does not provide
realistic looking results and requires high resolution
meshes for precise cutting (Ganovelli & O’Sullivan,

2001). A mainly visual improvement is to move the
vertices from the removed element to the surface of
the cutting instrument, to make the cut the correct
size. This model looks more natural when cut, but
can cause simulation problems with the deformable
model. The last method of cutting is to remesh the
cut element, and have the newly created geometry re-
flect the cut. Using this method a much higher spa-
tial resolution can be achieved in the cut. However,
the method is fairly complex and can have problems
with the increase of model complexity with larger and
numerous cuts (Mor, 2001). A framework for medi-
cal simulation (SOFA, 2011) exists, however it is not
used in this paper as development appears to have
stopped and the paper wishes to expand on (Grande
et al., 2013) by using a commercial game engine.

3 METHOD

3.1 Deformable Model

The spring mass model is chosen as the deformable
model for this project, because of its simplicity and
flexibility in regard to mesh topology. It is applied to
tetrahedral meshes using second neighbor springs to
improve volume preservation and force propagation.

As most objects, especially in game engines, are
only surface representations of solid objects, a sur-
face mesh to volumetric mesh conversion is neces-
sary. For this procedure the program TetGen is inte-
grated with Unity. This program performs Delaunay
tetrahedralization to create a tetrahedral volume mesh
(Si, 2011). A user interface has been implemented for
Unity to enable developers to make this conversion
without any user interaction with TetGen (see Figure
1).

After this conversion, all necessary information is
stored in a comprehensive data structure as seen in
Figure 2. Most of this data structure specifies associa-
tions between the different elements in the tetrahedral
mesh.

Our spring mass model uses Hookes law for
springs to calculate the forces on each vertex. In addi-
tion damping is added to each spring. The force from
a spring on a vertex i is then Equation 1 and 2 com-
bined (Erleben et al., 2005).

~Fi =�cs
�
lR�

��~xi�~x j
��� ~xi�~x j��~xi�~x j

�� (1)

~Fi =�cd
(~xi�~x j) � (~vi�~v j)��~xi�~x j

�� ~xi�~x j��~xi�~x j
�� (2)

Simulation�of�Surgical�Cutting�in�Deformable�Bodies�using�a�Game�Engine

343



Figure 1: User Interface for converting any surface mesh in
Unity to a tetrahedral volumetric mesh.

Figure 2: Data structures for each deformable object.
<type>indicates that it is a list of type and (type) indicates
that it is an instance of type.

where i and j are the vertices at each end of a spring,
~Fi is the force on the ith vertex, cs and cd are the spring
and damper constants, lR is the spring’s rest length,~x
is position and~v is velocity.

For added volume preservation in the model, and
to avoid unstable geometric deformations, the concept
of second neighbor springs is implemented. These
springs are calculated the same way as the structural
springs, but have separate spring and damping con-
stants. The forces from all connected springs are used
in Equation 3 to calculate the new position for each
vertex.

~xi+1 = 2~xi�~xi�1 +~aiDt2 (3)

where ~xi a vertex’s current position, ~a is acceleration
and t is time.

The Verlet solver is used as it has a good balance
between speed and stability (Mosegaard, 2003). For
each vertex a small linear drag is added to remove
energy from the model and gravity is added to make

the model fall down. To prevent the object from dis-
appearing through the floor, a collision test with the
ground plane is implemented. If a vertex is below the
ground plane it is moved to the height of the ground
plane, and its velocity is set to zero to approximate
high friction. Lower friction can be achieved by keep-
ing some or all of the velocity.

A similar approach is taken with the interaction
object. Each vertex is tested against a sphere around
the interaction object and moved outside the sphere
and the velocity is set to zero. To simulate grab-
bing of tissue each vertex is tested for being inside the
sphere of influence of the grabbing object, this sphere
is slightly larger than the collision sphere. If a ver-
tex is inside the sphere of influence when grabbing
is enabled, forces are applied to the vertex to follow
the grabbing object. This approach is chosen instead
of directly manipulating the vertex position as it al-
lows a cap on the force applied to vertices, which can
guarantee model stability in case of unnaturally fast
interactions.

3.2 Cutting

For this paper a simplified approach based on (Mor,
2001) is presented. The method presented by
Mor (2001) has 60 unique cases of intersections. The
method in this paper seeks to reduce this to only two
cases. This model rests on one simplification; only
tetrahedra that are cut completely through are cut in
the model. This eliminates the per element progres-
sive part of the method seen in (Mor, 2001), but it
allows for much simplification. The only cases to be
considered in the model are a cut intersecting three or
four edges of a tetrahedron.

The algorithm for the model follows three steps:
detecting intersections, subdividing the mesh and
snapping vertices to neighboring elements.

To detect the intersection, the cutting instrument is
first simplified to one cutting edge. A ray-triangle al-
gorithm is used to test for tetrahedra intersections be-
tween the cutting edge and triangles in the mesh. For
intersections with the edges, the cutting edge expands
a plane from its position from the previous physics
step and its current position. This plane consists of
two triangles which use the same ray-triangle algo-
rithm to detect edge intersections.The edge intersec-
tions are used to determine what type of cut is being
created. The triangle intersections are used to deter-
mine if a tetrahedron is still being cut.

The subdivision of cut elements is imple-
mented using the optimal tetrahedralization found by
Mor (2001) and is illustrated in Figure 3. These sub-
divisions represent the two cases for tetrahedron in-

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

344



tersections.
In order to maintain mesh stability, vertices shared

between subdivided elements must be detected and
snapped to the same position. We base the procedure
on the mesh topology in order to avoid snapping er-
rors in case the object deforms during the cut.

Figure 3: Tetrahedron with three edges cut (left) and with
four edges cut (right). Both cut by a horizontal motion.

The current implementation does not consider de-
generate tetrahedra that make the model unstable.
Ganovelli & O’Sullivan (2001) suggests to collapse
nearly degenerate tetrahedra based on edge-ratio. In
its current form, the model assumes equal mass for all
vertices, which leads to increased mass in cut areas.
Changing the mass to reflect the cut exposes the ver-
tices to larger forces in relation to mass, which in turn
lead to model instability. Additionally, the springs
created from a cut spring should have higher spring
constants than the original spring based on Youngs
modulus. However, this also induces larger forces on
affected vertices. A solution to both problems is to
run the simulation at a smaller physics timestep.

4 EVALUATION

Dr. Johan Poulsen, Chief Surgeon at Aalborg Univer-
sity Hospital, helped us evaluate our implementation
of cutting in deformable objects, by comparing it to
real surgery and the hospitals newly acquired robotic
surgery simulation. He performs his surgeries using
the da Vinci robot.

Johan Poulsen confirms that the interaction model
suggested by Grande et al. (2013) mimics the input
of the surgeon’s console (controls to the robot) very
well. However, a stereoscopic display is necessary to
simulate the surgeon’s console properly.

After trying the simulation for a few minutes, Jo-
han Poulsen said that it is a good simulation of the
surgery robot, and that the ability to cut is useful.
With minor additions, it could be a great exercise.

Adding an object in which to place the cut off tis-
sue, and having a visible area of the tissue to remove,
could be such an exercise and would only require a
small amount of extra implementation. The cutting
procedure Johan Poulsen tried during the evaluation
can be seen in Figure 4.

Because Mosegaard (2006) suggests that grav-
ity is not necessary in his heart surgery simulation,
we asked Johan Poulsen about his opinion on the
lack of gravity. For general-purpose surgery simula-
tion, he believes that gravity is required. During real
surgery, gravity is used to control blood flow and vis-
cera placement; e.g. placing the patient almost upside
down to move intestines away from the operating area
during surgery in the lower part of the abdomen. Dur-
ing robotic surgery, a third arm is also sometimes used
to keep the tissue in place while cutting, or to keep
other tissue away. This would be difficult to simulate
realistically without gravity.

Currently, the best training scenario for robotic
surgery is operating on a pig that is still alive (wet
training). The hospital’s current simulator has re-
duced the amount of wet training by some; even with-
out cutting and without any complete surgery exer-
cises. Johan Poulsen believes that with cutting in
a deformable object and a few more technologies, a
simulation can reduce the dependency on wet train-
ing. In addition to cutting, what is required is: pro-
cedural material, suturing and bleeding. Procedural
material (texture) is needed to create visually realis-
tic cutting. The inside of an organ is different from
the outside, and it should be possible for the user to
tell unhealthy tissue from healthy tissue. Suturing and
bleeding are already implemented in current simula-
tors to some degree.

5 CONCLUSION

This paper presents a working prototype for cutting in
deformable objects. The prototype has been evaluated
by an expert user, who found it to be a good simula-
tion of robotic surgery and the ability to cut useful.
The prototype presents a step towards robotic surgery
simulators that can simulate whole procedures, and
presents the feasibility of implementing surgery sim-
ulators in game engines. Some features still need to
be implemented to make the tool commercially appli-
cable.

Simulation�of�Surgical�Cutting�in�Deformable�Bodies�using�a�Game�Engine

345



Figure 4: Image sequence of a cutting procedure, where the robot tools are used to remove a corner from a deformable box.
The model contains 74 vertices, 196 tetrahedra elements and a total of 1167 structural and next neighbour springs. It is
running at 475 frames per second with 150 physics steps per second on a i7-3770k at 3.5GHz using one of eight threads.

6 FUTURE WORK

The current deformable model is too elastic to simu-
late tissue because the simulation is only stable and
in real-time for rather small spring constants. To im-
prove performance, the deformable model was also
implemented on the graphics processing unit (GPU).
The massively parallel structure of the GPU allows
many springs to be calculated simultaneously, which
allows for a significantly smaller timestep and thereby
larger spring constants. Currently this is not im-
plemented with cutting, as the cutting algorithm re-
quires more advanced data structures that are not eas-
ily transferrable to the GPU. However, the many ray-
triangle calculations in the cutting algorithm could
also be done in parallel on the GPU.

The expert evaluation concluded that several el-
ements are needed before the system can simulate
entire procedures. Suturing is an important part of
surgery and it should be implemented as a part of the
deformable model to have more realistic interaction
with the rest of the simulated procedure. Bleeding is
also an essential part to implement as it is an aspect
that can complicate a surgical procedure by obscur-
ing vision to important areas, as well as it being un-
healthy for the patient. Volumetric texture is needed
for the surgeon to be able to detect unhealthy tissue
and know where to cut. This texture must stay con-
sistent while the object is deformed and must still be
correct with the new topology created by cutting.

ACKNOWLEDGEMENTS

Thanks to Johan Poulsen for sharing his knowledge
and helping us evaluate our prototype. Thanks to
Knud Henriksen for his questions and comments on
the project.

REFERENCES

Colaco, M., Balica, A., Su, D., & Barone, J. (2012). Initial
experiences with ross surgical simulator in residency
training: a validity and model analysis. Journal of
Robotic Surgery, pages 1–5.

Erleben, K., Sporring, J., Henriksen, K., & Dohlmann, H.
(2005). Physics-based animation. Charles River Me-
dia Hingham.

Ganovelli, F. & O’Sullivan, C. (2001). Animating cuts with
on-the-fly re-meshing. Eurographics 2001 - Short
Presentations.

Georgii, J. & Dick, C. (2012). Efficient finite element meth-
ods for deformable bodies in medical applications.
Critical Reviews in Biomedical Engineering, 40(2).

Grande, K., Kibsgaard, M., & Jensen, R. S. (2013). Low-
cost simulation of robotic surgery. VRIC ’13: Pro-
ceedings of the 2013 Virtual Reality International
Conference.

Lallas, C. D., Davis, & Members Of The Society Of Uro-
logic Robotic Surgeons, J. W. (2005). Robotic surgery
training with commercially available simulation sys-
tems in 2011: a current review and practice pattern

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

346



survey from the society of urologic robotic surgeons.
Journal of Endourology, 26(3):283 – 293.

Liss, M., Abdelshehid, C., Quach, S., Lusch, A., Gra-
versen, J., Landman, J., & McDougall, E. (2012).
Validation, correlation, and comparison of the dv
trainerTMand the dv surgical skills simulatorTMusing
the mimicTMsoftware for urologic robotic surgical ed-
ucation. Journal of Endourology, 26(12):1629–1634.

Mor, A. (2001). Progressive Cutting with Minimal New El-
ement Creation of Soft Tissue Models for Interactive
Surgical Simulation. PhD thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA.

Mosegaard, J. (2003). Realtime cardiac surgery simula-
tion. Master’s thesis, Department of Computer Sci-
ence, University of Aarhus, Denmark.

Mosegaard, J. (2006). Cardiac Surgery Simulation - Graph-
ics Hardware meets Congenital Heart Disease. PhD
thesis, Department of Computer Science, University
of Aarhus, Denmark.

Poulsen, J. (2013). Personal communication. Chief Surgeon
at Aalborg University Hospital.

Si, H. (2011). Tetgen: A quality tetrahedral mesh generator.
http://wias-berlin.de/software/tetgen/.

SimSurgery (2013). Sep robot: A learning tool for robotic
surgery. http://www.simsurgery.com/robot.html.

SOFA (2011). Simulation open framework architecture.
http://www.sofa-framework.org/home.

Surgical Science (2013). Lapsim: The proven training
system. http://www.surgical-science.com/lapsim-the-
proven-training-system/.

Simulation�of�Surgical�Cutting�in�Deformable�Bodies�using�a�Game�Engine

347


