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Abstract: This paper introduces an improved linear state estimator which directly assigns the error covariance in an
environment where the measured data are intermittently missing. Since this new estimator uses an additional
information indicating whether each observation is successfully measured, represented as a bernoulli random
variable in the measurement equation, it naturally outperforms the previous type of covariance-assignment
estimators which do not rely upon such information. This fact is proved by comparing the magnitude of
the state error covariances via the monotonicity of the Riccati difference equation, and demonstrated using a
numerical example.

1 INTRODUCTION

Construction of recursive state estimatiors in the pres-
ence of intermittent noise-alone measurements can be
traced back to the 1960s in tackling occasional data
loss in target tracking problems in space (Nahi, 1969).
The mostly used technique to cope with this data-
loss problem in the estimation process is to model
the measurement data loss using a bernoulli random
variable taking one or zero with a probability in the
measurement equation. For example, using a random
variableγk ∈ {0,1} whose distribution is described by

Pr{γk = 1}= γ̄, (1a)

Pr{γk = 0}= 1− γ̄, (1b)

E{γk}= γ̄, (1c)

in the state and measurement equation

xk+1 = Axk+ vk, (2a)

yk = γkCxk+wk, (2b)

a data-loss situation is expressed asyk =wk with γk =
0 and when a data is successfully observed asyk =
Cxk +wk now with γk = 1. Herevk andwk are the
process and measurement noises, respectively.

In many cases such as the aforementioned track-
ing problem, the value of the random variableγk is
not accessible in the estimation process of the state
xk. Therefore the estimators used in previous research

(Nahi, 1969) and (NaNacara and Yaz, 1997) were of
the following form

x̂k+1 = Ax̂k+K(yk− γ̄Cx̂k) (3)

only using the expected value ofγk. Nahi (1969) de-
rived the minimum variance estimators and NaNacara
& Yaz (1997) introduced covariance-assignment esti-
mators using the form (3).

One of the recent application area where this
intermittent data loss problem is important is the
networked control systems (NCS) (Hespanha et al.,
2007). In NCS, control and/or mesurement signals
among sub-components within the system are tras-
ferred via a commonly accessible network instead of
using the componet-to-component connections. Nat-
urally the problems such as data packet losses and
time delays due to the network have been major re-
search topics.

One of the major differences in NCS and the pre-
vious tracking problem is the accessibility of the in-
formation on the value ofγk in the state estimation
process. Both in (Sinopoli et al., 2004) and (Schen-
ato et al., 2007), the optimal state estimator over lossy
networks was derived, although the interim derivation
processes were different, in which the estimators was
of the form

x̂k+1 = Ax̂k+ γkG(yk−Cx̂k). (4)

Here we can use the value ofγk for state estimation.
Whearas the previous type of estimators (3) uses

only {yk}k=1,2,3,... for state estimation, the new form
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of estimators (4) utilize{γk} as well as{yk}. There-
fore, we may conjecture that the optimal estimator of
the form (4) outperforms the optimal estimator of the
form (3). In this paper, we formally prove this by
comparing magnitude of the estimation error covari-
ances.

In this context, we derive a new covariance-
assignment estimtor for linear systems using the esti-
mator form (4) in the next section and, then in Section
3, prove that the new estimator performs better than
the old one (3) by comparing the magnitude of the
state error covariances represented as the two differ-
ent Riccati difference equations (RDE) resulted from
(3) and (4). For this we use the monotonicity prop-
erty of the RDE and demonstate the difference using
a numerical example in Section 4. Finally Section 5
concludes this research.

In this paper, matrices will be denoted by upper
case boldface (e.g.,A), column matrices (vectors) will
be denoted by lower case boldface (e.g.,x), and scalars
will be denoted by lower case (e.g.,y) or upper case
(e.g.,Y). For a matrixA, AT and Tr{A} denote its
transpose and trace, respectively. For a symmetric
matrix P > 0 or P ≥ 0 denotes the fact thatP is pos-
itive definite or positive semi-definite, respectively.
For a random vectory, E{x} denotes the expectation
of x.

2 A NEW COVARIANCE
ASSIGNMENT STATE
ESTIMATOR

Consider the state and measurement equations rep-
resented in (2) wherexk ∈ R

n and yk ∈ R
p. Here

vk ∈ R
n and wk ∈ R

p are statistically independent
zero-mean sequences representing the process and the
measurement noises, respectively. The covariances of
vk andwk are represented asV > 0 andW > 0 for
all k, respectively. The noises are assumed to be mu-
tually independent and also independent of the initial
statex0 whose mean and covariance arex̄0 andX0,
respectively.

The random variableγk, indicating the informa-
tion whether the measurement is successfully ob-
served, has the distribution characterized by (1). For
a simple development, we introduce a new random
sequencẽγk such that

γk = γ̄+ γ̃k, (5)

and thus

E{γ̃k}= 0, (6a)

σ2
γ̃ , E[(γ̃k−E{γ̃k})

2] = γ̄(1− γ̄). (6b)

Therefore, the measurement equation (2b) can be
written as

yk = (γ̄+ γ̃k)Cxk+wk. (7)
Differently from the estimator type used in the

previous literature (NaNacara and Yaz, 1997) which
does not accessγk, here we employ a new estimator
form (4) which uses the informaton onγk. Using the
system equations (2) and the estimator (4) yields the
state estimation error

ek , xk− x̂k, (8)

resulting in

ek+1 = (A− γkGC)ek+ vk+ γkGwk. (9)

Note that the estimator (4) is unbiased ifE{e0}= 0.
The covariance matrix of the state estimation error

vector is defined as

Pk , E{ekeT
k } (10)

which propagates in time according to

Pk+1 = (A− γ̄GC)Pk(A− γ̄GC)T

+G(σ2
γ̄CPkCT + γ̄W)GT +V.

(11)

Rearranging and completing square yield

Pk+1 = APkAT +V− γ̄G0
k(CPkCT +W)G0T

k

+ γ̄(G−G0
k)(CPkCT +W)(G−G0

k)
T ,

(12)

where

G0
k , APkCT(CPkCT +W)−1. (13)

If the error covariance at steady state defined as

P , lim
k→∞

E{ekeT
k } (14)

exists,

P−APAT −V+ γ̄G0(CPCT +W)−1G0T

= γ̄(G−G0)(CPCT +W)(G−G0)T

, LLT ,

(15)

whereL ∈ R
n×p and

G0 , APCT(CPCT +W)−1. (16)

Defining a new non-singular matrixT such that

TTT = γ̄(CPCT +W) (17)

yields

LLT = (G−G0)TTT(G−G0)
T , (18)

from which we obtain, for an arbitrary orthogonal ma-
trix U with consistent size,

LU = (G−G0)T. (19)

Finally the filter gain becomes

G = G0+LUT−1

= APCT(CPCT +W)−1+LUT−1.
(20)

The developments above can be summarized as The-
orem 1:

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

280



Theorem 1. For the linear discrete-time stochastic
system with intermittent observation losses expressed
as (2) and the state estimator form(4), a given
steady-state covarianceP of state estimation error is
assignable if and only if the left-hand side of(15) is
non-negative definite with maximum rank p. In this
case, all filter gains assign this steady-state covari-
anceP are expressed as(20).

It can be easily shown that among all the steady-
state error covariances expressed as (15), the mini-
mum error covariance is attained when the filter gain
G is equal toG0:

Corollary 1. The minimum error covariance attain-
able using the estimator(4) is expressed as the fol-
lowing algebraic Riccati equation (ARE)

P = APAT +V− γ̄G0(CPCT +W)G0T

= APAT +V− γ̄APCT(CPCT +W)−1CPAT

(21)
with the filter gain

G = G0 = APCT(CPCT +W)−1. (22)

The minimum error covariance given by (21) can
also be modified to

P = APAT +V

− γ̄2 APCT(γ̄2CPCT +σ2
γ̃CPCT + γ̄W)−1CPAT

(23)
using the relation̄γ2+σ2

γ̃ = γ̄2+ γ̄(1− γ̄) = γ̄.

3 PERFORMANCE
COMPARISION OF
COVARIANCE-ASSIGNMENT
ESTIMATORS

This section compares the magnitude of state error co-
variance of the state estimator (4) newly introduced in
the previous section with that of the past estimator (3)
suggested in (NaNacara and Yaz, 1997). This estima-
tor satisfies the following estimation error covariance
equation at steady state

P̃−AP̃AT −V

= (K−K0)(γ̄2CP̃CT +σ2
γ̃CXCT +W)(K−K0)T

−K0(γ̄2CP̃CT +σ2
γ̃CXCT +W)K0T

(24)
where

K0 = γ̄AP̃CT(γ̄2CP̃CT +σ2
γ̃CXCT +W)−1 (25)

andX , lim
k→∞

Xk = lim
k→∞

E{xkxT
k } is the converging so-

lution of the state covariance equation

Xk+1 = AXkAT +V. (26)

Similarly to Corollary 1, the minimum state error
covariance at steady state is expressed as the ARE

P̃ = AP̃AT +V

−K0(γ̄2CP̃CT +σ2
γ̃CXCT +W)K0T

= AP̃AT +V

− γ̄2AP̃CT(γ̄2CP̃CT +σ2
γ̃CXCT +W)−1CP̃AT

(27)
which is obtained by pluggingK = K0 into (24).
Remark1 (Convergence of Riccati difference equa-
tions). It is well known (Bitmead and Gevers, 1991)
that if the matrix pair

[

A,C
]

is stabilizable and

[A,V1/2] is detectable, the solution of a RDE con-
verges to the solution of the corresponding ARE.
Therefore the solutions of the following RDEs

P̃k+1=AP̃kAT +V− γ̄2AP̃kCT

× (γ̄2CP̃kCT +σ2
γ̃CXkCT + W)−1CP̃kAT ,

(28)

Pk+1=APkAT +V− γ̄2APkCT

× (γ̄2CPkCT +σ2
γ̃CPkCT + γ̄W)−1CPkAT

(29)

converge to the solution of (27) and (23), respectively.
In order to compare the magnitude ofP with P̃, the

followng monotonicity property of the Riccati equa-
tion (Bitmead and Gevers, 1991) is useful.

Lemma 1 (Monotonicity property #1 of the RDE
(Bitmead and Gevers, 1991)). Consider two Riccati
Difference Equations with the sameA, C andR ma-
trices but possibly differentV1 andV2. Denote their
solution matricesP1

k and P2
k, respectively, of the fol-

lowing two Riccati difference equations

Pi
k+1 = APi

kAT +Vi

−APi
kCT(CPi

kCT +W)−1CPi
kAT , i = 1,2.

(30)

Suppose thatV1 ≥ V2, and, for some k we haveP1
k ≥

P2
k, then for all j> 0

P1
k+ j ≥ P2

k+ j . (31)

Using this Lemma 1, a similar monotonicity prop-
erty of the RDE now with differentWi but the same
V matrix can be obtained.

Lemma 2 (Monotonicity property #2 of the RDE ).
Consider two Riccati Difference Equations with the
sameA, C andV matrices but possibly differentW1
and W2. Denote their solution matricesP1

k and P2
k,

respectively, of the following two Riccati difference
equations

Pi
k+1 = APi

kAT +V

−APi
kCT(CPi

kCT+Wi)
−1CPi

kAT , i = 1,2.
(32)
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Suppose thatW1 ≥W2, and, for some k we haveP1
k ≥

P2
k, then for all j> 0

P1
k+ j ≥ P2

k+ j . (33)

Proof 1. See Appendix.

SinceXk ≥ Pk based on (26) and (29) and̄γ < 1,
we have

σ2
γ̃ CXkCT +W ≥ σ2

γ̃ CPkCT + γ̄W, (34)

and the difference between the two terms above is

∆k , σ2
γ̃ C(Xk−Pk)CT +(1− γ̄)W

= (1− γ̄)(γ̄∇k+W)≥ 0
(35)

with ∇k , C(Xk−Pk)CT ≥ 0.
Therefore, applying Lemma 2 to (28) and (29) to-

gether with (34) yields

P̃k ≥ Pk for all k> 0, (36)

provided that each of the initial covariances are the
same.

Now if the sufficient conditions hold for the con-
vergence of the RDE in Remark 1, the following the-
orem can be obtained from (36).

Theorem 2. For the discrete-time stochastic system
with intermittent observation losses expressed as(2),
the state estimators given by(3) and(4) yield the min-
imum covariances of state estimation error(27) and
(23), respectively. Furthermore,

P̃ ≥ P, (37)

i.e., the state error covariance of the old estimator(3)
is bigger than that of the current estimator(4).

Based on Theorem 2 and (35), we observe the fol-
lowng:

(1) As we can expect, when̄γ = 1, there is no perfor-
mance difference between the two estimators, i.e.,
P̃ = P;

(2) Whether∆k is increasing or decreasing with re-
spect to γ̄ is not straightforward because the
derivative

∂∆k

∂γ̄
=−(2γ̄∇k+W)+

[

∇k+ γ̄(1− γ̄)
∂∇k

∂γ̄

]

(38)
can be non-negative or non-positive matrix1.
However, if γ̄ and the noise covarianceW are
relatively big, the derivative may become a non-
positive definite. In this case, the biggerγ̄ the
smaller the performance difference.

1Note
∂∇k

∂γ̄
= −

∂Pk

∂γ̄
≥ 0 from the monotonicity prop-

erty in Lemma 1.

Remark2 (Connections to the Kalman filter with in-
termittent observation). The Kalman filter with inter-
mittent observation derived in Refs. (Sinopoli et al.,
2004) and (Schenato et al., 2007) iterates a Riccati
difference equation:

Σk+1 = AΣkAT +V

− γkAΣkCT(CΣkCT +W)−1CΣkAT
(39)

However, the covariance obtained by this equation is
stochastic since it depends onγk so that it cannot be
calculated offline. They suggested a deterministic up-
per bound of the expectation ofΣk:

Eγ{Σk} ≤ Pk (40)

We observe that this upper bound is equal to the non-
steady-state version of the algebraic Riccati equation
(23) developed in this paper.

4 NUMERICAL EXAMPLE

In order to demonstrate the performance difference
between the two estimators using covariance assign-
ment as proved in the previous section, the same nu-
merical example as in (NaNacara and Yaz, 1997) is
used here:

xk+1 =

[

0.90 0.02
0.01 0.84

]

xk+ vk (41a)

yk = γk
[

1 0
]

xk+wk (41b)

Here the zero-mean noise sequencevk and wk have
gaussian distributions with covariaces, respectively,

V =

[

0.01 0
0 0.02

]

,

W = 0.02.
(42)

To see the effect of the observation-success prob-
ability on performance difference, two different val-
ues of γ̄ = 0.9 and 0.6 were tried. To confirm the
result using the algebraic Riccati equations (27) and
(23), a 10000-run Monte-carlo simulation was also
conducted for each case. The followings summarize
the result of each case.

• γ̄ = 0.9 case:

Based on the filter gains (22) and (25) for the new and
old estimators respectively

G = G0 =

[

0.4348
0.0517

]

,

K = K0 =

[

0.3880
0.0462

]

,

(43)
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the algebraic Riccati equations and the 10000-run
Monte-Carlo simulation result in

PRiccati=

[

0.0186 0.0022
0.0022 0.0677

]

,

P̃Riccati=

[

0.0194 0.0022
0.0022 0.0678

]

,

(44)

and

PMonte=

[

0.0189 0.0016
0.0016 0.0702

]

,

P̃Monte=

[

0.0201 0.0016
0.0016 0.0701

]

.

(45)

• γ̄ = 0.6 case:

G0 =

[

0.4782
0.0573

]

,

K0 =

[

0.3223
0.0388

]

,

(46)

PRiccati=

[

0.0225 0.0026
0.0026 0.0678

]

,

P̃Riccati=

[

0.0250 0.0029
0.0029 0.0678

]

,

(47)

PMonte=

[

0.0225 0.0026
0.0026 0.0678

]

,

P̃Monte=

[

0.0250 0.0029
0.0029 0.0678

]

.

(48)

The numerical results shown above confirm the
formal verification of Section 3 that the new estima-
tor accessing the information onγk outperforms the
old estimator in terms of the minimum error covari-
ance. This simulation results are also shown in Figure
1 through Figure 4. Figure 1 and 2 compare the es-
timates of the first state and the estimation errors in
terms of absolute errors for̄γ = 0.9. Figure 3 and 4
correspond tōγ = 0.6 case. As shown the figures, the
smallerγ̄, the bigger the peformance difference.

5 CONCLUSIONS

This paper confirmed that in the presence of inter-
mittent observation losses the new covariance as-
signment estimator which can access the informa-
tion on observation-success or fail performs better
than the previous covariance-assignment state estima-
tor which does not use such an information. The per-
formance difference was formally shown by compar-
ing the magnitude of the error covariance matrices via
the monotonicity properties of the Riccati equation.
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Figure 1: Comparison of state estimates withγ̄ = 0.9.
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Figure 2: Comparison of estimation errors withγ̄ = 0.9.
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Figure 3: Comparison of state estimates withγ̄ = 0.6.
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Figure 4: Comparison of estimation errors withγ̄ = 0.6.

This fact was then numerically demonstrated using a
discrete-time linear stochastic system example.
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APPENDIX

Proof for Lemma 2

Let W1 = W2 +∆W with ∆W ≥ 0. Then using the
matrix inversion lemma yields

(CP1
kCT +W1)

−1 = (CP1
kCT +W2+∆W)−1

= (CP1
kCT +W2)

−1−M
(49)

with

M , (CP1
kCT +W2)

−1∆W1/2

× [∆W1/2(CP1
kCT +W2)

−1∆W1/2+ I]−1

×∆W1/2(CP1
kCT +W2)

−1 ≥ 0.

(50)

Then the first Riccati equation becomes

P1
k+1 = AP1

kAT +V1

−AP1
kCT(CP1

kCT +W2)
−1CP1

kAT
(51)

with V1 , V+AP1
kCTMCP1

kAT ≥ V sinceM ≥ 0.
Comparing this with the second Riccati equation

P2
k+1 = AP2

kAT +V

−AP2
kCT(CP2

kCT +W2)
−1CP2

kAT
(52)

yields
P1

k+ j ≥ P2
k+ j . (53)

based on Lemma 1.
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