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Abstract: This paper presents regional Support Vector Machine (SVM) classifiers with a spatial model for object 
detection. The conventional SVM maps all the features of training examples into a feature space, treats 
these features individually, and ignores the spatial relationship of the features. The regional SVMs with a 
spatial model we propose in this paper take into account a 3-dimentional relationship of features. One-
dimensional relationship is incorporated into the regional SVMs. The other two-dimensional relationship is 
the pairwise relationship of regional SVM classifiers acting on features, and is modelled by a simple 
conditional random field (CRF). The object detection system based on the regional SVM classifiers with the 
spatial model is demonstrated on several public datasets, and the performance is compared with that of other 
object detection algorithms.  

1 INTRODUCTION 

Detecting an object of a category is very challenging 
in the computer vision area due to the significant 
changes in object color, illumination, viewpoint, 
large intra-class variability in shape, appearance, 
pose, and complex background clutter and 
occlusions. As it is one of the most significant tasks 
in this field, it has been studied by many researchers 
for decades, and many successful results have been 
reported. A detector that localizes objects in an 
image was realized by some learning algorithms in 
many studies. The learning method used in object 
detection can be a boosting algorithm (Alexe et al., 
2010), a Support Vector Machine (SVM) (Scholkopf 
and Smola, 2002), a transformation of any of them 
(Opelt et al., 2006) or a combination of some of 
them (Song et al., 2011). In this paper, we propose 
the multiple regional SVM classifiers to enhance the 
performance of the SVM classifier and focus on 
modelling the spatial relationship of these regional 
SVM classifiers. 

The spatial relationship has been taken into 
consideration in many works. In (Tagare et al., 
1995), the spatial relation of similar patches was 
described, and a model of the spatial relation 
between parts was learnt in (Kumar and Hebert,
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Figure 1: Spatial relationship. View the cell features of 
training examples in a 3D space. The spatial relationship 
along z axis is encoded by the regional SVM classifiers, 
and the spatial relationship along axis x and axis y is 
delineated by the spatial model.  
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Figure 2: The training of regional SVMs. There are m feautres in an image, so m regional SVMs should be learnt. In each 
feature space of regional SVMs, a red point denotes for a positive feature, a blue square indicates a negative feature, and 
there are 2n features for each feature space. 

2005).  Others  encoded  the  spatial relationship in a 
graphical model such as the Bayesian model 
(Bogdan et al., 2010), a pictorial structure (Fischler 
and Elschlager, 1973), a tree model (Long (Leo) Zhu, 
2010), etc. Most of these approaches require the 
association of a label to a part in order to learn the 
model, and it becomes unsound if some of the parts 
are missing or undetected. In addition, sometimes 
good part structures should be carefully selected 
(Felzenszwalb et al., 2010). In contrast, we explore 
the spatial relationship of regional SVM classifiers 
acting on cell features, which is a lower level 
description compared with the part description, and 
it requires no labels of parts. 

We describe the spatial relationship in Fig. 1. 
Assume the cell features (split training examples 
into cells) for training are viewed in a 3D space, the 
spatial relationship along the axis z is incorporated 
into the regional SVM classifiers, and the spatial 
relationship along the axis x and axis y (or on the x-
y plane) is described as a pairwise relationship of 
regional SVM classifiers modelled by a simple 
conditional random field (CRF). 

The contributions of this paper include: 1) 
construction of regional SVM classifiers to boost the 
performance of SVM classifier; 2) modelling of the 
pairwise relationship of regional SVM classifiers by 
CRF. The conventional SVM training maps all the 
features of positive and negative training images into 

a feature space and finds a decision plane. In 
contrast, we build several regional SVMs, and the 
training data for each SVM are the features from 
different instances at the same location. The number 
of regional SVMs is determined by the number of 
cells in one instance. The training time of multiple 
regional SVMs is largely decreased compared with 
that of the conventional SVM, and above all, 
regional SVM classifiers improve the performance 
because each regional SVM classifier encloses a 
spatial relationship among examples.  

The rest of the paper is arranged as follows. The 
regional SVMs are described in Section 2, and the 
spatial model based on CRF that expresses the 
pairwise relationship of regional SVM classifiers is 
illustrated in Section 3. Experiments and discussions 
are presented in Section 4, and conclusions follow in 
Section 5. 

2 REGIONAL SVM CLASSIFIERS 

We will first give the main idea of the regional 
SVMs in Section 2.1. The prediction using the 
learned regional SVM classifiers is illustrated in 
Section 2.2. 
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2.1 Definition of Regional SVMs 

The regional SVMs are constructed by multiple local 
SVMs, each encoding the patterns of features from 
different spatial districts. The features from different 
images with the same relative location are collected 
for each individual SVM of regional SVMs. The 
feature utilized here is cell-based features (such as 
HOG (Dalal and Triggs, 2005, Felzenszwalb et al., 
2008) or LBP (Ojala et al., 1996), that is, several 
features can be extracted from a single image. The 
number of SVMs in the regional SVMs is the 
number of cell features in one single image. The 
implementation for an individual SVM of regional 
SVMs is the same as that for the conventional SVM.  

Assume we have n positive images and n 
negative images, denoted by {PI1,PI2,…,PIn} and 
{NI1,NI2,…,NIn}, respectively. We also presume 
there are m features extracted from one image. 
Features for the ith positive image and the ith negative 

image are described by },...,,{ 21
iii PI

m
PIPI XXX  and 

},...,,{ 21
iii NI

m
NINI XXX , respectively. 

The conventional SVM maps all the features of 
positive and negative images into a feature space, 
and then the conventional SVM model is trained 
using the feature set 

]},1[],,1[|,{ mjniXX ii NI
j

PI
j  . The regional 

SVMs we propose train m SVMs (as shown in Fig. 
2). Each SVM of regional SVMs delineates the 
characteristics of the object with different spatial 
locations. The training set for the ith SVM 
( mi ,...,1 ) is defined as 

},...,,,,...,,{ 2121 nn NI
i

NI
i

NI
i

PI
i

PI
i

PI
i XXXXXX . 

The union of the training data of all the regional 
SVMs is the same with the training data of the 
conventional SVM, but the patterns for each SVM of 
the regional SVMs are reconstituted. To train each 
individual SVM of the regional SVMs, the LibSVM 
(Chang and Lin, 2011) is employed in our program. 

2.2 Prediction of Regional SVM 
Classifiers 

The prediction of the regional SVMs for a detection 
window is reached by all the SVM models 
constructed in the training of regional SVMs. The 
relative location of each feature in the detection 
window can be perceived, and as we denote the 
features in the detection window by

},...,,{ dw
m

dw
2

dw
1 xxx , the subscripts 1,2,…,m 

indicate the relative location of features in the 
current window. The decision on the detection 
window is made with Eq. (1), which suggests that 
the detection window contains an object if the 
confidence is positive; otherwise, the detection 
window is determined to be a non-object window. 
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where f
i

f
iy  , f

ix , and fb are parameters of the fth 

SVM model in the regional SVMs. s indicates the 
number of support vectors and K is the kernel 
function, we use the linear kernel in the program. 

We can see from Eq. (1) that the prediction of a 
detection window in the regional SVMs is associated 
with both the relative location of the feature to be 
tested in the detection window and the regional 
SVM classifier, as each cell feature of the detection 
window is estimated by the corresponding regional 
SVM classifier. In other words, if the same feature 
has different locations in different windows, the 
prediction result of the feature in different windows 
could also be different. 

3 A SPATIAL MODEL BASED ON 
CRF 

In this section, we introduce the spatial model that 
encodes the pairwise relationship (spatial 
relationship along axes x and y in Fig. 1) of regional 
SVM classifiers acting on features. The spatial 
model is built based on the CRF (Koller and 
Friedman, 2009) and predicts a binary label Y that 
suggests the category of a detection window, given 
an observed feature vector X. The pairwise 
relationship is incorporated in the feature vector X. 

The model we employ in our formulation is a 
simple CRF. The conditional probability P(Y|X) is 
formulated by Eq. (2) and θ is the parameter we 
want to estimate. 
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The parameter estimation approach we use to 
learn the model of the conditional probability 
P(Y|X) is the maximum likelihood estimation.  
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Figure 3: Pairwise relationship of regional SVM classifiers 
acting on cell features.  

Assume that the training dataset is denoted by 
}1),,{( 0CcyD cc  cx , given 0C  training 

examples, in the learning process, we need to 
estimate θ* that minimizes the negative log 
likelihood of the training data L2-regularization 
expressed in Eq. (3). 
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Our learning problem is transformed to an 
optimization problem, and to perform this 
optimization, the stochastic gradient descent 
algorithm (Koller and Friedman, 2009) is utilized. 
The update rule is presented in Eq. (4).  
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To this point, we explained the parameter estimation 
process of our spatial model, and the only thing we 
have not yet reported is how to express the feature 
xc. The feature xc in our spatial model is required to 
enclose the pairwise relationship of regional CRF 
classifiers acting on cell features in one detection 
window or one training example (we will call it the 
specified window hereafter). It is defined as a row of 
confidences that the regional SVM classifiers predict 
on each cell feature in the specified window, so the 
feature xc represents the specified window. Since the 
number of the regional SVM classifiers (denoted by 
m) is equal to the number of cell features defined in 
a specified window, the feature xc for the specified 
window has a size of 1*m2 to describe the pairwise 
relationship between regional SVM classifiers acting 
on cell features (as shown in Fig. 3). We use SVMi(

iw , ib ) to denote the ith SVM of the regional SVM 
classifiers, and represent the feature of the jth cell of 

the specified window as sw
cjx , and assume there are 

m cells in one specified window. A feature matrix 
Xcij, which has the size of m*m, can be calculated by 
Eq. (5). The feature xc of our spatial model is gained 
by reshaping matrix Xcij to a row vector. 

),( ji cellSVMconfidencecijX  (5)

After learning all the parameters of the spatial 
model, a prediction approach is required in order to 
make a decision on a new feature xcnew. We judge 
the new feature as positive if the possibility of Y=1 
is larger than the possibility of Y=0; otherwise, the 
new feature is settled as negative. The verdict rule is 
articulated by Eq. (6) and the derivation of this 
verdict rule is explained in Eq. (7). 
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4 EXPERIMENTS 

Two kinds of experiments are reported in this 
section. The comparison between the regional SVMs 
and the SVM is demonstrated with experiments in 
Section 4.1. The experiments for the spatial model 
and detecting objects in images are revealed in 
Section 4.2. All of the experiments are executed on 
an Intel(R) i5 2.80GHz desktop computer. 

4.1 Performance Comparison between 
Regional SVMs and the 
Conventional SVM 

The performance of regional SVMs and the SVM 
(Hsu et al., 2003) is estimated and compared on two 
public datasets, MIT pedestrian dataset and UIUC 
Image Database for Car Detection. Two kinds of 
widely used features are involved, and the training is 
executed in a 5-fold cross validation, so the final 
accuracy is the average accuracy of the five runs. 

Experimental setting. The HOG feature is 
employed in the experiment on the MIT pedestrian 
dataset. The cell size of the HOG feature is 8*8 
pixels. We operate the LBP feature in the 
experiment of the UIUC Image Database for Car 
Detection, and the cell size of the LBP feature is 
defined as 16*16 pixels. The CRF based spatial 
model is not used in this experiment for a fair 
comparison. 
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Table 1: Comparison results between regional SVMs and the SVM on the MIT Pedestrian Dataset for human detection. 

MIT pedestrian dataset                5-fold cross validation           HOG feature 
 1000 examples 800 examples 600 examples 400 examples 200 examples

SVM Regional 
SVMs 

SVM Regional 
SVMs

SVM Regional 
SVMs

SVM Regional 
SVMs

SVM Regional 
SVMs

acc 0.6241 0.7528 0.6256 0.7487 0.6210 0.7431 0.6185 0.7307 0.6342 0.7170
time 4931 s 29.41s 3151s 22.49s 1721s 15.51s 748.2s 7.672s 110.7s 3.566s

Note: The bold number indicates the best performance. 

Table 2: Comparison results between regional SVMs and the SVM on the UIUC Image Database for car detection. 

UIUC Image Database for Car Detection   5-fold cross validation    LBP feature 
 1000 examples 800 examples 600 examples 400 examples 200 examples

SVM Regional 
SVMs 

SVM Regional 
SVMs

SVM Regional 
SVMs

SVM Regional 
SVMs

SVM Regional 
SVMs

acc 0.6837 0.7464 0.6848 0.7389 0.6886 0.7368 0.6998 0.7435 0.7154 0.7350
time 286.6s 20.44s 180.5s 14.01s 101.5s 7.394s 43.38s 3.640s 9.723s 1.258s

Note: The bold number indicates the best performance. 

 

Figure 4: Comparisons of several shots that are processed by our object detection system with and without the spatial model 
on the UIUC Car Dataset. Top row: Results of our object detection system without the spatial model. Bottom row: Results 
of our object detection system with the spatial model. 

Table 1 epitomizes the accuracy and time cost of 
two methods testing on the MIT Pedestrian Dataset. 
We see that the accuracy of the regional SVM 
classifiers is improved by at least 10%, compared 
with the results processed by the SVM. The 
performance is enhanced a little in the experiment of 
200 examples, but not as much as the other 
experiments with more examples, because of the 
limited number of training samples. Generally, for 
the regional SVMs, the more training examples used 
in the experiment, the better the accuracy 
performance. The computational time we reveal in 
the table contains the training time and predicting 
time for five runs of cross validations. It is clear 
from Table 1 that the training of regional SVMs is 
dozens of times faster than that of the SVM despite 
of the number of training examples that are used. 
Table 2 discloses the results on the UIUC Image 
Database. With the results of Table 2, a similar 
conclusion can be reached. To summarize, the 

regional SVMs is superior to the SVM algorithm on 
both the accuracy performance and time 
performance. 

4.2 Object Detection in Images 

The object detection experiments are first executed 
on the UIUC Image Database for Car Detection, 
which contains training images, single-scale test 
images, and multi-scale test images. Since multi-
scale test images are more difficult than the single-
scale test images, we use the single-scale test images 
as the validation dataset and examine our algorithm 
on the multi-scale test images. The feature we use to 
represent images is a 31-dimensional HOG feature, 
and we employ a pyramid framework to detect 
multiple scales of objects. The confidences gauged 
by regional SVMs and the spatial model are fused by 
the weighted average, and the weights are reckoned 
on the validation dataset. The training process is 
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performed twice to explore hard negative examples. 
In the first iteration, cropped training images with a 
fixed size are used to train initial regional SVMs, 
and then hard negative examples are explored by 
detecting the original training negative files rather 
than cropped training negative examples 
(Felzenszwalb et al., 2010). The hard negative 
examples are added to the negative training set to 
conduct the second round of training. The process of 
detecting objects using our proposed algorithm 
consists of four steps (given a test image): 1) 
pyramid feature extraction; 2) predictions by 
regional SVMs; 3) confidences estimated by the 
spatial model; 4) non-maximum suppression. The 
non-maximum suppression is employed to deal with 
the situation in which multiple overlapping 
detections for each instance of an object are 
obtained. The bounding box with the highest 
confidence is reported among bounding boxes 
overlapping at least 50%. 

Fig. 4 presents comparisons of several shots that 
are processed by our object detection system with 
and without the spatial model. It is clear that the 
spatial model greatly improves the performance. The 
performance  on  the entire dataset is assessed by the 

 

Figure 5: Precision-recall curve on the Caltech Airplanes 
Dataset. 

precision, recall and F-measure of the testing results, 
and Table 3 presents the results of ours compared 
with the Neighborhood Suppression Algorithm 
(NSA) and the Repeated Part Elimination Algorithm 
(RPEA) of (Agarwal et al., 2004), which have also 
evaluated the performance on the multi-scale test 
images of the UIUC Database. The results of Table 
3 demonstrate that our algorithm achieves a 
performance (F-measure) that is almost 20% better 
than the performance of the NSA and RPEA. Note 

that the best F-measure of these two algorithms 
reported in (Agarwal et al., 2004) is referred to in 
Table 3. 

Table 3: Performance on the multi-scale test images of the 
UIUC Image Database for Car Detection. 

NSA RPEA Ours
Recall 38.85% 39.57% 66.91%

Precision 49.09% 49.55% 60.00%
F-measure 43.37% 44.00% 63.27%

We also evaluate our proposed algorithm on the 
Caltech Airplanes dataset consisting 1074 images, 
which are divided into a training set (500 images), 
an validation set (74 images) and a test set (500 
images). The training process is similar to that 
applied on the Car Dataset and the performance is 
evaluated by the precision-recall curve (Everingham 
and Zisserman, 2007) as shown in Fig. 5 (some of 
the detection results are shown in Fig. 6). The 
comparison methods include the SVM method that 
employs the HOG feature and part-based algorithm 
(Felzenszwalb et al., 2010), and our algorithm gives 
the best average precision (AP) (Everingham and 
Zisserman, 2007) and a relatively better performance. 

5 CONCLUSIONS 

This paper presents the regional SVM classifiers 
with a spatial model to describe the 3D (axes x, y, z 
in Fig. 1) spatial relationship of features, which is 
ignored by the conventional SVM. Regional SVM 
classifiers encode the spatial relationship along axis 
z, and the spatial model incorporates the spatial 
relationship along axes x and y. We demonstrate 
regional SVM classifiers with the spatial model 
using diversified features in various categories, and 
the experiments establish that the regional SVM 
classifiers do enhance the performance of the SVM 
classifier and the spatial model improves the 
performance of the object detection system. The 
experiments on the benchmark datasets show that 
our  system  has  a    relatively    better   performance 
compared with other object detection algorithms. 
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Figure 6: Results on the Caltech Airplanes dataset. Top row: processed by the conventional SVM; Middle row: processed 
by the part-based algorithm (Felzenszwalb et al., 2010); Bottom row: processed by our algorithm. 
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