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Abstract: We presenstatistical multi-step flowa new approach for dense motion estimation in long video sequences.
Towards this goal, we propose a two-step framework including an initial dense motion candidates generation
and a new iterative motion refinement stage. The first step performs a combinatorial integration of elementary
optical flowscombined with a statistical candidate displacement fields selection and focuses especially on
reducing motion inconsistency. In the second step, the initial estimates are iteratively refined considering
several motion candidates including candidates obtained from neighboring frames. For this refinement task,
we introduce a new energy formulation which relies on strong temporal smoothness constraints. Experiments
compare the proposed statistioallti-stepflow approach to state-of-the-art methods through both quantitative
assessment using théag benchmark dataset and qualitative assessment in the context of video editing.

1 INTRODUCTION erate trajectories starting from a reference frame in a
non-rigid context. They assume that the sequence of
Dense motion estimation has known significant im- displacement of any point can be expressed as a linear
provements since early works but deals mainly with combination of a low-rank motion basis. Therefore,
matching consecutive frames. Resulting dense mo-trajectories are estimated assuming that they must lie
tion fields, callecbptical flows can straightforwardly  close to this low dimensional subspace which im-
be concatenated to describe the trajectories of eachplicitly acts as a long-term regularization. However,
pixel along the sequence (Corpetti et al., 2002; Brox stronga-priori assumptions on scene contents must
and Malik, 2010; Sundaram et al., 2010). However, be provided and dense tracking of multiple objects is
both estimation and accumulation errors result in possible only if the reference frame is segmented.
dense trajectories which can rapidly diverge and be-  The alternative concept afulti-stepflow (Criv-
come inconsistent, especially for complex scenes in- elli et al., 2012b; Crivelli et al., 2012a) focuses on
cluding non-rigid deformations, large motion, zoom- how to construct dense fields of correspondences over
ing, poorly textured areas, illumination changes... extended time periods usingulti-step optical flows
Moreover, concatenating motion fields computed be- (optical flowscomputed between consecutive frames
tween consecutive frames does not allow to recover or with larger inter-frame distanced)lulti-stepflow

trajectories after temporary occlusions. sequentially merges a set of displacement fields at
Recent works have contributed to the purpose of each intermediate frame, up to the target frame. This
dense long-term motion estimation. Multi-frarop- set is obtained via concatenationmiilti-step optical

tical flow formulations (Salgado and Sanchez, 2007; flowswith displacement vectors already computed for
Papadakis et al., 2007; Werlberger et al., 2009; Volz neighbouring framedVulti-stepestimations can han-

et al., 2011) have been presented but their tempo-dle temporary occlusions since they gampocclud-

ral smoothness constraints are generally limited to a ing objects. Contrary to (Garg et al., 2018)/lti-step
small number of frames. (Sand and Teller, 2008) pro- flow considers both trajectory estimation between a
poses a sophisticated framework to compute semi-reference frame and all the images of the sequence
dense trajectories using a particle representation but(from-the-referendeand motion estimation to match
the full density is not achieved. To overcome these each image to the reference fran@-(he-reference
issues, Gargt al. describe in (Garg et al., 2013) a Despite its ability to handle both scenariogylti-
variational approach with subspace constraints to gen-stepflow has two main drawbacks. First, it performs
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the selection of displacement fields by relying only

on classicabptical flowassumptions that can some-

times fail between distant frames. Second, the can-

didate displacement fields are based on previous esti-z..y

mations. It ensures a certain temporal consistency but

can also propagate estimation errors along the follow-

ing frames of the sequence, until a new availaégp L
. . . H I'rcf I”l

gives a chance to match with a correct location again.

These limitations can be resolved by extending
to the whole sequence the combinatonallti-step
integration and the statistical selection described in
(Conze et al., 2013) for dense motion estimation be- *
tween a pair of distant frames. The underlying idea is
to first consider a large set composed of combinations
of multi-step optical flowsind then to study the spa- ey Iy
tial _re(_dundancy _Of the _resultlng candidates through a Figure 1. Multiple motion candidates are generated via a
statistical selection to finally select the best matches. gyided-random selection among all possible mopaths

Toward our goal of dense motion estimation in This combinatorial integration (Conze et al., 2013) is done
long video shots, we present thetistical multi-step independently for each paitye, In} which limits the corre-
flow two-step framework. First, it extends (Conze lation between candidates selected for neighbouring fsame
et al.,, 2013) to generate several initial dense corre- ) )
spondences between the reference frame and each dpair of frames{lrer,In} is processed independently.
the subsequent images independently. Second, wePur explanations focus on the estimatiorfrom-the-
propose to provide an accurate final dense matchingrefere_ncedlsplacement fields. In the foIIovylng, we
by applying a new iterative motion refinement which describe the input data and recall the baseline method

involves strong temporal smoothness constraints.  (Conze et al., 2013) before focusing on how it has
been improved and extended to the whole sequence.

ref

o . 2.1.1 Input Optical Flows Fields

2 Statistical Multi-step Flow

As inputs, our method considers a sebgptical flow
Let us consider a sequence Nf+1 RGB images fields estimated from each frame of the sequence in-
{In}nefo.....np includinglre s considered as a reference cluding l,e;. Theseoptical flowsare previously es-
frame. In this work, we focus on dense motion es- timated between consecutive frames or with larger
timation between the reference framer and each  steps(Crivelli et al., 2012b), i.e. larger inter-frame
framel, of the sequence and we aim at computing distances. Le§, = {s1,%,...,S0,} € {1,...,N—n}
from-the-referencandto-the-referencelisplacement  pe the set o, possiblestepsat instann. The follow-

fields. From-the-referencelisplacement fields link  ing set ofoptical flowfields starting from, is there-
the reference framées to the other frames$, and fore available:{Vnnis;, Vnisy---»Vnniso, }-
, : \N+Sqn

therefore describe the trajectory of each pixel gf Input optical flow fields are provided with at-
along the sequencelTo-the-referencelisplacement  tached occlusion and inconsistency masks. For the
fields connect each pixel &f to locations intdyet. pair {In, Inys } with s € {1,...,N —n}, the occlusion

The proposedtatistical multi-step floperforms  mask attached to thaptical flowfield v o, 5 indicates
two main stages. The generation of several initial the visibility of each pixel of,, in Inis. The inconsis-
dense motion correspondences for each pair of framesiency mask attached tq, 5 distinguishes consistent
{lret,In} independently is described in Section 2.1. and inconsistenbptical flowvectors among the ones
Section 2.2 presents the iterative motion refinement starting from pixels marked as visible (Robert et al.,
through strong temporal consistency constraints.  2012). This feature follows the idea that theckward

o ] ] flow should be the exact opposite of tteeward flow.
2.1 |Initial Motion Candidates

Generation
The goal of the initial motion candidates generation

is to compute for each pixeler (resp. xn) of let
(resp.ln) K candidate positions ik (resp.lref). Each
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2.1.2 Baseline Method (Conze et al., 2013) ® ® ; ®
=0
mn
The combinatoriaiulti-stepintegration and the sta- Un L s ;71
tistical selection on which we rely on work as follows. o, , T 2— """" 7

For the current paifles,In}, the combinatorial
multi-stepintegration consists in first of all consider- T m e
ing all the possibldrom-the-referencenotion paths \ﬁm Untin T,
d, ref 5

which start from each pixekes, run through the

€T
sequence and end iy. These motionpaths are I.f 1. s " 1.

. . . re n—1 n n+1
built by concatenating all the possible sequences of *
un-occluded inpumulti-step 0ptiCEl| flowrectors be- [ previous estimation 3 candidates from neighbouring frames
tweenles andl,. A reasonable number & motion @ Kinitial candidates 4% candidate coming from d;, ,. ,inverted

pathsare then selected through limitations in terms Figure 2: The displacement fieltf , is questionned by
of number of concatenatiorls. and via a guided-  generating for each pixetes competing candidates iq.
random selection. Each remaining motjosithleads
to a candidate position ily (Fig. 1top). Finally, we global optimization method fuses the§éest candi-
obtain a seflretn(Xref) = {Xn}ic[o, .kx, —1] OF Kxes dates to obtain an optimal one;,. In other words,
candidate positions ik, for each pixekres 0f Ief. these two last steps give a set of candidate displace-
A statistical-based selection stage then selects thement fieldsa'r(ef , and finallydy¢ ,, the optimal one.
optimal candidate position amorg ¢ n(Xref). This For pairs of frames relatively close or in case of
procedure involves: 1) a statistical criterion which temporary occlusions, the statistical selection is not
pre-selects a small set of candidates based on spatiahdapted due to the small amount of candidates. There-
density and intrinsic inconsistency values; 2) a global fore, betweerK + 1 andKs, candidates, we use only
optimization which fuses these candidates to obtain the global optimization up to obtain tikebest ones.

the optimal one while including spatial regularization. Our approach is applied bi-directionally. An ex-
actly similar processing betweénandl e leads taK
2.1.3 Improvements initial to-the-referenceandidate displacement fields.

The combinatoriamulti-stepintegration and the sta- 2.1.4 Extention to the whole Sequence

tistical selection we briefly reviewed has been im-

proved to provide further focus to inconsistency re- This improved version of the combinatorial integra-
duction betweefrom/to-the-referenceectors. First,  tion and the statistical selection of (Conze et al., 2013)
we use onlymulti-step optical flowectors considered  processes independently all the pditgs,In}. Only

as consistent according to their inconsistency masksN, the maximum number of concatenations, changes
to generate motiopathsbetweenles andl,. Sec- with respect to the temporal distance between frames.
ond, we introduce an outlier removal step before the In practice N. is computed using Eq. (1) which leads
statistical selection which orders the candidates of to a good compromise between a too large number
Tret n(Xret) With respect to their inconsistency values. of concatenations which would lead to large propa-
A percentag®s, of bad candidates is removed and the gation errors and the opposite situation which would
selection is performed on the remaining ones. Third, limit the effectiveness of the statistical processing due
at the end of the combinatorial integration and the se- to an insufficient number of candidates.

lection procedure betweepn s andl,, the optimal dis-
placementfield is incorporated into the processing be-

tweenl, andles which aims at enforcing the motion  N¢(n) = {
consistency betwedrom/to-the-referencéelds.

Compared to (Conze et al., 2013), our displace-  The guided-random selection (Conze et al., 2013)
ment fields selection procedure combines differently which selects for each pair of framéser,|n} one
statistical selection and global Optimization. For part Of a” the possib'e mo“opathshmﬂs the corre-
eachxret € lret, we select amon@ref n(Xref) Ksp= lation between candidates respectively estimated for
2 x K candidates through statistical Selection, with neighbouring frames. This avoids the situation in
Ksp < Kxer-  Then, we randomly group by pairs which a single estimation error is propagated and
theseKsp candidates and choose tHebest onesk therefore badly influences the whole trajectory. The
vk € [0,...,K—1] by pair-wise fusing them follow-  example Fig. 1 shows the motigrathsselected by
ing a global flow fusion approach. Finally, this same the guided-random selection for paifker,In} and

[n—ref|if |[n—ref|<5
0p.log10(as.|n—ref|) otherwise

1)
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{lret,Int1}. We notice that motiorpaths between

lret andly, 1 are not highly correlated with those be-

tweenls andl,. Indeed, the sets afptical flow

vectors involved in both cases are not the same ex-

cept forvief ref+1 andviesn—1 Which are then con- .y

catenated with different vectorsvh_», contributes

for both cases but the considered vectors do not start

from the same position. These considerations about

the statistical independence of the resulting displace- ¢ ® ®

ment fields are not addressed by existing methods for ~ Irer I I,

which a strong temporal correlation is inescapable.  Figure 3: Matching cost anBluclideandistancesch m and
ednn defined with respect to each temporal neighboring

2.2 lterative Motion Refinement candidatex;, and involved in the proposed energy. These
three terms act as strong temporal smoothness constraints.

The previous stage guarantees a low correlation be- |, . . . i
tween the initial motion candidates respectively es- Gret,n D€ the corresponding motion vector. We define
timated for pairs{les,In}. Without losing this key the energy in Eq. (2) and minimize it with respect to
characteristic, this second stage aims at iteratively re- L usingfusion movegL.empitsky et al., 2010):
fining the initial estimates while enforcing the tempo-
ral smoothness along the sequence. Eretn(L) = ES (L) +Efgrn(L) = ; Pa(eds )

We propose to question the matching between ref
each pixelxef (resp. Xn) of let (resp. 1y) and the
selected position;, (resp. Xi.¢) in In (resp. lref) €s- xreg/ref et 3 Pr
tablished during the previous iteration (or the initial
motion candidates generation stage if the currentiter- ~ The data ternErdef‘n, described with more details
ation is the first one). For this task, we generate sev-in Eq. (3), involves both matching cost and inconsis-
eral competing candidates which are comparex};to
(resp.x;,;) through a global optimization approach.

Ix Iy,
drereftn (Xl'e f ) - dreret{n (yre f )

) @)
1

Ix
tency value with respect @', (Conze et al., 2013).

In addition, we propose to introduce strong temporal

221 Competing Candidates smoothness constraints into the energy formulation:

. . . Iy Ix
The competing candidates used to queskpifresp. g?em =C(Xret,dat n(Xref)) + INC(Xref, Aot n(Xref))
X' ) are illustrated in Fig. 2 and deals with: ey ’
: |Xref * |Xref
e the K initial candidate positiongX (resp. X&) + 3 GO Xm—xn™) +ednn+ethm  (3)
vk € [[0,...,K— 1] (obtained Section 2.1), men”
* acandidate position coming from the previouses-  The temporal smoothness constraints translate
timation Orf dh ref (rresp. drer n) Which is inverted  jnto three new terms which are computed with respect
to obtainxy, (resp.x¢), as illustrated in Fig. 2, to each neighbouring candidaxg, defined for the

e candidates from neighbouring frames to enforce frames inside the temporal window. These terms
temporal smoothing. L&l be the temporal win-  are illustrated in Fig. 3 and deal more precisely with:
dow of widthw centered arounb),. Betweenl et . Ixpe g .
andl,, we use theptical flowfieldsvm, between e the matching cost betweeq™ € I andxp, of I,
Imandlywithme [n—%,....n+ %] andm+#n

: . |><ref
{0 obtain fromx, € I the new candidate in I, e theeuclideardistanceed,, betweerx,™ and the

ending point of theptical flowvmp starting from

2.2.2  Global Optimization Approach X5, (see EQ. (4))ednn encourages the selection of
Xy, the candidate coming fromg, via theoptical

We perform a global optimization method in order to flow field vmn and therefore tends to strengthen
fuse the previously described competing candidates ~ the temporal smoothness. Indeed, X theeu-
into a single optimal displacement field. clideandistanceedn, is equal to 0.

In the from-the-referencease, we introduck =
{lx. } as a labeling of pixels+ where each label @

Ix
ednn = ||(Xref + drereff_n) — (Xref + d?ef_’m +Vmn)

L | . .
indicates<,™', one of the candidates listed above. Let 2
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¢ the euclideandistanceed, m betweenx;, and the Experiments have been conducted as follows. In
ending point of theoptical flowvectorvy m start- Section 3.1, we evaluate the performance of our ex-
Xref tended version of the combinatorial integration and

ing fromx,"™ (see EQ. (5)). Imn is consistent,
i.e. Vmn = —Vnhm, €thm is approximately equal to
0 for x|, the candidate coming fror,, whose

selection is again promoted.

the statistical selection (Conze et al., 2013) through
registration and PSNR assessment. The effects of the
iterative motion refinement are also studied. Then, we
comparestatFlowto state-of-the-art methods through
guantitative assessment using fflag dataset (Garg

et al., 2013) (Section 3.2) and qualitative assessment

sk |Xre . . . .
ethm= || (Xret + et m) — (Xref + Oyt n +Vnm) (5) via texture propagation and tracking (Section 3.3).

2

The regularization terng/,; , involves motion
similarities with neighbouring positions, as shown in
Ed. (2). 0x..ye; @accounts for local color similarities

3.1 Registration and PSNR Assessment

in the reference framkes. The robust functionpg The first experiment aims at showing how the im-
andpr are respectively the negative log oStudent-t ~ provements we made with respect to (Conze et al.,
distribution and th&seman-McClurdunction. 2013) impacts the quality of the displacement fields.

The refinement ofo-the-referencelisplacement ~ We focus on frames pairs taken frokiPl S1and
fields with our approach is straightforward except that Newspape(NP). The sets otepsare 15, 10 (\NP),
the data term involves neither the matching cost be- 15 MPIS1), 20 (NP) and 30 NP). The algorithms are
tween the current candidate and the temporal neigh-Performed taking inpumulti-step optical flowsom-
bouring one nor theuclideandistanceedny due to puted with a 2D version of the disparity estimator de-
trajectories which can not be handled in this direction. scribedin (Robert etal., 2012), referred ta2asDE.

The global optimization method fuses the dis-  We compare the optimal displacement fields ob-
placement fields by pairs and finally chooses to up- tained in output of our initial motion estimates gener-
date or not the previous estimations with one of the ation (Section 2.1) with those resulting from (Conze
previously described candidates. The motion refine- €t al., 2013). The comparison is done through reg-
ment phase consists in applying this technique for istration and PSNR assessment. For a given pair
each pair of frameglrer,In} in from-the-reference  {lref,In}, the final fields are used to reconstruct
andto-the-referencalirections. The pairglres,In} Iret from I, through motion compensation and color
are processed in a random order in order to encourage®SNR scores are computed betwégnand the reg-
temporal smoothness without introducing a sequential istered frame for non-occluded pixels.
correlation between the resulting displacement fields. ~ Tables 1 and 2 show the PSNR scores for various

This motion refinement phase is repeated itera- distances betwedp ¢ andl, respectively on the kiosk
tively Ni times where one iteration corresponds to the of MPI S1 (Fig.4) and on whole images dfews-
processing of all the pair§lies,ln}. The proposed paper (Fig.60-t). Results onMPI S1show that the
statistical multi-step flovis done once the initial mo-  initial phase ofStatFlowoutperforms the combinato-
tion candidates generation and tNg iterations of rial integration and the statistical selection of (Conze
motion refinement have been performed. et al., 2013) for all pairs. An example of registra-

tion of the kiosk for a distance of 20 frames is given
Fig.4. Multi-stepestimations deal satisfactorily with
the temporary occlusion. Experimentsawspaper
3 EXPERIMENTS reveal the same finding: the novelty in terms of incon-
. . sistency reduction improves the displacement fields
Our experiments focus on the following sequences: quality. Moreover, the iterative motion refinement
MPI S1(Granados et al., 2012) Fig.4 and-6, Hope  stage [I; = 9) allows to obtain better PSNR scores

Fig.6-p, NewspapeiFig.69-t, Walking CoupleFig.7  for all pairs compared to the initial stage $fatFlow
andFlag (Garg et al., 2013) Fig.8. The propossd-

tistical multi-step flows referred to aStatFlowin the . .

following. For the experiments, the following param- 3.2 Comparisons withFlag Dataset

eters have been usel; = 7, Ns = 100, Ry, = 50%,

K =3,00=3,0; =15,w=>5. The set oktepsand Quantitative results have been obtained using the

inputoptical flowestimators will be specified for each  dense ground-truthptical flowdata provided by the

experiment and each sequence. Flag dataset (Garg et al., 2013) for thtag sequence
(Fig. 8). Experiments focus on:
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(@)lzs » (b) 140 (€) lss (d) I2s (e) (Conze etal., 2013)  (StatFlowinitial phase

Figure 4: Source frames of thdPI S1sequence (Granados et al., 2012) and reconstruction ofitis& &f 1,5 from I45
with: e) the combinatorial integration and the statistgzlection introduced in (Conze et al., 2013), f) the progaseended
version described in Section 2.1 (initial phaseStditFlow. Black boxes focus on differences between both methods.

Table 1: Registration and PSNR assessment with the com-for all the pairs of frame$let,In} together. RMS er-

binatorial integration and the statistical selectionddticed rors computed for each pair of frames are shown in

in (Conze et al., 2013) and the proposed extended versiongig 5 for all the methods based &DOF: LDOF di-

described in Section 2.1 (initial phase $tatFlow. PSNR

scores are computed on the kiosk\MP| S1(Fig. 4). rect, LDOF acq MSF(LDOF) andStatFIow(Ll_DOF).
The last twomulti-stepstrategies have considered as

Frame pairs (2548 | {2546 | 12547 | (2548 inputs steps % 5, 8,10, 15, 20, 25, 30, 40 and 50.
(Conzeetal,, 2013) | 21.83 | 24.98 | 2556 | 25.83 We can firstly observe thatDOF accrapidly di-
StatFlowinitial phase| 29.02 | 28.4 | 27.27 | 27.23 verge. This is due to poth gstimation errors which are
e pare T o T _propagated anr_lg trajectories and accumulation errors
: : : : inherent to the interpolation process. Moreover, the
(Conzeetal, 2013) | 2504 | 2483 | 2448 | 243 results obtained through direct motion estimation are
StatFlowinitial phase) 2684 | 2633 | 261 | 25.69 reasonably good, especially for (Pizarro and Bartoli,

Table 2- Redistrati 1 PSNR it 2012).LDOF directgives a lower RMS endpoint er-
able 2: Registration and PSNR assessment with: 1) com- ., ynan| DOF acc (1.74 against 4). However, it is

binatorial integration and statistical selection introéld in . . . -

(Conze et al., 2013), 2) proposed extended versgatf not possible to draw conclusions in the light of the
Flow init. phase), 3) wholStatFlowmethod. PSNR scores ~ Flag sequence because the flag comes back approx-

are computed on whole imagesNéwspape(Fig.6q-t). imately to its initial position at the end of the se-
guence (Fig.8,g). Motion estimation for complex
Frame pairs {160,18¢ | {160,199 | {160,20Q scenes cannot generally rely only on direct estimation
(Conzeetal,2013) | 22.50 21.21 18.59 and combiningptical flowaccumulations and direct
StatFlowinitial phase|  22.70 21.39 19.28 matching is clearly a more suitable strategy.
StatFlow 22.93 22.18 20.25 Tab. 3 and Fig. 5 prove that with the saotical
Frame pairs (160,21 | {160,220 | {160,23G flowsas inputs StatFlowshows a clear improvement
(Conze et al., 2013) 17.12 15.87 15.76 Compared tMSF (069 against ]41) Although both
StatFlowinitial phase|  18.21 1712 16.58 methods achieve the same quality for first pairs or for
StatFlow 18.68 17.40 16.81 some pairs which coincide with existirageps other
displacement fields are computed with a better ac-
e direct estimation between each pé&ftrer,In} curacy usingStatFlow Moreover,StatFlow(LDOF)
using LDOF (Brox and Malik, 2011),ITV-L1 N
(Wedel et al., 2009) and the keypoint-based non- ' 1
rigid registration of (Pizarro and Bartoli, 2012), : TRERERAATAA
e concatenation odptical flowscomputed between .
consecutive frames usindOF (LDOF acq, % ’ ; A
e multi-frame subspace flo@MFSF) (Garg et al., g
2013) using PCA or DCT basis, 2.
e multi-step flow fusion (MSF) (Crivelli et al., z
2012a) withLDOF multi-step optical flows 2 -
o StatFlow(N; = 3) with LDOF optical flows ;
For the comparison task, Tab. 3 gives for all the previ- \

406 % 10 12 14 16 I8 20 22 24 26 28 30 32 34 36 3§ 40 42 44 46 48 S0 52 S4 56 S8 60

ously described methods the RM8dt mean squade T T e
endpoint errors between the respective obtained dis- ~- LDOF direct === LDOF ace —MSF (LDOF) ——SiatFlow (LDOF)

placement fi.elds and the ground-truth data._ RMS er- Figure 5: RMS endpoint errors for each pélife,In} along
rors are estimated for all the foreground pixels and Flag sequence (Fig. 8) with different methods.
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(b) Texture insertion i35 (f) Prop. tol;2s, StatFlow(2D-DE) (g) Prop. tol13p, StatFlow(2D-DE)  (h) Prop. tol;37, StatFlow(2D-DE)

(i) Original imagelsoss (k) Prop. tolsgse, MSF (2D-DE) (1) Prop. tolsgsz, MSF (2D-DE) (m) Prop. tolspes, MSF (2D-DE)

(i) Logo insertion inlsoze (n) Prop. tolspse StatFlow(2D-DE) (o) Prop. tolspsz, StatFlow(2D-DE)  (p) Prop. tolsges, StatFlow(2D-DE)

(g) Logo insertion inl3o
Figure 6: Texture/logo insertion i 15 (resp.l5g3s andl,3p) and propagation along tiéPI-Sl (resp.HopeandNewspaper
sequence up th 37 (resp.lsggzandly7g) using: 1)multi-stepflow fusion MSF) (Crivelli et al., 2012a) withmulti-step optical
flow fields from (Robert et al., 2012) [2DE): MSH2D-DE); 2) the proposedtatistical multi-step flowStatFlow with

2D-DE multi-step optical floviields: StatFlow(2D-DE).
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(c) Original imagé 4o

(j) Prop. tolyg, StatFlow(2D-DE)

C

(k) Prop. tolys, StatFlow(2D-DE) (1) Prop. tol4, StatFlow(2D-DE)

I

Figure 7: Texture insertion ity and propagation up thyg (Walking Couplesequence). We compare: d-f) concatenation of
LDOF (Brox and Malik, 2011)optical flowfields computed between consecutive framesdF acq; g-i) multi-stepflow
fusion (MSF) (Crivelli et al., 2012a) usingulti-step optical flovfields from (Robert et al., 2012) 2DE); j-1) the proposed
statistical multi-step flofStatFlow) using 2>-DE multi-step optical flovfields.

Table 3: RMS endpoint errors for different methods on the 3.3  Texture Propagation and Tracking

Flag benchmark dataset (Garg et al., 2013).

| Method | RMS endpoint error (pixelsj

StatFlow (LDOF) 0.69
MSF (Crivelli et al., 2012a)(DOF) 1.41
LDOF direct(Brox and Malik, 2011) 1.74
LDOF acc(Brox and Malik, 2011) 4

MFSF-PCA (Garg et al., 2013) 0.69
MFSF-DCT(Garg et al., 2013) 0.80
(Pizarro and Bartoli, 2012jirect 1.24
ITV-L1 direct(Wedel et al., 2009) 1.43

reaches the same RMS error with respecduiieSF-
PCA the best one of thelFSFapproaches, with.689.

This proves thaStatFlowis competitive compared to

challenging state-of-the-art methods.

552

We aim now at showing that our method provides sat-
isfying results in a wide set of complex scenes. More-
over, we focus on the comparison betwesatFlow
(Nit =9) andMSF(Crivelli et al., 2012a) to prove that
StatFlowperforms a more efficient integration and se-
lection procedure compared MSF using the same
optical flowsas inputs. Experiments have been firstly
conducted in the context of video editing: we evaluate
the accuracy of both methods by motion compensat-
ing in I, Vn textures/logos manually insertedligs.

In Fig. 6 and 7, textures/logos have been respec-
tively inserted inl115 of MPI S1, I5936 of Hope 1230
of Newspaperand lp of Walking Couple To-the-
referencdields computed witlstatFlow D-DE) and
MSF @D-DE) serve to propagate textures/logos up to
respectivell137, Is063 1170 @ndlso. 2D-DE has been
chosen for its good results for video editing tasks. The
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(b) 110 (©) l20 (d) Is0 (&) lao ® lso (9 leo
Figure 8: Source frames of tikag sequence (Garg et al., 2013).

(a) 1115 with tracking area (b) Paint tracking frohiys to I133, MSF (2D-DE) (c) Point tracking from 5 to I13g, StatFlow(2D-DE)

Figure 9: Point tracking fronhy15 up to l135, MPI-SL sequence (Granados et al., 2012). We comparenub)i-stepflow
fusion (MSF) (Crivelli et al., 2012a) usingnulti-step optical flowfields from (Robert et al., 2012) @2DE); c) the proposed
statistical multi-step flowStatFlow method using R-DE multi-step optical floviields.

stepsinvolved are: -5, 8 (Hopé), 10, 15 (except for = -reduction. For this task, we perform a.combinato-
NP), 20 (Hope NP), 30 (MPI S1, NP). rial integration of consistendptical flowsfollowed
Given these results, it appears thaSF some- by an efficient statistical selection. This procedure
times distorts structures (bottom left zoom Fig.6 is applied independently between a reference frame
e, Fig.d,m), makes shadow textures appear (bot- and each frame of the sequence. It guarantees a
tom right zoom Fig.6-€) and does not estimate mo- low temporal correlation between the resulting cor-
tion with accuracy (top right zoom FigegFig.6,m). respondences respectively estimated for each of these
Visual results withStatFlow reveal a better long- pairs. We propose then to enforce temporal smooth-
term propagation (see also Figt§. Fig.7 compares ness through a new iterative motion refinement. It
StatFlow@D-DE) andMSF@D-DE) with LDOF acc considers several motion candidates including candi-
We observe thdtDOF accbadly performs motiones-  dates from neighboring frames and involves a new
timation for periodic structureddSFencounters also  energy formulation with temporal smoothness con-
matching issues (Fighj whereasStatFlowperforms straints. Experiments evaluate the effectiveness of
propagation without any visible artifacts. our approach compared to state-of-the-art methods
Finally, StatFlowand MSF are assessed through through quantitative assessment using dense ground-
point tracking. In Fig. 9, the bottom right part of truth data and qualitative assessment via texture prop-
the woman face is tracked frohys to 1135 (MPI S1). agation and tracking for a wide set of complex scenes.
The D+t visualization indicates that some trajecto-
ries drift to the background witMSF. This illustrates
the inherent issue dISF which propagates estima- REFERENCES
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