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Abstract: The aim of this work is to define a strategy for rectangular block partitioning that can be adapted to the 
number of available processing units in a parallel processing machine, regardless of the input data size. 
With this motivation, an algorithm for optimal vector block partitioning is introduced and tested in a typical 
parallel image application. The proposed algorithm provides a novel partition method that reduces data 
sharing between blocks and maintains block sizes as equal as possible for any input size. 

1 INTRODUCTION 

It is a well-known fact that a series of image 
processing operations usually involves a previous 
partition of the image in sections, commonly 
referred to as blocks, windows or neighbourhoods. 
This is the case of many low-level operations, such 
as linear filters, nonlinear processing filters like 
local median and rank-order filters and local 
histogram computing, to name a few (Bovik, 2005).  

In the last decade, this Block Processing (BP) 
paradigm has gained special significance after 
multicore architectures had taken the lead as parallel 
Processor Units (PUs), including embedded real-
time processors, FPGAs and GPUs (Bailey, 2011).  

Parallel Image Processing (PIP) is probably the 
only valid choice if a real-time response over high 
resolution images is required. Given a number of 
available PUs, a block partition for parallel BP 
should be addressed in order to adapt the data to the 
available processors. 

Nowadays, specialized technical software like 
MATLAB (Moler, 2007) and Mathematica 
(Mangano, 2010) utilizes parallel processing 
intensively. Both of them are used by many 
researchers in the field of Digital Image Processing 
(DIP).  

But BP is also used in other disciplines –and 
their associated software. This is the case of 
statistical applications on Geographical Information 
Systems (GIS), for which ArcGIS may be arguably 
claimed to be the usual commercial software choice 
(de Smith et al., 2013).  

The ability of partition a series of data associated 
with some topological 2D map enables local 
statistical analyses via the so-called raster 
operations.  

In GIS, a raster or grid is a spatial (geographic) 
data structure that divides a region into 
neighbourhoods (or cells) that can store one or more 
values for each of them, usually statistical data. A 
raster is often contrasted with vector data, which is 
used to represent points, lines and polygons. 

The analogy between a raster and a digital image 
is straightforward. In fact, most of the data collected 
in a raster is usually represented with images of 
some kind (de Smith et al., 2013). 

In addition, this kind of scenario is well-suited to 
be addressed by a set of PUs, which should be able 
to work in parallel. Thus, a direct relationship 
between topological partition and process 
parallelization may be established.  

The aim of this work is to devise a strategy for 
data block partitioning (BP) that can be optimally 
adapted to the number of available PUs, regardless 
of the input data size. An optimal partition should be 
able to provide minimum block size differences and 
minimum –if any– overlap between adjacent blocks. 

The paper is organized as follows. Section 2 
reviews basic background for raster operations and 
neighbourhood configurations for parallelized BP 
techniques. Section 3 describes a novel algorithm for 
partition an image into optimally similar area blocks 
in order to be used by different PUs. Experimental 
results are presented in Section 4. Finally, Section 5 
concludes the paper. 
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Figure 1: Some neighbourhood shapes. 

2 BACKGROUND 

2.1 Raster Operations 

Raster operations can be classified into three groups: 
 Local, where operations are performed in a 

cell by cell fashion; 
 Neighbourhood, for which operations are 

computed using a moving group of cells and 
 Zonal, where operations are performed using 

groups of similar cells (zones). 
In a local raster, an output cell ܻሺ݅, ݆ሻ is 

computed as a function ݂ of the corresponding input 
cell ܺሺ݅, ݆ሻ, i.e.  

ܻሺ݅, ݆ሻ ൌ ݂൫ܺሺ݅, ݆ሻ൯, (1)

where ݂ is called a mapping or point operation over 
input ܺ, which is independent of the cell position 
ሺ݅, ݆ሻ and thus can be implemented as a look-up table 
(LUT) (Bovik, 2005). In GIS, a local raster may be 
used for data reclassification (de Smith et al., 2013). 
In Digital Image Processing (DIP), a local raster 
may be employed for thresholding a graylevel input 
image. 

A neighbourhood raster utilizes for each input 
cell X(i,j) and its associated neighbourhood ܰሺ݅, ݆ሻ, 
the information of the cells belonging to the region 
ܰሺ݅, ݆ሻ	to determine the output cell value ܻሺ݅, ݆ሻ via 
a neighbourhood operation that –again– can be 
modelled as a mapping function ݃ for which, in this 
case, 

ܻሺ݅, ݆ሻ ൌ ݃൫ܰሺ݅, ݆ሻ൯. (2)

This neighbourhood ܰሺ݅, ݆ሻ is usually a region of 
X centred around the input cell ܺሺ݅, ݆ሻ, shaped as a 
rectangle, but that can also be defined with other 
shapes (see Fig. 1).  

In this sense, it can be said that a local raster is 
just a special case of a neighbourhood raster, for 
which the neighbourhood N is constant for every 
input cell ሺ݅, ݆ሻ, being a rectangle of size 1×1.  

A typical example of neighbourhood raster in DIP is 
linear spatial filtering and nonlinear local filtering. 
This approach is also utilized both in GIS and DIP 
applications for computing local statistics of the 
neighbours of a cell (or pixel). 

Finally, a zonal raster operation involves groups 
of cells –called zones– that present similar values. 
Each one of these group can be considered to be a 
connected group of cells or labels. Thus, a label is 
defined as the group of cells for which a spatial 
connectivity exists, i.e. any pixel inside the label can 
be accessed from every other pixel in the same label 
by following a spatial trajectory that does not fall 
outside the label boundary at any step.  

Typical label measurements are object perimeter 
and area (Bovik, 2005), but they can also include 
statistical information. In this context, a label can 
also be thought of a special kind of neighbourhood, 
which is topologically separated from the other 
labels belonging to the zone. 

2.2 Parallel Processing Techniques 

Virtually all image processing techniques are based 
on a sequence of image processing operations, i.e. 
they are designed as a sequential algorithm or a 
sequence of operations. This is a form of temporal 
parallelism that can be exploited in a so-called 
pipelined structure (Bailey, 2011).  

In the pipeline depicted in Fig. 2, a separate PU 
is used for each operation or task. The latency of an 
image processing may be defined as the time 
between when the first input is applied to the first 
task of the pipeline and the corresponding output of 
this data is available at the end of the pipeline. 

Another example of pipeline is that of a buffered 
video processor, in which each frame is processed 
by the same group of techniques. Thus, the image 
sequence may also be partitioned in time, by 
assigning successive frames to separate processors, 
leading to a hierarchical pipeline. 

In general, the smaller the neighbourhood needed 
to perform the operation, the lower its latency. Thus 
a local raster has the lowest latency, whereas an 
operation which needs every pixel in the image will 
have the highest latency (Downton and Crooke, 
1998).  

 

Figure 2: A pipeline for temporal parallelism exploitation. 
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Figure 3: Spatial parallelism exploitation by block 
partitioning (BP): row, column and rectangular BP. 

However, as the algorithm increases its 
complexity, the operation pipeline speedup becomes 
less important, mainly due to operation 
hierarchization and feedback. In this case, the major 
speedup may be obtained within a specific operation 
in the form of loops.  

The outermost loop within each operation 
usually iterates over the pixels within the image, 
because many operations (e.g. spatial filtering) 
perform the same function independently on many 
pixels.  

This is spatial parallelism, which may be 
exploited by partitioning the image and using a 
separate processor to perform the operation on each 
partition (Bailey, 2011). 

2.3 Block Partition Schemes 

An important consideration when partitioning an 
image is to minimize the expected communication 
between PUs, i.e. between the different considered 
partitions. 

Typical partitioning schemes split the image into 
blocks of rows, blocks of columns or rectangular 
blocks, as illustrated in Fig. 3. 

For low-level DIP operations such as spatial 
filtering, the performance improvement approaches 
the number of processors, as the communication 
may be reduced to zero if a non-overlapping 
partition scheme is utilized.  

However, in higher level processes this 
performance will be degraded as a result of 
communication overheads or contention when 
accessing shared resources. In high-level operations, 
these shared resources may just not be pixel values. 

Partitioning is therefore most beneficial when the 
operations only require data from within a local 
region, which is defined by the partition boundaries. 
For that reason, each processor must have some 
local memory to reduce any delays associated with 
contention for global memory (Bailey, 2011).  

If the operations performed within each region 
are identical, this leads to a SIMD (single 
instruction, multiple data) parallel processing 
architecture.  

On the other hand, a MIMD (multiple instructions, 
multiple data) architecture is better suited for higher 
level image operations, where latency may vary for 
each block of data. 

In these cases, better performances may be 
achieved by having more partitions than processors, 
utilizing a Pipeline Processor Farm (PPF) approach 
(Fleury and Downton, 2001). In a PPF, each 
partition is dynamically allocated to the next 
available PU, thus reducing idle process latencies 
related to block data dependencies.  

In the next section, a procedure for block 
partitioning will be devised to be optimally suited to 
a PPF approach. 

3 AN ADAPTIVE BLOCK 
PARTITIONING PROCEDURE 

3.1 Overlapping Neighbourhoods 

Rectangular block partitioning is by far the main 
shape choice in low-level image operations (Davies, 
2012). Two types of rectangular neighbourhoods are 
commonly considered: overlapping and non-
overlapping. 

In spatial linear filtering, a series of sums and 
products are needed for each pixel within the input 
image, with ܲ ൈ ܳ pixels, as a result of applying a 
small kernel of  ൈ  weight elements over the pixel ݍ
surrounding neighbours. In this case, each pixel and 
its neighbourhood can be processed by a single PU 
and no inter-process communication is needed.  

Except for the border pixels of the image, where 
additional data –usually zero values– is needed to 
complete the neighbourhood, each PU can read the 
corresponding pixel information directly from the 
image and return its own data as output. 

This same concept applies to focal statistics (de 
Smith et al., 2013), where a neighbourhood raster is 
applied. The algorithm visits each cell in the raster 
and calculates a specific statistic over the identified 
neighbourhood. As neighbourhoods can overlap, 
cells in one neighbourhood will also be included in 
any neighbouring cell’s neighbourhood.  

This situation may enable data reutilization in the 
raster (Huang et al., 1979), thus reducing shared 
memory accesses in a PPF environment. 

On the other hand, non-overlapping partitions 
may be used for parallelization speedup in 
hierarchical parallel schemes. This paradigm is best 
suited for distributed memory MIMD architectures, 
in which each PU handles its own local memory
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 (Fleury and Downton, 2001). 
In DIP, non-overlapping block processing is 

widely used in applications such as image scaling 
(e.g. image pyramids), compression (e.g. DCT 
computing) and recognition (e.g. ridge orientation 
assessment in fingerprint representation) (Ratha et 
al., 1996). 

In GIS applications, this approach is also known 
as block statistics. In block statistics, the algorithm 
performs a neighbourhood raster that calculates a 
statistic for input cells within a fixed set of non-
overlapping neighbourhoods.  

The statistic (e.g. dynamic range, average or 
sum) is calculated for all input cells contained within 
each neighbourhood. The resulting value for an 
individual neighbourhood or block is assigned to all 
of its cell locations. 

Since the neighbourhoods do not overlap, any 
particular cell will be included in the calculations for 
only one block. In other words, distributed parallel 
computation of each block is possible with no 
further cost.  

Somewhere between these two methods, a small 
overlap between adjacent neighbourhoods is also 
used in several DIP techniques, such as (Kuwahara 
et al., 1976). This approach is a trade-off between 
the fully overlapping and non-overlapping 
neighbourhood paradigms, which enables the user to 
control the speedup with the aid of an overlap factor.  

With a controlled neighbourhood overlap, a 
raster may estimate a particular statistic by 
performing a smaller amount of calculations, with 
the cost of a later interpolation stage (Davies, 2012). 

In addition, this approach shares the benefits and 
drawbacks of both overlapping and non-overlapping 
PPF design.  

3.2 Definitions 

3.2.1 Rectangular Neighbourhood 

For a particular input cell or pixel located at ሺ݅, ݆ሻ 
within a ܲ ൈ ܳ discrete digital input X, a rectangular 
neighbourhood ܰ௦ of size  ൈ  may be defined as ݍ
the set  

ܰ௦ሺ݅, ݆ሻ ൌ ሼܺሺ݇, ݈ሻሽ, (3)

for which 

maxሺ|݇ െ ݅|ሻ  ݈|and maxሺ ݎ െ ݆|ሻ  (4) ,ݏ

where ݎ and ݏ are positive integers that set the 
vertical and horizontal radius of the neighbourhood 
around the central position ሺ݅, ݆ሻ, respectively. Thus, 
a pixel neighbourhood ଵܰଶ yields a 3×5 rectangular 
block of input cells. 

 

Figure 4: Complete vector partitions (top to bottom): 
regular non-overlapping, regular fixed overlapping, 
irregular non-overlapping, irregular fixed overlapping, 
irregular loose overlapping and regular loose overlapping. 

3.2.2 Vector Partitions 

Let ̅ݔ be a single-dimensional discrete vector of 
length ܮ. A partition ܲ of ̅ݔ into  non-empty parts, 
ܲሺ̅ݔ,   ofݔ̅ subsets  ሻ, may be defined as a group of
,ݔi.e. ܲሺ̅ ,ݔ̅ ሻ ൌ ሼ̅ݔሽ for 	0 ൏ ݅   where each part ,
 , with the followingܮ of length ݔ̅  is a subset ofݔ̅
property:  

Given any two elements of ̅ݔ with vector 
positions ݅௨ and ݅௩, where 0 ൏ ݅௨ ൏ ݅௩    andܮ
their corresponding positions in ̅ݔ, ݆௨ and ௩݆, with 
0 ൏ ݆௨ ൏ ௩݆    :the following condition is hold ,ܮ

݆௨ െ ௩݆ ൌ ݅௨ െ ݅௩. (5)

In other words, each part ̅ݔ keeps the original 
relative positions of their elements in ̅ݔ and no 
element of ̅ݔ is missed between the first and the last 
element in any part ̅ݔ. 

A partition ܲሺ̅ݔ,  ሻ is said to be complete if and
only if (iff) the set union of all the parts of ̅ݔ yields 
⋃ i.e. iff ,ݔ̅ ݔ̅ ൌ  Otherwise, it is said to be .ݔ̅
incomplete. From this point on, our discussion will 
only deal with complete partitions. 

Table 1: Vector Partition Types. 

Type Condition 

Regular ܮ ൌ ,ܮ ∀݅, ݆ 
Pseudo-regular maxหܮ െ หܮ ൌ 1, ∀݅, ݆ 

Fixed 0 ൏ ݒ ൌ ,ݒ ∀݅, ݆ 
Tight maxหݒ െ หݒ ൌ 1, ∀݅, ݆ 

In a complete partition, every element of ̅ݔ 
belongs to at least one of its parts. In Fig. 4 a series 
of six different complete vector partitions is 
illustrated. 

A complete partition ܲሺ̅ݔ,  ሻ is said to be regular
iff each part ̅ݔ has the same length, i.e. iff ܮ ൌ
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,ܮ ∀݅, ݆. Thus, in this case ܮ ൌ    . Otherwise, theܮ
partition is called irregular. In Fig. 4, the first, 
second and sixth partitions are regular. 

A special case of irregular partition is also of 
interest. A pseudo-regular partition ܲሺ̅ݔ,  ሻ is an
irregular complete partition whose different part 
lengths obey the following expression: 

maxหܮ െ หܮ ൌ 1, ∀݅, ݆. (6)

A complete partition ܲሺ̅ݔ, -ሻ is said to be non
overlapping iff the set intersection of any two parts 
of ̅ݔ is the empty set, i.e. iff ̅ݔ ∩ ݔ̅ ൌ ∅, ∀݅ ് ݆. 
Otherwise, it is called overlapping. In Fig. 4, 
overlapping partitions are depicted with their 
overlapping parts shaded. 

An overlapping partition ܲሺ̅ݔ,  ,ሻ may, of course
be regular iff ܮ ൌ ,ܮ ∀݅, ݆. However, if the overlap 
sections shared between two adjacent parts ̅ݔ and 
0	 ାଵ, forݔ̅ ൏ ݅ ൏ ݒ have constant size ,  0, the 
overlapping partition is said to be fixed, i.e. if 
0 ൏ ݒ ൌ ,ݒ ∀݅, ݆. Otherwise, it is said to be loose. 
Both second and fourth partitions illustrated in Fig. 4 
are fixed.  

An overlapping fixed partition may be 
represented with the special notation ܲሺ̅ݔ, ,  ,ሻݒ
where its main parameters,  ,ܮ and ݒ are positive 
integers bound to the equation 

ܮ ൌ ܮ െ ሺݒ െ 1ሻ, (7)

where ܮ ൌ ∑ ܮ

ୀଵ  is called the limit length of the 

partition, i.e. the accumulated length of its  parts. In 
addition, if ܮ   and ܮ  1, then the positive 
condition for ݒ is always met,  

ݒ ൌ
ି

ିଵ
 0. (8)

Finally, a special kind of overlapping partition is 
also considered. A tight overlapping partition 
ܲሺ̅ݔ,  ሻ is a loose overlapping partition whose
different overlap section sizes ݒ follow the relation 

maxหݒ െ หݒ ൌ 1, ∀݅, ݆. (9)

For convenience, a summary of the previous 
definitions is collected in Table 1. 

3.3 A Vector Partition Algorithm for 
Parallel Block Processing 

Given an input vector ̅ݔ and a fixed part size ݈, an 
optimal partition ܲሺ̅ݔ,  ሻ is sought. The optimality
of the partition is based on the discussion of Sections 
2.2 and 2.3, where a PPF is supposed to be used to 
perform some operation over the input vector. Thus, 
our main interests are: 1) to keep partition parts as 

equal in size as possible and 2) to reduce 
overlapping to a minimum. 

Moreover, the optimal partition selection 
algorithm will be performed as follows: 
 First, if a regular non-overlapping partition 

exists, it will be chosen as optimal; 
 Otherwise, if a non-overlapping pseudo-

regular partition is possible, it will be chosen 
in the second place, 

 Third, if none of the above possibilities are 
available, an overlapping fixed partition will 
be selected, with the minimum amount of 
overlap.  

From the previous section, we know that if 
 ൌ  is a positive integer ݈/ܮ  0, then ܲሺ̅ݔ,  ሻ will
be a regular non-overlapping partition.  

However, for this preferred case to occur, ݈ must 
be an integer divisor of ܮ and ܮ must not be prime. 
Otherwise, a pseudo-regular partition should be 
chosen.  

The following algorithm is proposed for 
obtaining a non-overlapping pseudo-regular partition 
ܲሺ̅ݔ,  :݈ ,elements with fixed part length ܮ ሻ of

Let  ݉ ൌ modሺܮ, ݈ሻ with ݉  0. 
If ݉ ൏ ሺ݈ െ 1ሻ/2, 
 Let  ൌ ݊ ,ۂ݈/ܮہ ൌ ݉ and ݈ᇱ ൌ ݈  1. 
Else 
 Let  ൌ ݊ ,ۀ݈/ܮڿ ൌ ݈ െ ݉ and ݈ᇱ ൌ ݈ െ 1. 
End 

In the previous algorithm, the number of parts  
of the partition is defined such that the number of 
pseudo-parts ݊ of length ݈ᇱ is minimal and 
condition (6) is maintained. Thus, a pseudo-regular 
partition ܲሺ̅ݔ,   .ሻ is obtained

However, the specific distribution of the ݊ 
pseudo-parts still remains undefined. Between all the 
possibilities, a symmetric distribution with maximal 
distance between pseudo-parts is proposed. This 
kind of distribution should enable the best balance of 
any possible side effect as a result of the pseudo-
regular kind of the partition. 

Let ܤ be a ݊-elements vector of pseudo-part 
positions ܾ ൌ ሺ݇ሻܤ ∈ ሾ0, ,ሿ ∀݇ in ܲሺ̅ݔ,  ሻ. A
symmetric distribution of the pseudo-parts in a 
pseudo-regular non-overlapping partition can be 
obtained with the following algorithm: 

If ݊ is odd, 
 Let ܤሺ݊ہ/2ۂሻ ൌ  .ۂ2/ہ
End 
If ݊  1, 
 Let ݏ ൌ ሺ݊/ െ 1ሻ with ݏ  1. 
 For ݇ ൌ 0	to	݊ہ/2ۂ 

VISAPP�2014�-�International�Conference�on�Computer�Vision�Theory�and�Applications

142



  Let  ܤሺ݇ሻ ൌ ݇ہ   ,ۂݏ
ሺ݊ܤ    െ ݇ሻ ൌ   1 െ  .ሺ݇ሻܤ
 End 
End 

Thus, if the number of pseudo-parts is odd, one 
of them should be the central part of the partition. In 
addition, each pseudo-part would be separated by ݏ 
parts, including the first and last parts of ܲሺ̅ݔ,   .ሻ

The previous algorithm would only yield pseudo-
regular non-overlapping partitions iff ݏ  1. 
Otherwise, the obtained partition cannot ensure 
optimal criteria (e.g. block pseudo-regularity). 

In these cases, a third kind of partition should be 
chosen. This new partition scheme should have, at 
least, pseudo-regular overlapping parts with fixed 
overlap ݒ.  

With the aid of (7), it is possible to apply the 
previous algorithm to a new non-overlapping 
partition with length equivalent to the limit length ܮ 
of an overlapping fixed partition ܲሺ̅ݔ, ,  ሻ, forݒ
increasing ݒ. Once the equivalent pseudo-regular 
partition is obtained, a fixed overlap is performed in 
each of its parts.  

3.4 N-D Block Partitions 

The optimal vector partition algorithm discussed in 
Section 3.3 may be separately applied to each 
dimension of a n-D discrete input data.  

In this case, the obtained n-D partition is called a 
n-D block partition (BP). 

Table 2: 16-element Vector complete Partitions. 

 ܮ ݒ ݊  ݈
1 16 0 0 16 

2 8 0 0 16 

3 6 2 0 16 

4 4 0 0 16 

5 3 1 0 16 

6 3 2 0 16 

7 2 2 0 16 

8 2 0 0 16 

9 2 2 0 16 

10 2 0 4 20 

11 2 0 6 22 

12 2 0 8 24 

13 2 0 10 26 

14 2 0 12 28 

15 2 0 14 30 

16 1 0 0 16 

4 PARTITIONING EXAMPLES 

In the first example, the optimal partition algorithm 
of Section 3.3 is applied to a vector with ܮ ൌ 16 
elements. The algorithm is executed for part lengths 
with ݈ ൌ 1, 2, … ,  The resulting partitions are .ܮ
presented in Table 2. Not until a relatively large part 
size, ݈ ൌ 10, the algorithm delivers an overlapping 
partition as optimal. From this part length on, two 
overlapping parts are set as the optimal partition for 
the test vector with minimum overlap v. 

In the second test, two optimal partitions for a 
block decimation colour scale pyramid are computed 
for Lena image, of 512×512 px. The chosen 
decimation factors for this example are 1/15 and 
1/25, thus block partitions for ݈ = 15 and ݈ = 25 are 
computed using the algorithm of Section 3.3. 

Clearly, neither 15 nor 25 are integer divisors of 
512. Thus, the obtained optimal partitions are both 
pseudo-regular non-overlapping, as depicted in Fig. 
5. These partitions are optimal as they yield 
minimum overlap and minimum amount of blocks 
with different lengths. In this case, ݊ = 2 for ݈ = 15 
and ݊ = 13 for ݈ = 25.  

In Fig. 6, the resulting output decimated block 
images are displayed. Both local mean and median 
are used for computing each pixel in the decimated 
image. For reference purposes, an additional 
bicubic-decimated image is also shown in Fig. 6. 
This latter filter is not based on the proposed optimal 
blocks. 

 
 

  

 
a. b. c. 

Figure 6: 1/25 and 1/15 block decimation for Lena (2x 
scale): a) block mean, b) bicubic interpolation and c) block 
median. 

5 CONCLUSIONS 

In this paper, a vector partition algorithm with 
applications in parallel processing environments, 
such as PPF, has been introduced. 

From a theoretical discussion on the description 
and classification of vector partitions, which can  be 
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a.  

b.  

Figure 5: Optimal block partitions for Lena: a) ݈ = 25 and 
b) ݈ = 15. 

extended to the n-dimensional case, the application 
of the proposed algorithm has been tested on a 
typical image decimation stage. 

The algorithm produces a block partition which 
is optimized to be processed in PPF frameworks. 
The proposed optimization procedure focuses in 
both minimizing possible size differences in process 
loads, and maintaining inter-block data sharing at a 
minimum, by selecting the minimum amount of 
overlap between adjacent blocks. 

In combination with time parallelization, 
possible applications of the proposed algorithm in 
real-time processing platforms may accelerate some 
common high load pre-processing tasks in computer 

vision, such as statistical analysis from local 
histograms.  

In a parallel processing machine, the proposed 
algorithm should enable a BP scheme which may be 
real-time adapted to the instantaneous availability of 
PUs in the environment.  
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