
A Case Study of Combining Compositional and Object-oriented
Software Development

Enn Tyugu, Mait Harf and Pavel Grigorenko
Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia

Keywords: Domain-specific Modeling, Structural Synthesis of Programs, Model Driven Software Development, Compo-
sitional Software Design.

Abstract: We analyze an approach to software development where object-oriented and compositional software specifi-
cations are written in separate languages and are only loosely connected. It supports compositional design of
software in a domain-specific language and automatic model-driven construction of code from classes written
in Java. We justify our approach by giving examples of development of large simulation programs and services
on large models. We present also an example of using our method in general purpose software development –
this is bootstrapping the essential part of a software tool CoCoViLa, i.e. synthesizing CoCoViLa in CoCoViLa
itself.

1 INTRODUCTION

Model-driven engineering (MDE) (Kent, 2002; Soft-
ware, 2003), a.k.a. model-driven software engineer-
ing (MDSE) is gaining popularity in software devel-
opment practice. This raises the level of abstraction
of software specifications and simplifies the devel-
opment of domain-oriented languages (DSL). MDSE
tools use compositional approach to software specifi-
cation. At first glance, it seems natural to use classes
as components in MDE. However, in the object-
oriented paradigm, classes are still programming con-
cepts and are too closely related to implementation.
They are rather inconvenient to use immediately as
components. To overcome this inconvenience, one
can define components differently from classes. An
approach can be to introduce a specification language
for specifying models and their components, sepa-
rating the implementation aspects as much as possi-
ble from the domain specific software specifications.
This has been done in several visual programming
tools like MetaEdit+ (Tolvanen and Kelly, 2009) and
CoCoViLa (Grigorenko et al., 2005).

The main result presented here are three case stud-
ies justifying the method where object-oriented and
compositional specifications are combined in soft-
ware development with minimal restrictions on both.
Object-oriented programming is done in Java, but
it could have been C++ or any other OO language.
Compositional specification is written in a DSL de-

veloped with a tool briefly introduced first in (Grig-
orenko et al., 2005) and developed further during the
following years. It is essential that OO and com-
positional specifications have separate name spaces,
and can be developed almost independently. The pre-
sented approach is justified by three applications re-
viewed in the present paper. The first two use DSLs in
simulation and service composition. Both solve large
problems that validate the scalability of the approach.
The third is an example of model-based development
of a rather large software tool. More precisely, it is
bootstrapping CoCoViLa in CoCoViLa itself, whose
source code is available from the web1.

This presentation is organized as follows. We dis-
cuss background and the related work in Section 2.
Section 3 introduces basic concepts and the compo-
sitional specification language. The following three
sections are case studies demonstrating scalability
and applicability of the method. The presentation
ends with a brief conclusion part.

2 BACKGROUND AND RELATED
WORK

Model-driven approach to computing has a long his-
tory in specific domains like integrated circuit design
and many simulation applications. The tools required

1http://www.cs.ioc.ee/cocovila

201Tyugu E., Harf M. and Grigorenko P..
A Case Study of Combining Compositional and Object-oriented Software Development.
DOI: 10.5220/0004698502010208
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 201-208
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



for these applications are complicated and their devel-
opment has been expensive. For example, todays net-
work simulation tools like OPNET, OMNeT++ and
ns-3 are large software systems and some of them cost
hundreds of thousands of dollars. Experience shows
that developing a new tool of this kind takes years.

A completely new trend was initiated in the
nineties with introduction of UML – a universal
modeling language that has become a standard for
software specification, and has influenced also re-
search in software engineering. One can say that
UML has initiated model-driven software engineer-
ing (MDSE) (Brambilla et al., 2012). Considerable
attempts have been made recently using UML-based
metamodels and model transformations for automat-
ing software development (Santos et al., 2010). Gen-
erally speaking, metamodels and model transforma-
tion rules should be a background knowledge that
support automation of program construction in vari-
ous application domains.

Domain specific languages (DSL) have initially
been developed independently of model-based ap-
proach to computing. Their history begins early in
the middle of the last century with languages for nu-
meric control of machine tools. Only recently, the
research in DSLs and visual languages has adopted
also model-based approach. The work most closely
related to our research is performed by the Meta-
Case group which has developed MetaEdit+ (Tolva-
nen and Kelly, 2009). This work is based on domain-
specific modeling (DSM). The technology prescribes
analysis of a domain and development of a DSL
first. This language enables one to specify models
that are high-level specifications of systems and prob-
lems to be solved. The principal step is the develop-
ment of a code generator specific to the domain. The
book (Kelly and Tolvanen, 2008) presents lots of ex-
amples of both – DSL development and code gener-
ator development. Finally, a library of reusable code
can be added and, as a result, a domain framework is
created that speeds up the software development dra-
matically (up to 500% and 1000% according to (Kelly
and Tolvanen, 2008)).

Our software technology is similar to DSM of the
MetaCase group. However, we use deductive pro-
gram synthesis for code generation. This makes the
implementation of a new DSL much faster, because
no generator development is needed.

The research in deductive program synthesis
has a long history, beginning with the works
of C. Green (Green, 1980), Z. Manna, R.
Waldinger (Manna and Waldinger, 1993) and R. Con-
stable (Constable, 1971). Our work is based on a tool
that uses a special kind of the deductive synthesis –

structural synthesis of programs (SSP) (Matskin and
Tyugu, 2001). SSP is oriented at the efficiency. Its
weak expressiveness must be compensated by a spec-
ification language that hides a large number of axioms
needed in practical applications. As the logic of pro-
gram synthesis is out of scope of our presentation, we
will not discuss it here more.

Eclipse Modeling Project2 provides tools for
the model-based development. It includes Eclipse
Modeling Framework (EMF), a modeling and code
generation framework for specifying and managing
(Ecore3) metamodels (written as XML files) and
building applications from such models, Graphical
Editing Framework, a facility for building interactive
user interfaces, and Graphical Modeling Framework,
bridging EMF and GEF by providing runtime infras-
tructures and generative components for building rich
graphical editors. EMP does not provide automatic
code generation, however there are complementing
frameworks that provide such facilities via templates.

Microsoft has created a Visualization and Model-
ing SDK4 (DSL Tools) for defining domain-specific
languages, building visual designer environments and
implementing code generators in Visual Studio. It
uses UML-like notation for diagrams and stores con-
cept definitions in XML format. Code generators are
defined using template languages. The framework
does not support n-ary relationships and its graphical
capabilities are quite poor, only supporting variations
of rectangles as shapes of objects.

3 COMBINING
OBJECT-ORIENTED AND
COMPOSITIONAL
ARCHITECTURES

There are some principal difficulties in combining
the two paradigms. Object-oriented approach widely
uses encapsulation and hiding, and relies on param-
eter passing. Structural composition uses ports for
binding components, it can provide considerable flex-
ibility, and it is more fitted to represent ontology of
a problem domain. We present CoCoViLa framework
as an example of combining object-oriented and com-
positional architectures. The main design principles
of CoCoViLa are the following:

� Two loosely connected specifications of soft-
ware product are used – compositional (CA) and

2http://www.eclipse.org/modeling
3A variant of MOF http://www.omg.org/mof/
4http://code.msdn.microsoft.com/vsvmsdk

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

202



object-oriented (OO); the first specifies the logic
and structure of software and the second specifies
implementation of software components.

� OO and CA have separate namespaces.

� OO and CA have common type system.

� Inheritance in CA is consistent with inheritance in
OO.

� Each software component has two parts: a Java
class (this is an OO specification) and a composi-
tional specification called metainterface. A com-
ponent is called metaclass.

� Implementation of logical formulas that define
functional dependencies between specification
variables is described by methods of a corre-
sponding Java class.

A metainterface has precise logical semantics
given as a set of formulas – axioms with realizations
given by methods specified in the OO part, and equa-
tions (as well as some other language constructs) writ-
ten in the metainterface. CoCoViLa uses a construc-
tive logic – intuitionistic propositional calculus for
synthesizing a program from a model presented as a
logical theory, therefore all axioms must have realiza-
tions. Components can be defined hierarchically, i.e.
a metainterface of a component may contain compo-
nents whose type is given by metaclasses, i.e. by other
components. A metaclass may consist of a metain-
terface only, e.g. in a case when computations are
specified by equations. Metainterface is written in a
specification language. It is included as a comment
in a Java class whose methods are implementations of
the axioms of the metainterface.

Figure 1 shows three dimensions of software com-
position from metaclasses: compositional specifica-
tion, object-oriented implementation, and common
platform supporting both paradigms. On the com-
positional specification level (shown in the horizon-
tal plane), instances of metaclasses (i.e. classes with
metainterfaces) are bound by equalities between their
components. One metainterface (an oval shape) can
wrap one class (a rectangular shape) or several meta-
class instances that can be bound with each other.
Metainterfaces are wrappers that provide flexibility to
classes and contain information about their usability.
We see four metaclasses in Figure 1. Three of them
have implementations as Java classes. The fourth in-
cludes their instances as components and has no own
implementation. This supports the hierarchical de-
scription. In another dimension, conventional object-
oriented inheritance and aggregation are supported as
shown by arrows between the classes in Figure 1. A
new class for performing computations must be syn-

Figure 1: Classes, metaclasses and metainterfaces.

thesized from its specification given as a metainter-
face and a goal.

We have used several slightly different versions of
a language for specifying metainterfaces in different
versions of the system. A composition language has
to include at least the following constructs.

1. Specifications of interface variables
type id, [id, ..]

2. Bindings
var1 = var2

3. Axioms
precondition -> postcondition{impl}

Types in CoCoViLa can be primitive Java types
(int, double, etc), Java classes or metaclasses.
Bindings are used for structural composition, to spec-
ify the equality of interface variables var1 and var2
(these can be components of other interface variables
declared in the specification).

Axioms are written in a logical language, the
choice of which depends on the availability of a
prover to be used in the synthesizer. In the existing
version of CoCoViLa we use the logic of intuitionistic
propositional calculus as described in (Matskin and
Tyugu, 2001). Names of interface variables are used
as propositional variables. Derivability of a propo-
sitional variable means computability of the respec-
tive interface variable. The preconditions of axioms
can be conjunctions of propositional variables and im-
plications of conjunctions of propositional variables.
The postconditions are conjunctions of propositional
variables. An implication in a precondition denotes a
new goal – a new computational problem whose al-
gorithm has to be synthesized before the method with
this precondition can be applied.

Program synthesis plays an essential role in ap-
plying this logic. However, we only refer to the syn-
thesis method SSP and do not explain it in any detail
here. This is because the method, called also proposi-

A�Case�Study�of�Combining�Compositional�and�Object-oriented�Software�Development

203



tional logic programing, has been described in a num-
ber of papers already long ago (Matskin and Tyugu,
2001; Mints and Tyugu, 1990), and has been success-
fully used in software development, in particular, in
PRIZ (Mints and Tyugu, 1990) and other similar sys-
tems.

The specification language includes also equa-
tions and more means for binding components, but
these features can be modeled in the core of the lan-
guage that is presented here. The following example
is a metaclass of a complex number, where possible
computations are described by equations and no Java
methods are needed except the sin function imported
from java.util.Math and used in an equation.

import java.util.Math;
class Complex f
/*@ specification Complex f
double re, im, arg, mod;
modˆ2 = reˆ2 + imˆ2;
mod * sin(arg) = im;

g@*/
g

4 MODEL-BASED
DEVELOPMENT OF
SIMULATION LANGUAGES

CoCoViLa includes a graphical interface that facil-
itates developing and using visual domain-oriented
languages. This is especially suited for solving of
simulation problems.

Here we present an example of modeling and
simulation of complex fluid power systems (Grosss-
chmidt and Harf, 2009). At the current state, the
language includes about 100 problem-oriented con-
cepts, each represented by a component. These con-
cepts are either simple elements as hydraulic resis-
tors, tubes, connecting hydraulic elements, or hy-
draulic subsystems like regulators, servo-drive with
feedback, electro-hydraulic servo-valve. There are
three levels of hierarchy of hydraulic components and
subsystems.

Figure 2 shows a part of a model for simulation of
dynamic behavior of a hydraulic servo-system. Each
component has a menu button in the scrollable menu
bar. The model includes 48 objects (only 16 objects
are visible in the figure). However, the objects of
this model are themselves specified by models, hence
the total number of interface variables involved in the
program synthesis is several thousands. The model is,
in essence, a system of ordinary differential equations
of order 28. Automatically synthesized Java code for
solving this problem contains 8920 lines. The simula-

Figure 2: Part of a model of dynamic behavior of a hy-
draulic servo-system.

Figure 3: Simulation results of step disturbance of load
force.

tion gives behavior of the system under different dis-
turbances. Results of some simulations are presented
in Figure 3. The synthesis takes about one second and
the simulation time on a PC for this example with a
million iterations is three minutes. The graphs show
movement of an actuator and a flapper under a step
disturbance of the load force. One can see that this is
a stiff dynamic system, hence a large number of simu-
lation steps is needed for detecting oscillations of both
low and high frequencies.

5 COMPOSITION OF SERVICES
ON LARGE SERVICE MODELS

As has been shown in (Matskin et al., 2007), the logic
of CoCoViLa is well suited for describing web ser-

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

204



vices and workflows. This inspired us to make exper-
iments with synthesis of public services for Estonian
authorities providing services over Internet. The first
attempt was made by collecting all available services
into a single metaclass in CoCoViLa that was called a
service model (Maigre et al., 2009). This resulted in
a large model containing more than 600 atomic ser-
vices developed by different ministries. In order to
achieve compatibility of services, a large number of
data transformers were needed, e.g. transformation of
date or address from one format into another. This
model was used for synthesis of compound services
including data from different authorities. We discov-
ered that it was almost impossible to keep this single
model up-to-date, because of the permanent changes
done by different authorities on the large number of
services. Currently the Estonian e-government in-
formation system integrates more than 2000 atomic
services from about 100 organizations (Maigre and
Tyugu, 2011).

A solution to the complexity problem was intro-
ducing hierarchy in the service model. Services of
each ministry were based on its own database and
were kept up-to-date and compatible by the ministry
itself. Services of a ministry were collected into
a metaclass that became a component of a general
model (Grigorenko and Tyugu, 2012). Figure 4 shows
a model that includes components for Vehicles Reg-
istry, Business Registry, Population Registry, Migra-
tion Registry and Statutory Pension Insurance. Only
selected data were made public for each component,
and the general service model became comprehen-
sive. Figure 4 includes in the left upper corner a
BPEL component. This is a superclass needed for
control of the synthesis of a service in BPEL for-
mat. (It was possible also to create WSDL format
by using a component WSDL as the superclass.) In
CoCoViLa, schemes are also metaclasses. For every
scheme it is possible to define a superclass that is a
metaclass which will be able to manipulate scheme
objects and pass the data between objects using spe-
cial constructs. We present here in an abbreviated way
an example of synthesis of a service taken from (Grig-
orenko and Tyugu, 2012). Figure 4 is just a specifi-
cation of this problem. The goal is to find a notary’s
home address and number of his cars not older that 10
years from a given document number that was related
to the notary. This goal is formalized as

DocumentNumber.data ->
PopulationReg.address,
Count.size

The synthesized algorithm is:
documentNumber->
notaryNationalIDCode ftoimiku_dokumentg;

Figure 4: Hierarchical service model of the Estonian e-
government.

(BusinessReg)
nationalIDCode->
firstName, lastName fRR405IsikNimig;

(PopulationReg)
nationalIDCode, firstName, lastName ->
address fRR57g; (PopulationReg)

nationalIDCode->
listOfVehicles fparing22g; (VehicleReg)

listOfVehicles->
listOfSelectedVehicles fselectg; (Main)

listOfSelectedVehicles->
size fcountg; (Main)

The experiments showed that model driven ap-
proach could be used in synthesis of public services
by experts responsible for creation of new services.
Practical application of the method would require
the application of some essential organizational mea-
sures.

6 BOOTSTRAPPING CoCoViLa

It is natural to use MDE in development and applica-
tion of domain-specific languages, and there are nu-
merous tools, especially simulation tools, that use this
approach (Tolvanen and Kelly, 2009). Examples pre-
sented above demonstrate that CoCoViLa is not an ex-
ception in this sense. However, our goal is to expand
the application domain of CoCoViLa for general-
purpose software development. This requires a differ-
ent software technology. In particular, when software
components are developed for one project, one can-
not expect that these components will be reused many
times, because they may be needed only in this ongo-
ing project, although the reuse is recommendable in
the future projects. The effort for developing compo-
nents should be minimal. Besides that, no restrictions
can be accepted on using a programming language in
implementation of components, because the technol-
ogy must be generally applicable. We are in process

A�Case�Study�of�Combining�Compositional�and�Object-oriented�Software�Development

205



Figure 5: Model of CoCoViLa.

of fine-tuning and documenting the respective tech-
nology. As a test case for the technology we have
chosen the development of a successor of CoCoViLa
itself that we will call CCV.

When beginning this project, we had already
source code of CoCoViLa, that consisted of 240 Java
classes, totally about 30K lines of code. These classes
had been developed in Java without any restrictions
on programming. Our intention was to use these
classes as much as possible for the new version of Co-
CoViLa.

We had no intention of changing the functional-
ity of the system. So we had an essential part of
the requirements specification of CCV in the form of
documentation of the existing version of CoCoViLa.
The first design step of the project was developing a
model of CCV. This step was easy to perform, be-
cause we had already a conceptual description of the
existing system which could be used for CCV as well.
We decided to start with a high-level model of CCV,
including only a small number of components with
well-defined functionality. Information flow between
the components was also made precise. This pro-
cess showed some design faults in the existing system
(hidden data paths, etc.). The high level components
of both CoCoViLa and CCV were Editor, Parser,
Planner, Generator and AlgorithmVisualizer.

The design step gave a model that was drawn in
the window of the existing CoCoViLa scheme editor
as shown in Figure 5. This scheme shows compo-
nents, types of their inputs and outputs, and connec-
tions between the components. Developing graphics
of components, and writing their metainterfaces was
an easy task using the existing CoCoViLa class editor.

Editor is a large component responsible for in-
teraction with a user, visual interface and transforma-
tion of graphical representation of the software model
into a textual specification. It will be reasonable to

Figure 6: Metainterface of Parser.

develop a detailed model of this component in the fu-
ture. The specification has a well defined type with
syntax briefly introduced in Section 2, but for the im-
plementation it is just a Java type String. Our tech-
nology prescribes showing both types in such a case,
as can be seen from Figure 5.

Parser is a component that transforms the specifi-
cation from a textual specification into an internal data
structure specified by a Java class Problem. This data
structure is mainly a large graph that is a representa-
tion of metainterfaces of all unfolded components. It
includes also a goal – names of the data items from the
specification that must be computed by the program.
The Problem class has been designed for the needs
of Planner. If planning algorithm changes, then this
data structure may have to be changed as well.

Planner is the component that synthesizes the al-
gorithm for computing the goal. It uses only Problem
instance as the input. An algorithm of the planner
has been developed gradually through the years, and
its present version is described in (Grigorenko and
Tyugu, 2012). Type of the output of Planner is de-
scribed by Java class EvaluationAlgorithm. This
output represents only a structure of the synthesized
algorithm.

Generator transforms the
EvaluationAlgorithm into Java code. It uses
the instance of Problem to obtain and add input
arguments into the generated program.

AlgorithmVisualizer is included in the model
of CCV for supporting the debugging process, and it
is not needed for the code development itself.

The next step of the design was to write metain-
terfaces of components. It was reasonable to do this
already in Java, introducing empty methods with cor-
rect signatures in the metaclasses, if needed. Figure 6
shows a metainerface for Parser, and also one sim-
ple method getMainClassName for extracting a name
of metaclass from a specification. The metainterface
shows that problem can be constructed in three steps
specified by the following axioms:

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

206



spec -> mainClassNamefgetClassNameg;
spec, mainClassName, packagePath ->
classListfmakeClassListg;

classList,mainClassName->problemfmakeProblemg;

When designing metainterfaces, we had to decide
how to use the existing code. We decided to fol-
low the design of CoCoViLa as much as possible. In
the case of Parser, this meant the usage of an in-
termediate data structure of type ClassList. This
decision, in its turn, permitted to use the methods
makeClassList and makeProblem in the implemen-
tation of the Parser metaclass without any changes.

As we can see from the example of Parser,
the design of metainterfaces required some analy-
sis of the CoCoViLa source. It included a private
class Synthesizer that controlled the whole program
construction process, and used other classes where
needed. It was obvious that the existing classes could
not serve immediately as implementations of compo-
nents of the new model. An interesting question was,
how much changes were needed. It came out that
only minor changes of code were needed for imple-
mentation of methods after careful design of metain-
terfaces. This work was performed in two days by a
programmer who had an acquaintance with the Co-
CoVila code.

7 CONCLUSIONS

We have shown here on three examples how a tool
supporting the usage of Java classes supplied with
logical specifications can be used in compositional
programming. The first example concerns a practi-
cally important case of development and usage of a
domain specific visual language. It demonstrates also
the scalability of the method – a hierarchical specifi-
cation that after unfolding has thousands of interface
variables gives 8920 lines of synthesized code in one
second. The second example is about automatic com-
position of services. Atomic services that are com-
ponents have to be collected in large service models
first, and the models are used then for specifying the
services to be synthesized. From our point of view,
the most important is the third example. This demon-
strates the feasibility of using the tool in a software
development project where domain specific language
has only a secondary role. The main domain specific
asset in this case is a system model that can be used as
a specification for composing the software. This en-
ables us to separate compositional specification from
implementation, and is useful for organizing a soft-
ware project.

ACKNOWLEDGEMENTS

This research has been partially supported by the Eu-
ropean Regional Development Fund (ERDF) through
Estonian Center of Excellence in Computer Sci-
ence (EXCS), target-financed research theme No.
0140007s12 of the Estonian Ministry of Education
and Research, and the project No. 3.2.1201.13-0026
Model-based Java software development technology.

REFERENCES

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
driven software engineering in practice. Synthesis
Lectures on Software Engineering, 1(1):1–182.

Constable, R. L. (1971). Constructive mathematics and au-
tomatic program writers. In Proceedings of the IFIP
Congress, pages 229–233. North-Holland.

Green, C. (1980). The application of theorem proving to
question-answering systems. Outstanding disserta-
tions in the computer sciences. Garland Pub.

Grigorenko, P., Saabas, A., and Tyugu, E. (2005). Visual
tool for generative programming. In ACM SIGSOFT
Software Engineering Notes, volume 30, pages 249–
252. ACM.

Grigorenko, P. and Tyugu, E. (2012). Higher-order attribute
semantics of flat declarative languages. Computing
and Informatics, 29(2):251–280.

Grossschmidt, G. and Harf, M. (2009). Coco-sim–object-
oriented multi-pole modelling and simulation environ-
ment for fluid power systems. part 2: Modelling and
simulation of hydraulic-mechanical load-sensing sys-
tem. International Journal of Fluid Power, 10(3):71–
85.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-specific mod-
eling: enabling full code generation. Wiley. com.

Kent, S. (2002). Model driven engineering. In Integrated
formal methods, pages 286–298. Springer.

Maigre, R., Küngas, P., Matskin, M., and Tyugu, E. (2009).
Dynamic service synthesis on a large service models
of a federated governmental information system. In-
ternational Journal On Advances in Intelligent Sys-
tems, 2(1):181–191.

Maigre, R. and Tyugu, E. (2011). Composition of services
on hierarchical service models. Information Mod-
elling and Knowledge Bases XXIII, Frontiers in Ar-
tificial Intelligence, 237:110–129.

Manna, Z. and Waldinger, R. (1993). The deductive foun-
dations of computer programming: a one-volume ver-
sion of the logical basis for computer programming.
Addison-Wesley Longman Publishing Co., Inc.

Matskin, M., Maigre, R., and Tyugu, E. (2007). Com-
positional logical semantics for business process lan-
guages. In Internet and Web Applications and Ser-
vices, 2007. ICIW’07. Second International Confer-
ence on, pages 38–38. IEEE.

A�Case�Study�of�Combining�Compositional�and�Object-oriented�Software�Development

207



Matskin, M. and Tyugu, E. (2001). Strategies of structural
synthesis of programs and its extensions. Computers
and Artificial Intelligence, 20(1).

Mints, G. and Tyugu, E. (1990). Propositional logic pro-
gramming and the priz system. The Journal of Logic
Programming, 9(23):179 – 193.

Santos, A. L., Koskimies, K., and Lopes, A. (2010). Au-
tomating the construction of domain-specific model-
ing languages for object-oriented frameworks. Jour-
nal of Systems and Software, 83(7):1078–1093.

Software, I. (2003). Special issue on model-driven develop-
ment, volume 20.

Tolvanen, J.-P. and Kelly, S. (2009). Metaedit+: defining
and using integrated domain-specific modeling lan-
guages. In Arora, S. and Leavens, G. T., editors, OOP-
SLA Companion, pages 819–820. ACM.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

208


