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Abstract: UML modelling tools provide poor support for composite state machine code generation. Generated code is 
typically complex and large, especially for composite state machines. Existing approaches either do not 
handle this case at all or handle it by flattening the composite state machine into a simple one with a combi-
natorial explosion of states, and excessive generated code. This paper presents a new approach that trans-
forms a composite state machine into an equivalent set of simple state machines before code generation. 
This avoids the combinatorial explosion and leads to more concise and scalable generated code. We imple-
ment our approach in Umple. We report on a case study, comparing our approach to others in terms of code 
size and scalability. 

1 INTRODUCTION 

State machines are a powerful behavioral modeling 
formalism, especially in real time and embedded 
systems. Despite being part of UML for many years, 
state machines have not played a central role in most 
software projects. This may partially be explained 
by a survey of modeling practices (Forward et al. 
2010) that revealed very poor support for code gen-
eration, in particular for composite (nested) state 
machines. 

Many tools omit composite state machines en-
tirely, or only generate code for simple state ma-
chines. Others generate excessively complex code or 
flatten composite states as a pre-processing step, 
resulting in a combinatorial explosion of states. We 
will present an approach that overcomes these issues. 

Some approaches (Wasowski 2004; Lano et al., 
2007; Niaz and Tanaka 2003) generate code from 
composite state machines without the need for flat-
tening. However, these approaches have other 
weaknesses; in particular it is important that similar 
state machines generate similar code. 

Our approach avoids flattening by mapping 
composite state machines into an equivalent set of 
simple state machines. We present mapping patterns 
for possible state machine configurations and 
demonstrate these patterns with concrete examples 

in Umple (Forward et al., 2010), (Badreddin et al., 
2014), (Badreddin et al., 2014), (Badreddin, 2013), 
(Badreddin and Lethbridge, 2013), (Badreddin et al., 
2012), (Badreddin and Lethbridge, 2012). 

A live demonstration of the generated code is 
available in our online (UmpleOnline, 2013) tool.  

In this paper, we first briefly introduce the Um-
ple technology, then present our approach to code 
generation of composite state machines. A case 
study where we assess our approach and compare it 
to other approaches is discussed in section 4. We 
show that our approach is more scalable and resulted 
in more concise code than the other approaches. 

2 OVERVIEW OF UMPLE 

Umple extends languages like C++ and Java with 
modeling constructs, elevating their level of abstrac-
tion. It supports UML class diagrams, state machines, 
and selected software patterns. We present here min-
imal background to allow the reader to understand 
Umple code. More information is available else-
where (Lethbridge and Badreddin, 2011; Lethbridge 
and Badreddin, 2011; Lethbridge and Mussbacher, 
2011; Badreddin, 2010, Lethbridge et al., 2012). 

Umple is a fully-functional program-
ming/modeling language. Below is a simple example 
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that defines a state machine model. 
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class Course { 
  Boolean maxStudentsReached; 
  courseId; 
  status {  
   Open {  
    [maxStudentReached] register              
        /{notification();} -> Closed;  
   Closed { 
     deRegister/{deRegister();} -> Open; 
    }  } 
  // placeholder methods 
  public void notification() { } 
  public void deRegister() { } } 

Figure 1: Example state machine in Umple. 

The Course class has three attributes, maxStuden-
tReached, courseId and status.  The status value is 
controlled by a state machine with two states, Open 
and Closed.  When event register() occurs, and if 
guard [maxStudentReached] is true, then the transi-
tion action notification() is executed, and status is 
updated to Closed. When in Closed state, the state 
machine responds to event deRegister(). To save 
space above we only provided placeholders for na-
tive code that handles notifications and deregistering. 

Umple follows UML semantics with minor de-
viations described in other publications. An example 
deviation is that since Umple is textual, the start 
state in a state machine is always the first state listed; 
there is therefore no ‘start’ pseudostate. 

3 CODE GENERATION 
FOR COMPOSITE STATE 
MACHINES 

As in UML specifications, we classify state ma-
chines into simple and composite. Traditional flat-
tening techniques transform a composite state 
machine into one simple state machine. This can 
result in explosion of the generated code. Our ap-
proach creates a set of simple state machines equiva-
lent to the composite state machine. Our generated 
code is significantly smaller in size than that pro-
duced with traditional flattening. Moreover, it is also 
smaller to that generated from state-of-the-art mod-
eling tools and research tools reported in the litera-
ture. 

3.1 Overview 

Umple handles both simple and composite state ma-
chines. After parsing a model and creating an in-

stance of its metamodel (very similar to UML 2.2 
metamodel (OMG 2011)), Umple determines 
whether each state machine is simple of composite.  

For each composite state machine , Umple adds 
states, transitions, and actions to transform it into a 
set of simple state machines with equivalent behav-
ior. Specifically, a new simple state machine is add-
ed for every nested state machine. Each of these 
state machines has a ‘null’ state indicating when it is 
inactive, i.e. when some other part of the original 
composite state machine is currently active. The 
resulting set of state machines is then used to gener-
ate code using the same templates used for simple 
state machines. 

4 CODE GENERATION CASES 

The following sections give a set of patterns for 
composite state machines code generation. For ex-
ample, a transition from an outer state to an inner 
state in a nested-states environment is one case. 
Each of case demonstrates one specific aspect of 
composite states. For each case, we show the follow-
ing: 
 The source UML model 
 The flattened state machines 
 Excerpt of the generated code 
 The equivalent source model in Umple 
 The algorithm for code generation 

The analysis of each case focuses on a specific as-
pect of code generation. Therefore, some questions 
may be left unanswered for any given case; these 
should become clear in the cases that follow. 

Examples are shown in Java, but Umple can also 
generate C++ state machines. 

4.1 Case 1: Transition to an Inner State 

The first case is a transition to an inner state (Figure 
2). The state machine starts in state A. When event 
‘e’ occurs, the transition to state C takes place. Since 
state C is a substate of B, this is equivalent to transi-
tion from state A to B, and then from state B to C. 
Figure 2 shows the source of the composite state 
model, the flattened state machines, and the excerpt 
of the generated code. 

Any exit action(s) from state A are called first, 
then transition actions, followed by any entry actions 
into B, and finally, entry actions into C.  
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Equivalent flattened 
state machines: 
 
StateMachine 

StateMachineB 

// Flattened state machines 
enum StateMachine { A, B } 
enum StateMachineB { Null, C } 
// Construction 
public ToInnerState(){ 
  setStateMachine(StateMachine.A); 
  if (stateMachineB == null) { setStateMa-
chineB(StateMachineB.Null); } } 
 
// Event processing 
public boolean e(){ 
  boolean wasEventProcessed = false; 
  switch (stateMachine) { 
    case A: 
      setStateMachineB(StateMachineB.C); 
      wasEventProcessed = true; 
      break; } } 

Figure 2: Transition to an inner state. 

The Umple model for this example is as follows: 

class ToInnerState {  
  stateMachine {  
    A { e -> C; }  
    B {  
      C {} } } } 

For this case only, we show the generated flattened 
state machine in Umple syntax. 

class ToInnerState {  
  stateMachine { 
    A { e -> B ; } 
    B { } }  
  stateMachineB { 
    Null { e -> C ; } 
    C { } } } 

Note that Umple allows multiple state machines to 
be declared within the same class. In this example, 
the two state machines are stateMachine and state-
MachineB. 

For the rest of the cases, we do not show the Umple 
model for the flattened state machines for brevity. 

The algorithm to achieve this flattening is as follows: 
1. Flatten by generating stateMachine and StateMa-

chineB. 
2. Set stateMachine to A (the start state) 
3. Set stateMachineB to Null (state B is not active) 
4. When event e occurs: 

- If state A is active, set stateMachineB to state-
MachineB.C 

- Return true to indicate the event was processed. 

As shown in the diagram and the abstracts of the 
generated code, Umple internally creates two state 
machines; the first has two states, A and B; the sec-
ond has states Null and C. 

Upon construction, the first state machine is up-
dated to state A, and the second state machine is 
updated to state Null. State Null is used to indicate 
that stateMachineB is not active; i.e., the higher-
level state machine is in some other state than B 
(here it is in state A). When event e occurs, two tran-
sitions take place; transition in stateMachine from A 
to B, and a transition in StateMachineB from Null to 
C. Firing two transitions when a single event occurs 
is a feature specific to Umple. This feature is partic-
ularly useful when flattening state machines. 

As with simple Umple state machines, the event 
handler is generated as a public method. This meth-
od updates the state machine state by calling a pri-
vate method setStateMachineB( ). It encapsulates 
calls to any actions and do activities. This encapsula-
tion is important to our code generation approach for 
two reasons: 
1. It makes all event-processing methods small in 

size; they become easier to read and understand. 
2. It simplifies the code generation patterns. All 

event-processing methods look similar, and can 
therefore use the same code generation template. 

This event processing method is very simple: it en-
capsulates all method calls when transitioning from 
some state to another state. But also, this method 
allows for arbitrary complexity in the state machines 
the modeler can create; there are an unlimited num-
ber of combinations of source and destination states. 
For this reason, we will ignore the complexity of this 
method while we are discussing these code genera-
tion cases. The specifics of the code generation for 
this method are discussed later in the paper. 

4.2 Case 2: Transition from an Inner 
State  

This case is similar to the previous case except that 

Null B 

e 

 e 

A B A 
B 

C 
e 
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the transition is from an inner state to an outer state. 
 

 
 
 

 
 
 
 
 

StateMachine 

 
StateMachineB 

// Flattened state machines 
enum StateMachine { A, B } 
enum StateMachineB { Null, C } 
// Construction 
  public FromInnerState() { 
setStateMachineB(StateMachineB.Null); 
   setStateMachine(StateMachine.A); } 
 
// Event processing 
public boolean e() { 
  boolean wasEventProcessed = false; 
  switch (stateMachineB) { 
    case C: 
      setStateMachine(StateMachine.A);
      wasEventProcessed = true;  
break; } } 

Figure 3: Transition from an inner state. 

The Umple model is as follows: 

class FromInnerState 
{ stateMachine {  

A { }  
  B {  
    C { e -> A;  
} } } } 

The flattening algorithm is as follows: 
1. Flatten by generating stateMachine and StateMa-

chineB. 
2. Set stateMachine to A (the start state) 
3. Set stateMachineB to Null (state B is not active) 
4. When event e occurs: 

- If state C is active, set stateMachineB to Null. 
- Set stateMachine to A. 

5. Return true to indicate the event was processed.  

The code generation for this case is similar to the 
previous case, which is an objective we strive to 
maintain in Umple; similar state machines should 
have similar code generation patterns. 

The difference here is in the event-processing 
method. In response to the event ‘e’, and if the state 
machine is in state C, we update the state machine 
state to A. This is also encapsulated in a single 
method call setStateMachine( ). 

The coming cases entail regions and concurrency. 
In our implementation, we consider every region to 
be a full-fledged state machine; a region may have 
one or more state machine elements of any type, 
such as a start state, end states, ordinary states and 
transitions. This view of regions allows us to recur-
sively define regions without having to redefine a 
new region element. This is similar to a nested state, 
where a state can itself contain a state (a substate). 

 

 

StateMachine 

 

StateMachineC 

 

StateMachineD 

// Flattened state machines 
enum StateMachine { A, M } 
enum StateMachineC { Null, C } 
enum StateMachineD { Null, D } 

// Construction 
public ToConcurrentState() { 
setStateMachineC(StateMachineC.Null); 
setStateMachineD(StateMachineD.Null); 
 setStateMachine(StateMachine.A); } 

// Event prcoessing 
public boolean e() { 
 boolean wasEventProcessed = false; 
 switch (stateMachine) { 
   case A: 
    setStateMachine(StateMachine.M); 
     wasEventProcessed = true; 
     break; } 
 return wasEventProcessed; } 

Figure 4: Transition to a concurrent state. 
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4.3 Case 3: Transition to a Concurrent 
State 

In this case, the state machine starts in state A. 
When the event ‘e’ occurs, the transition from state 
A to the composite state M takes place. Instantane-
ously, the two regions C and D become active. 

Umple creates internally three state machines; 
StateMachine that has two states, A and M; State-
MachineC that has two states, null and C; and finally 
StateMachineD that has two states null and D. 

We use the dummy state null in a consistent 
manner. If a state machine is in state null, it means 
that the state machine is not active. In this case, if 
the state machine is in state A, then both regions C 
and D are set to Null. 

The Umple model for this example is as follows: 

class ToConcurrentState {  
  stateMachine {  
    A { e -> M; }  
    M {  C {}  
             | |  
            D {} } } } 

 

The flattening algorithm for this case is as follows: 
1. Flatten by generating stateMachine and StateMa-

chineC and stateMachineD. 
2. Set stateMachine to A (the start state) 
3. Set stateMachineC to Null. 
4. Set stateMachineD to Null.  
5. When event e occurs: 

- Set stateMachine to M. 
- Set stateMachineC to C 
- Set stateMachineD to D 

6. Return true to indicate the event was processed. 
At construction, the state machine is set to state 

A. The two other state machines (statemachineC and 
statemachineD) are set to state null. When  event ‘e’ 
occurs, the state machine becomes in state M. The 
method setStateMachine(stateMachine.M) updates 
the states for the two regions C and D and calls entry 
and exit actions, if any. Notice the level of similarity 
between event processing methods in the previous 
cases, even though the transition is of a different 
nature.  This similarity was achieved by means of 
hiding the transition details in a single method call. 

4.4 Case 4: Transition 
from a Concurrent State 

This case occurs when a transition out of a compo-
site state takes place. In this example, the state ma-

chine starts in state M, which has two concurrent 
regions, C and D. Event ‘e’ triggers a transition out 
of the composite state. 

The Umple model for this example is as follows: 
class FromConcurrentState {  
  stateMachine {  
  M { e -> A;  
  C {}  
  ||  
  D {} }  
 A {}  } }

The flattening algorithm is as follows: 
1. Flatten by generating stateMachine and State-

MachineC and stateMachineD. 
2. Set stateMachine to M (the start state) 
3. Set stateMachineC to C. 
4. Set stateMachineD to D. 
5. When event e occurs: 

- Set stateMachine to A. 
- Set stateMachineC to Null 
- Set stateMachineD to Null. 

6. Return true to indicate the event was processed. 
 

 

StateMachine 

StateMachineC 

StateMachineD 

// exiting a composite state 
public boolean exitM() { 
 boolean wasEventProcessed = false; 
  switch (stateMachineC) { 
    case C: 
setStateMachineC(StateMachineC.Null); 
     wasEventProcessed = true; 
     break; }  
  switch (stateMachineD) { 
    case D:                              
setStateMachineD(StateMachineD.Null); 
     wasEventProcessed = true; 
     break; } }

Figure 5: Transition from a concurrent state. 
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When exiting a simple state, a single switch state-
ment suffices. A concurrent state with two regions 
requires two switch statements. The first switch 
statement checks if region C is active, and if so, up-
dates the state machine to null using the method 
setStateMachineC, which also handles any exit ac-
tions. The second switch statement performs the 
same steps for region D. 

4.5 Case 5: Reflexive Transition 
of a Concurrent State 

This case focuses on the implementation of a reflex-
ive transition. A reflexive transition is just another 
transition whose source state and destination state 
are the same. A reflexive transition of a composite 
state with two concurrent regions behaves as follows: 
1. Call exit actions associated with any state being 

exited, including the composite state itself. Start-
ing with the innermost state and working your 
way outward. 

3. Exit all regions of the concurrent state; 
4. Call transition actions, if any; 
5. Re-enter the concurrent state; 
6. Re-enter each concurrent region; 
7. Call entry actions of any state being entered in-

cluding the composite state itself. 

According to state machine semantics, exiting 
the two regions takes place at the same time. How-
ever, if you are executing the state machine in a sin-
gle-threaded environment, one region will be exited 
before the other. Due to the sequential nature of 
Umple, the region that is declared first is exited first. 
To override such behavior, one can re-order the re-
gions so that region D is declared before region C.  
The same applies for entering a concurrent region in 
step 5 above. 

The Umple model for this example is as follows: 
 

class Reflexive {  
  stateMachine {  
  A { e -> M; }  
  M { e -> M;  
    C {}  
    ||   D {} } } } 

The flattening algorithm is as follows: 
1. Flatten by generating stateMachine and State-

MachineC and stateMachineD. 
2. Set stateMachine to A (the start state) 
3. Set stateMachineC to Null. 
4. Set stateMachineD to Null. 
5. When event e occurs: 

- Set stateMachine to M, set stateMachineC to C, 

and set stateMachineD to D. 

6. When event e occurs (triggering the reflexive 
transition): 
- Call exitStateMachine() method, which exits all 

regions of M and exits M itself. 
- Set stateMachine to M (re-entering composite 

state) 
- Set stateMachineC to C 
- Set stateMachineD to D. 

7. Return true to indicate the event was processed. 
 

 

StateMachine 

StateMachineC 

StateMachineD 

// Reflexive transition 
public boolean e() { 
 boolean wasEventProcessed = false;  
 switch (stateMachine) { 
   case A: 
    setStateMachine(StateMachine.M); 
     wasEventProcessed = true; 
     break; 
   case M: 
     exitStateMachine(); 
     setStateMachine(StateMachine.M); 
     wasEventProcessed = true; 
     break; }  
 return wasEventProcessed; } 

Figure 6: Reflexive transition of a concurrent state. 
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Note the switch statement in the generated code. 
The first case handles the behavior when the state 
machine is in state A. The second case handles when 
the state machine is in state M. Our focus here is on 
the second case. The following takes place: 
1. Calling the method exitStateMachine( ) which en-

capsulates the logistics of exiting all regions. 
2. Re-entering the state M by calling the method 

setStateMachine(StateMachine.M( ) 
3. Updating the Boolean variable to indicate that the 

event was processed 

4.6 Case 6: Transition into an Inner 
State in a Concurrent Region 

This case explores a scenario when a transition to an 
inner state which lies inside a concurrent region. 
This case is special because even though the transi-
tion explicitly enters one region, the second region 
must also be activated. In our example below, the 
state machine is initially in state A. When the event 
‘e’ occurs, the state machine instantaneously enters 
the concurrent state M and also instantaneously en-
ters state E. In that situation, the state machine is in 
state M, and in state E. Both regions C and D are 
active. 

The Umple model for this example is as follows: 

class ToConcurrentState {  
  stateMachine {  
    A { e -> E; }  
    M {   C {  
      E {entry/{inside_E;} } }  
      ||  
    D {}  } } } 

The flattening algorithm is as follows: 
1. Flatten by generating stateMachine StateMa-

chineC,stateMachineCC, and stateMachineD. 
2. Set stateMachine to A (the start state) 
3. Set stateMachineC to Null. 
4. SetStateMachineCC to Null. 
5. Set stateMachineD to Null. 
6. When event e occurs: 

- Set stateMachine to M. 
- Set stateMachineC to C. 
- Set stateMachineCC to E. 
- Set stateMachineD to D. 

7. Return true to indicate the event was processed. 
 

This case results in four internal state machines as 
shown in the generated code above. Notice how the 
event processing method is similar to other cases. 
This is because the public method ‘e’ delegates to 
the method setStateMachineCC that calls the entry 

action and updates the state machine state. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

StateMachine 

StateMachineC 

StateMachineCC 
 
 
 
 
 
StateMachineD 

 
// Flattened state machines 
enum StateMachine { A, M } 
enum StateMachineC { Null, C } 
enum StateMachineCC { Null, E } 
enum StateMachineD { Null, D } 
 
// Event processing 
public boolean e() { 
  boolean wasEventProcessed = false; 
  switch (stateMachine) { 
    case A:      
setStateMachineCC(StateMachineCC.E); 
         wasEventProcessed = true; 
        break; } 
  return wasEventProcessed; } 
private void  
  setStateMachineCC(StateMachineCC  
    aStateMachineCC) { 
  stateMachineCC = aStateMachineCC; 
  if (stateMachineC != StateMachineC.C 
&& aStateMachineCC !=    
  StateMachineCC.Null) 
{ setStateMachineC(StateMachineC.C); } 
  
  // entry action 
  switch(stateMachineCC) { 
    case E: 
        inside_E; 
        break;  } } } 

Figure 7: Transition into inner state in a concurrent region. 
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4.7 State Transition Method 

As we have demonstrated in the code generation 
cases, there are many variations of state transitions. 
The following are the characteristics of such varia-
tions: 1) Is the source state a simple state or compo-
site state? 2) Is the source state is composite, is it 
nested or concurrent? 3)Are there any states being 
exited that have exit actions associated with them? 4) 
Does the transition have any transition action associ-
ated with it? 5) Is the destination state a simple state 
or a composite state? 6) Are there any entry actions 
associated with any state being entered? 

The answers to these questions demonstrate 
some of the complexities of implementing transi-
tions that are typically transferred to the generated 
code. 

Our objective is to generate simple and concise 
code; simpler code generation is also easier to im-
plement. If we are able to make event-processing 
methods look similar, we will be able to use simpler 
code generation templates to implement them. 

We achieved this by abstracting common pro-
cessing elements in an event processing method and 
encapsulating the details in other internal methods.   

To demonstrate the complexity of implementing 
a transition, and how Umple handles this complexity, 
we will reuse two of the cases presented earlier in 
this paper. For this analysis, we assume that all tran-
sitions have both a guard G and an action A associ-
ated with them. We also assume that every state has 
an entry and exit action. 

4.8 Entering a Composite State 

This analysis is based on a modified state machine in 
case 3 above. The equivalent model represented us-
ing Umple notation is below. For those not familiar 
with Umple syntax, the model here is identical to 
case 3 model, but adds entry actions in state M, C, 
and state D. The model here also adds a guard and 
an action to the transition from A to M. 
 

class ToConcurrentState { 
stateMachine { 
  A { e [g] ->/{transition_action();}M;} 
  M { entry/ {entering_M;} 
  C { cState {entry/ {entering_C();} } } 
  || 
  D { dState {entry/ {entering_D();} } } 
} } } 

Figure 8: Entering a composite state. 

The code that implements the transition from A to M 
is presented in the following four steps. 

Step1: Public Function to handle the Event Pro-
cessing. 

public boolean e() { 
  boolean wasEventProcessed = false; 
    switch (stateMachine){ 
  case A: 
    if (G) { 
      transition_action; 
  setStateMachine(StateMachine.M); 
      wasEventProcessed = true; } 
      break;  } 
  return wasEventProcessed; } 

Figure 9: Step 1. 

The public method is named after the event name. In 
this case, ‘e’. This method returns a Boolean indicat-
ing whether the event has been processed or not. 
Checking for the guard takes place within this meth-
od (as highlighted above). The method also calls the 
transition action right after checking for the value of 
the guard. The method then delegates the rest of the 
transition execution to setStateMa-
chine(StateMachine.M). 

Step 2: setStateMachine. 

private void setStateMachine(StateMachine aState-
Machine) { 
  stateMachine = aStateMachine;  
  // entry actions 
  switch(stateMachine) { 
    case M: 
      entering_M; 
      if (stateMachineC == StateMachineC.Null) {   
        setStateMachineC(StateMachineC.C); } 
      if (stateMachineD == StateMachineD.Null) {  
        setStateMachineD(StateMachineD.D); } 
      break;  }  }

Figure 10: Step 2. 

This method will call any entry actions. In this case, 
entering_M is called. The entry action is called prior 
to updating the state machine configurations (i.e 
prior to updating the state machine attributes).  
Therefore, if the entry action queries the state ma-
chine, an inaccurate value would be returned. 

Initially, both regions’ states are set to null. This 
method checks if the region is in the null state, and if 
so, it will delegate to setStateMachineC and 
setStateMachineD respectively. For brevity, we only 
analyze setStateMachineC. 
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Step 3: setStateMachineC.  

private void setStateMachineC(StateMachineC 
aStateMachineC) { 
  stateMachineC = aStateMachineC; 
  if (stateMachine != StateMachine.M && 
aStateMachineC != StateMachineC.Null)    
 
{ setStateMachine(StateMachine.M); } 
    switch(stateMachineC) { 
      case C: 
        if (stateMachineCC == StateMachineCC.Null)    
         {setStateMachineCC(StateMachineCC.cState);} 
break;  } } } 

Figure 11: Step 3. 

This method would call any entry actions. In this 
case, there are no entry actions associated with the 
stateMachineC. The method updates the state ma-
chine state to cState by means of delegation to 
StateMachineCC.cState. 

Step 4: setStateMachineCC. 

private void setStateMachineCC(StateMachineCC 
aStateMachineCC) { 
  // entry actions 
  switch(stateMachineCC) { 
  case cState: 
  entering_C; 
  break;  } } } 

Figure 12: Step 4. 

This method finally calls the entry action for the 
cState. 

4.9 Exiting a Composite State  

The steps for exiting a composite state machine are 
very similar to entering a composite state machine. 
Again, this similarity makes it easier to follow the 
generated code, and makes the code generation tem-
plates less complex and easily extendable. For brevi-
ty, we show the method for exiting the composite 
state M. 
 

public boolean exitM() { 
  boolean wasEventProcessed = false; 
  switch (stateMachineC) { 
    case C: 
      exitStateMachineC();    
      setStateMachineC(StateMachineC.Null); 
      wasEventProcessed = true; 
      break; } 
  switch (stateMachineD)  { .. }  } 

Figure 13: Exiting the composite state. 

When exiting the composite state M, we also exit 
stateMachineC and stateMachineD. For brevity, we 
analyze the steps for exiting stateMa-chineC. Again, 
we delegate to exitStateMachineC for the handling 
of exit actions, if any, and for updating the state ma-
chine state. Notice that when we exit the state ma-
chine, we set its state to null. 

5 COMPARISON 
OF APPROACHES 

In this section, we compare Umple’s code genera-
tion approach to that of a commercial tool (Rhapso-
dy) and a research tool whose authors (Niaz et al.,) 
claim a novel approach of generating efficient and 
compact code for composite states (Niaz et al., 
2003). 

Rhapsody implements state machines using mul-
tiple classes and creates objects that represent states 
up-front; i.e, as soon as the state machine becomes 
active. These objects stay in memory as long as the 
state machine is executing. Rhapsody uses a switch 
statement and a helper class to implement the state 
machine behavior. 

The research tool proposed by Niaz also uses 
multiple classes, where each state is implemented in 
a separate class. However, objects are not created 
up-front; rather, objects are created and deleted at 
run time. This makes the expected performance of 
this tool potentially better than Rhapsody. Niaz’s 
approach implements composite state machines by 
using object composition and delegation. In our 
comparison, we adopt criteria identical to Niaz’s 
(Niaz et al., 2003) that base comparison on number 
of lines of code, bytes, and classes. For the base 
comparison, we consider the example in Figure 14. 

In many cases, we were unable to compare our 
approach to other tools due to the fact that such tools 
typically do not support composite states in a way 
complete enough to allow for this comparison. For 
example, Bridgepoint (Mentor Graphics, 2012) does 
not allow substates or guards. 

 

Figure 14: Composite state comparison example. 

Lines of code, despite its simplicity, is arguably 
the most effective measure for complexity (Gold et 
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al., 2005). It is also reported that cyclomatic com-
plexity tends to be comparable to lines of code when 
measuring complexity (Gill and Kemerer, 1991). 

Table 1: Code generation comparison. 

 Rhapsody Niaz Umple    
generated 

Code 

Umple 

LOC 675 250 125 8 
Bytes 24,270 6,420 5,010 197 

Classes 7 11 1 1 

As shown, the number of lines of code is significant-
ly lower in the case of Umple (a reduction of about 
50% as compared with Niaz`s approach). The num-
ber of bytes is less in the case of Umple (a reduction 
of about 22%). 

This comparison cannot be a final word on gen-
erated code complexity. Other complexity measures 
may give different results. In addition, It is possible 
that Rhapsody or Niaz’s tool provide additional gen-
erated code to support functionality not available in 
Umple. The generated code that was used in Niaz’s 
study was not publicly available for inspection. On 
the other hand, all of our examples can be compiled 
and the code generated online. Making our algo-
rithm and its implementation available for future 
research. 

6 CONCLUSIONS 

This paper presented an approach for code genera-
tion from composite state machines. We generate a 
set of state machines equivalent to the original state 
machine, and use ‘null’ states to indicate when any 
given state machine is not active. 

We presented cases covering each possible con-
figuration of composite states and their transitions. 
Each case exposes an aspect of the code generation. 
Our approach significantly reduces complexity and 
code volume. 

We have also introduced a unique concept in the 
Umple model-oriented language where multiple 
state machines can reside in the same class and 
where multiple transitions can be fired by a single 
event. 

The code generation method and the associated 
algorithms are implemented and are fully available 
for inspection online.  
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