
A Framework for Model Recommenders
Requirements, Architecture and Tool Support

Andrej Dyck, Andreas Ganser and Horst Lichter
Software Construction, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

Keywords: Recommender Framework, Recommender Systems, Model Completion, Modeling Support, Model Recom-
mendation, Model Reuse, MDE, MDD, EMF.

Abstract: Content-assist systems and code completion are nicely accessible in integrated development environments
(IDEs). Using multiple data sources and performing sophisticated completion in several editors is quite com-
mon. However, no such supporting system exists for modeling environments, e.g., a completion mechanism
in class diagrams is only existent for textual items like names, if at all.
We designed a framework to bolster model recommendation research and present the requirements, concepts,
architecture, and the realization below. Last of which is easily extendable and adaptable to either new data
recommendation strategies or new environments like editors. As additional tool support, we provide a simula-
tion environment, which ease development as well as implementing recommendation algorithm. Accordingly,
researchers get all the conceptual groundwork and a realized infrastructure that ease the initial burden to start
recommendations in modeling environments.

1 INTRODUCTION

Humans have always been hunter-gatherer seeking to
put things away for later reuse. Generations collected
pictures from, e.g., family events in order to skim
through these pictures later, where order is essential
for how efficient they can be found later. This is why
generations over generations reinvented labeling sys-
tems to stay on top of things.

Considering this information management prob-
lem in the context of software artifacts, one notices
that quite the same techniques were used for a long
time. Documents were categorized, content was in-
dexed, and search algorithms were invented. How-
ever, the information overflow could barely be man-
aged. For example, a programmer needs to be familiar
with many APIs, so often the overview is quickly lost.
Due to that, type completion mechanism support pro-
grammers and help on a syntactic level. Yet, recent
programming environments go further and provide
good guesses of what might happen next (Eclipse,
2012a). The underlying ideas are taken from rec-
ommender systems, which proved beneficial for web
shops by recommending products to customers (e.g.,
Netflix).

Another domain that could benefit from recom-
mender system support is modeling. Note that at first

glance the recommendations in modeling environ-
ments appear similar as for programming – but they
are not. Considering UML class diagrams, firstly, this
is due to the weaker semantics of the underlying con-
cepts. While recommendations for Java source code
need to compile, recommendations for class diagrams
just need to be valid and well formed. Secondly, there
are numerous kinds of data available: model reposi-
tories, glossaries, dictionaries, ontologies, and so on.
They all allow for producing different recommenda-
tions, i.e., names, hierarchies, or partial models.

Investigating the limitations, which might be put
on producing recommendations for class diagrams, it
proved helpful to distinguish three areas. First, the
content itself limits the kind of recommendations as
mentioned above. Second, the current context influ-
ences the appropriateness of a recommendation. For
example, editing the name field of a class should limit
recommendations to textual recommendations only;
recommending an interface or a type would not help.
Third, the user interface restricts how recommenda-
tions are presented since pro-active and re-active sys-
tems work differently (Dyck et al., 2014).

Altogether we researched how a recommender
framework could support conducting research on
model recommenders. Consequently we contribute a
framework and a simulation environment, so model-

282 Dyck A., Ganser A. and Lichter H..
A Framework for Model Recommenders - Requirements, Architecture and Tool Support.
DOI: 10.5220/0004701702820290
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 282-290
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



ers can jump-start model recommendations with their
very own model recommender system. All that is
needed is to implement the actual algorithm, i.e., most
of the scaffolding is provided by the easily extendable
framework. Therefore, we first explain the require-
ments we found for such a framework (section 3.1),
explain its basics (section 3.2), elaborate on inter-
nals (section 3.3), and describe the simulation envi-
ronment (section 4).

2 RELATED WORK

Recommender Systems could be discussed rooted
in Information Management Systems and Decision
Supporting Systems (DSS) in the eighties (Sprague,
1980). But terminology evolved, so we keep to the re-
cent state and look into more recent frameworks with-
out contrasting them to DSS.

Regarding UML, there was only few research
conducted, so recommendations for UML modeling
barely exceeded textual completion support. One
of these approaches was described by Kuhn (Kuhn,
2010) focusing on recommending names for textual
elements of the UML like methods. An investigation
on architectural aspects was not addressed.

Another approach was presented by Sen et
al.’s (Sen et al., 2008) which bases on Prolog. They
demonstrate what they call “partial model comple-
tion” for finite state machines. Moreover, they offer
a brief methodology. Our work differs w.r.t. target en-
vironments, because we try to keep it as wide as possi-
ble, meaning that we could use their solution and plug
it into our framework by adapting their interfaces.

Looking at a broader scope, White and Schmidt
present a framework for domain specific modeling
languages on a conceptual level (White and Schmidt,
2006). But they focus on establishing domain spe-
cific knowledge bases and algorithms. They do so
to be able to work in “combinatorically challenging
domains”. Hence, they use Prolog and demonstrated
their approach by means of an AUTomotive Open
System ARchitecture (AUTOSAR) example. We, in
contrast, do not focus on domains or editors, but try
to provide a conceptual and implemented infrastruc-
ture. One could use their implementation as a recom-
mender strategy in our framework.

With Nassi-Schneiderman diagrams, triple graph
grammars are used as a foundation by Mazanek et
al. (Mazanek et al., 2008). They transform the dia-
grams into graph grammars, which they then leverage
for auto-complete mechanism. In other words, they
produce suggestions and these we could plug their re-
alization into our framework as a strategy.

Other supporting systems are of textual nature
and usually found in IDEs. Recent supporting sys-
tems exceed code completion systems and content as-
sist systems by means of recommender system ideas.
For example, an Eclipse project called Code Recom-
menders (Bruch et al., 2008) is such a system. It
is a more clever code-completion-based on a rank-
ing enhanced knowledge base for code suggestions.
Another example is Code Conjurer, a reactive IDE-
recommender system that provides potentially miss-
ing artifacts (Hummel et al., 2008) using a source
code search engine called Merobase (Janjic et al.,
2013).

3 THE FRAMEWORK

We firstly summarize the needs and constraints for a
model recommender framework. Then we explain our
conceptual solution and elaborate on our realization.
Unfortunately, we cannot explain each and every de-
tail for the sake of brevity. An elaborated description
is provided by Dyck (Dyck, 2012).

3.1 Black-box Aspects: Requirements

Discussing possible requirements for a model rec-
ommender framework, we found the following func-
tional requirements that are depicted in figure 1 as a
use case diagram. Since we aim for framework sup-
port, there are only few externally visible actors and
requirements. Therefore, only a modeler and a data
source are involved for configuring the recommender
strategies, querying for recommendations and choos-
ing recommender strategies.

Figure 1: Model Recommender Framework Use Cases.

Regarding non-functional requirements we found
several necessities. First (1), multiple data sources

A�Framework�for�Model�Recommenders�-�Requirements,�Architecture�and�Tool�Support

283



(e.g., repositories or knowledge bases) should be
queried for producing recommendations, while the
framework must not know about the concrete content
of the recommendation objects. For example, ontolo-
gies, ReMoDD (France et al., 2007), MOOGLE (Lu-
crdio et al., 2010), or MoCCa (Ganser and Lichter,
2013) should possibly serve as back-ends. Second
(2), different algorithms should be pluggable into the
framework, allowing multiple recommender strate-
gies. Third (3), the context of the current editing
should be captured, and thus, be available for produc-
ing recommendations, e.g., querying, ranking or fil-
tering. This requires the same extendability as above,
since a different editor might be regarded as another
context (Dyck et al., 2013). This leads to, fourth
(4), the requirement to support several user interfaces,
since different editors might present recommenda-
tions differently (Dyck et al., 2014). Fifth (5), the
user interface should be non-blocking, i.e., respon-
sive. This is important, as it might take a while until
recommendations are produced. This leads to, sixth
(6), decoupled and multi-threaded back ends. Last,
the framework should be easy to use and provide sup-
port for starting extensions from scratch.

To sum up the requirements, the model recom-
mender framework needs to realize a core that is ex-
tendable (cf. figure 2). To the best of our knowledge,
there is no such environment available.

Figure 2: Conceptual Architecture.

3.2 Gray-box Aspects: Hot Spots

The requirements described above lead to a concep-
tual architecture as depicted in figure 2. It shows a
core which is extendable in three respects: First, it al-
lows a RecommenderStrategy to be plugged into it
(requirements (1) & (2)). Therefore, data is gathered
and processed in such strategies and, eventually, rec-

ommendation objects are produced and handed over
to the framework. Second, a Context builds the
bridge between produced recommendations and an
editor to have it applied to (requirements (3) & (4)).
This means, a Context links these two as well as it
adapts, if necessary. Third, a UIStrategy is a means
to trigger queries and to depict results (requirement
(4)). The easiest example for a UIStrategy is a query
box as depicted in the top left corner of figure 8. It
works re-actively because it needs to be opened ex-
plicitly as known from code completion. Another
UIStrategy might be a view that follows a cursor
position and produces recommendations based on the
next neighbor information related to the mouse posi-
tion, i.e., a pro-active system. Furthermore, support-
ing non-blocking UIs and multi-threading (require-
ments (5) & (6)), are properties of the framework.
Subsequently, we explain how the framework needs
to be extended by making use of each framework hot
spot (c.f. (Pree, 1996)) with an example (cf. figure 3).

The most important hot spots are re-
lated to the classes: Recommendation and
RecommenderSearchStrategy. The former has
to realize a method apply(), which is invoked
if a ConcreteRecommendation object is to be
applied in an editor. In figure 8 that would be
a pick of an entry in the list. The latter has to
realize the actual search(), which, invoked on
a ConcreteRecommenderSearchStrategy, starts
this recommender strategy. Additionally, labels and
icons related to ConcreteRecommendations can be
registered by the ConcreteUIContributor. Due to
that, a ConcreteRecommenderSearchStrategy can
return several kinds of ConcreteRecommendations
each represented by a different icon; e.g., the UI in
figure 8 shows the label of our model repository.

The second most important hot spot regards the
user interface, where a ConcreteRecommendationUI
needs to realize how a search() is triggered and how
the user can interact with the system, e.g., pick recom-
mendations, cancel the search, etc. Since quite a lot of
this is similar for several ConcreteRecommenderUIs
some default implementation is provided by the
core through the RecommenderUI. Finally, the
ConcreteRecommendationUI needs to implement
the graphical aspects as well (Dyck et al., 2014). For
example, figure 8 shows a query box with a drop-
down window as an overlay on a class diagram can-
vas.

Last, a new context is created by extending the
hot spot RecommendationContext. By doing so,
a ConcreteRecommendationContext identifies an
editor and registers a ConcreteRecommenderUIs to
it. In other words, one context is mostly respon-

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

284



UI

Framework

Core

Context

Recommender

Strategy

Figure 3: Coarse Grain Architecture.

sible for one editor. This is due to editors usu-
ally offering unequal sets of operations. This is
why a context knows how the actual apply() from
a ConcreteRecommendation object has to be exe-
cuted, i.e., it adapts or wraps the operations if nec-
essary (Dyck et al., 2013).

At first, all this looks fairly complex. However,
we hope with our dashboard, which supports all of the
extending and registering mentioned above, this com-
plexity can be reduced. Anyhow, the details of the im-
plementation comprise a few more technical details,
since more sophisticated functionality is required to
make the framework enjoyable for users.

3.3 White-box Aspects: Internals

So far a mostly gray-box view on the framework al-
lows to get started with model recommendations, but
more details are necessary for an advanced under-
standing. Therefore, we elaborate more on figure 3
and explain the factories, the notification mechanism,
threading, the proxies, and the search strategy states.
A very basic example in form of sequence diagrams
will complement the explanation.

As a RecommenderUI triggers a search()
method, the recommender framework uses a search
factory that holds a set of all the registered
ConcreteRecommenderSearchStrategies to in-
stantiate an object each of them. Then the
RecommenderSearch starts the actual strategies by

invoking startSearch() and feeds them with the
query information. This initiates all the instantiated
ConcreteRecommenderSearchStrategies to run
and waits for their results. Finally, they return their
Recommendations and notify the RecommenderUIs.

Behind this notification mechanism is
an observer pattern, which allows each
RecommenderSearchStrategy to “tell” all the
linked RecommenderUIs to update. This is possi-
ble, because each RecommenderSearchStrategy
is an Observable and has RecommenderUIs as
Observers. Mind that this allows continuous notifi-
cations, and therefore, for each recommendation in
figure 8, to appear almost instantly. The benefit here
becomes clear, when Recommendation objects are
produced with a noticeable delay, e.g., due to a slow
Internet connection. However, some recommender
algorithm might not benefit from this feature because,
e.g., collaborative filtering work on complete sets.

Note that, above, we started all the search
strategies at once. That is possible, because we
build in a threading mechanism that runs each
RecommenderSearchStrategy object in its own
thread, fulfilling requirements (5) & (6), i.e., have a
non-blocking UI and have search strategies better load
balanced. Again, considering a search strategy, which
is delayed by a slow Internet connection, allows other
strategies to proceed.

Yet another trick is necessary to avoid trouble
with search strategies. For the same reasons men-

A�Framework�for�Model�Recommenders�-�Requirements,�Architecture�and�Tool�Support

285



Figure 4: Sequence Diagram: search().

tioned above, it makes perfect sense to wrap each
ConcreteRecommenderSearchStrategy in a proxy.
It binds the search strategy to the framework and acts
as an adapter for the notification mechanism at the
same time. For simplicity sake, we do not elaborate
on this part of the architecture.

Finally, the proxies and threading decouple (see
requirement (5)) the components to an extent that we
had to realize a controlling mechanism for the rec-
ommender search strategies. To this end, we imple-
mented a state mechanism as depicted in figure 5. It
illustrates the life-cycle of a recommender strategy on
two levels. First, on the outer level, a search strategy
can be enabled or disabled – or defect. While the
first two states can be set in the preferences, a defect
strategy could be, for example, the result of a missing
default constructor. Additionally, a search strategy
can be asked to reset. This happens, e.g., if the UI
is closed. Second, the internal level of a search strat-
egy can follow a regular sequence of states, namely:
ready, running, and done. Alternatively, it can be
failed or canceled; where the former is due to an
internal error the latter is being triggered by the user.

3.4 Sequential Aspects: Object Flow

For a better understanding of the framework’s inter-
nal process, we provide an example by two sequence
diagrams, shown in figure 4 and figure 6.

The first sequence diagram in figure 4 shows how
a search starts and how it ends, delivering the recom-
mendation objects to the UI. Please mind that we take
some obvious shortcuts, while explaining the object
flows compared to figure 3: First, a Modeler opens
the searchbox (cf. figure 8) and starts typing. After
a neglectable delay, the actual search is started, in-

stantiating strategyProxies for each recommender
search strategy. Since we implemented the frame-
work for multi-threading, the proxies use a schedul-
ing to queue up the actual search, which is eventually
run. Doing so, the recommender search strategies are
working independently, using their algorithm to pro-
duce recommendations. They can return these to the
framework by storing them in their recommendations
set and notifying the framework, which forwards the
notifications all the way up to the registered observers,
i.e., our searchbox. An example of the searchbox
with a list of produced recommendations, provided by
our recommender strategy, is shown in figure 8.

Figure 5: Search States.

As the recommendations are listed in the UI, one
of them can be picked as illustrated in the second se-
quence diagram in figure 6. It illustrates the steps
how a recommendation is selected until it is applied
to an exemplary editor. Again, we omit some obvious
delegations to make the sequence diagram more com-
prehensible: First, the Modeler picks a recommenda-
tion in the searchbox. That invokes an apply() on a
recommendation object, which needs to do some pre-
processing. This is acquiring the context by asking
the recommendation-providing search strategy about
it. In this case, the recommendation was an entry

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

286



Figure 6: Sequence Diagram: pick().

on the WordWeb Online website (Dyck et al., 2013),
which was parsed to several recommendation objects.
Since the strategy knows about its context it returns
an ecoreContext in our example. Now, the apply()
can be started on the retrieved context. Hence, the
recommendation object is taken and transformed into
something that is applicable in an ecoreContext.
This means, because our editor is able to execute
EMF commands, a compound command is created
by invoking createCommands(r) that are executed
on the editingDomain eventually. Note that the
EMF/Ecore-specific editing domain (Steinberg et al.,
2009) is hidden behind the context object.

4 SIMULATION SUPPORT

So far, our model recommender framework provides a
flexible, extensible, yet simple management environ-
ment. This is due to the few hot spots that are needed
for development. In order to ease development and
testing of recommender strategies, we implemented
a simulation environment. It supports the developer
finding malformed recommendation objects and er-
rors while applying them in the context. Moreover,
recommendation strategies, if build properly, can con-
tribute in their very own way to parameter tweaking
as we explain below.

4.1 Simulation Cornerstones

Speaking of simulation, there is a large theory behind
how to design an appropriate simulation that actually
meets the required needs and provides beneficial re-
sults (Banks, 1998). Based on this theory, we need
to define what our object under simulation is, what
we consider as our simulation environment, and what

our simulation model is. Further, we need to define
our simulation protocol. Since this is tightly con-
nected to the simulation concept, it is reasonable to
have glimpse at figure 7 to begin with.

Figure 7: Simulation Architecture.

First, our objects under simulation are recommen-
dations and how they were produced by a recom-
mender search strategy. In general, these recommen-
dations are the results of a transformation of some
source format to a command set which is applicable
in graphical editors. Hence, monitoring these com-
mands is the most promising approach to find out if
a recommendation strategy produces the right recom-
mendations. This makes the simulation a white-box
simulation w.r.t. the recommendations and a black-
box simulation w.r.t. the recommendation strategies;
i.e., disregarding the latter system state variables.

The latter can easily be altered to become a white-
box simulation if the programmer of a recommender
search strategy adheres to certain rules regarding log-
ging. Then, our simulation environment is able to

A�Framework�for�Model�Recommenders�-�Requirements,�Architecture�and�Tool�Support

287



trace the actual production of the recommendation
as well as the recommendation algorithm, which is
applied to the data back end, i.e., the use of can-
didate selection, filtering, and post processing. In
other words, a white-box simulation of recommender
strategies would be a monitoring of system state vari-
ables in terms of simulation theory (Banks, 1998).
Often this is out of reach, so we discuss no more than
the black-box properties first.

Second, our simulation environment is a graphi-
cal editor that is modifiable by a flexible command
framework. This means, a recommendation, which
is a set of commands, produced by a recommender
search strategy, can be applied in this environment.
This makes the whole environment a discrete event
simulation and behaves very similar to GMF gener-
ated editors. They offer editing function through the
EMF command framework, of which we make use of
as well. However our edit command framework needs
to be slightly more flexible, as we need to be able to
react on unknown or malformed commands as well.

Altogether, this environment is stable, yet alter-
able serving as a controllable environment for sim-
ulations. It is stable, because it is stateless, always
producing the same results for the same sequences of
commands. Moreover, it is alterable, since the edit
commands can be altered and extended by new com-
mands to serve new kinds of recommendations.

Third, the simulation model is the foundation for
our environment and needs to be the smallest possi-
ble basis of UML – or EMF models (Steinberg et al.,
2009). This makes MOF – or Ecore – the obvious
choice for the simulation model because they form the
meta foundation in terms of grammars respectively.
In other words, if this meta language is used, every
model defined by it can be dealt with. Hence, this
basis explains why there is a good foundation for the
command framework and why it is as flexible as men-
tioned above. Additionally, these command frame-
works would be quickly exchangeable if another sim-
ulation environment is needed.

Last, the simulation protocols are textual repre-
sentations of attempts to apply recommendations in
our simulation environment. This categorizes our
approach as an activity scanning simulation (Banks,
1998). This is possible, since we have full control
over our environment which would be almost impos-
sible with third party environments. This means, all
attempts and results are logged and can be analyzed.

We avoided to use a DSL as a foundation for the
logging since we wanted it to be usable as easy as pos-
sible. In case we had used a DSL, we would certainly
be able to analyze the simulation traces more quickly,
but we would put this burden on users as well, i.e.,

learning the grammar or even parts of, e.g., xtext.

Figure 8: Simulation UI.

4.2 Simulation Aspects and Concept

As we have set the foundations of our simulation, we
can look into the details of the concept; how they fit
together and what issues could be addressed. We can
subdivide this along figure 7. First, the simulation UI,
which is a replacement for the real editor to be used
later, we can investigate on issues related to collabora-
tion between recommendations and editors. Second,
the recommendation’s consistency is under investiga-
tion as well, i.e., if their application results in valid
models. And, last, the recommendation objects need
to be produced, so the recommender strategy is under
investigation as well.

It can be rather tedious to find out the reasons why
a recommendation results in a rather unexpected ed-
itor canvas. The reasons can be manifold, but the
best approach to find out is using something simi-
lar to a test spy (Meszaros, 2006). In our case the
recommendation should be applied to a canvas; thus,
this should be the test spy. This means the canvas
is replaced with another canvas that is able to record
and log all the actions which are “executed” on it.
This means, for every known command an info mes-
sage is created, while malformed commands result
in warnings and unknown commands result in error
messages. While known and unknown commands are
rather self-explanatory, an example for a malformed
command is one that tries to create a method with pa-
rameter type that is not in the current scope.

All in all our simulation user interface is a rewrit-
ten class editor by means of the Graphiti frame-
work (Eclipse, 2012c). It is enhanced with logging
functionality as mentioned above and serves as a con-

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

288



trolled yet customizable environment. As the com-
mands mirror the real third party editor, successfully
applied recommendations should work in the final en-
vironment as well.

Certainly this requires valid recommendation ob-
jects, but these can be invalid in three ways.
Therefore, each recommendation object needs to be
checked (1) if it produces well formed models. This
can be done by Ecore Tools or other available frame-
works (Eclipse, 2012b). Moreover, (2) the recom-
mendation can be incompatible with the simulation
environment. This would be the case, if a UML com-
mand set was created instead of an Ecore command
set. Last, (3) the recommendation could hold com-
mands that are not denotable by the simulation envi-
ronment. While these errors could be logged as un-
known commands, the semantic is slightly different.
For example, a command set might contain stereotype
information, while the simulation environment is not
able to “understand” these, a whole set of informa-
tion is not applicable. The reason for this could either
be a wrong filtering by the recommendation strategy
or a wrong transformation of the source data to com-
mands. However, both of these issues might be rooted
in a misinterpreted query or insert context.

Regarding how recommendation objects are pro-
duced, some aspects can be monitored, while others
maybe not. For example, a recommendation strategy
has some internals on how to rank and transform ob-
jects which might not be exposed. We can investigate
in- and outgoing data and refer to them as the query
context and the insert context. From them and the pro-
vided data source, we can gain useful information, if
a recommendation strategy works appropriately. For
example, an editing position, which is the text field of
a class name, should not get a recommendation that
wants to create a whole class in this text field. In
this case, we could assume that the post filtering in
the recommendation strategy is not correct and that it
probably did not take into account the query context.

As we make appropriate use of logging in a rec-
ommender strategy, we changed to a white-box simu-
lation. There we can gain insights to the algorithm
and use the system state variables to find errors or
tweak the algorithm. This is possible if the dash-
board was used to generate the recommender strategy
and the logging is used appropriately for parameters
and calculation details. Because only then, we are
able to see how the query and query context lead to
source data, how this source data is ranked, filtered,
and transformed into recommendation objects.

The benefit of using this approach appears to be
that no debugging is necessary and no information
noise as known from debugging environments is dis-

tracting developers. Hence, the developer can focus
on evaluating the parameters, monitoring the rank-
ing, and analyzing the recommendation objects. In
addition, tools like Logback-beagle (Glc et al., 2012)
enable easy gathering and evaluating of the logging,
e.g., “jump to log position”, and thus, allowing easy
tweaking of a recommendation algorithm.

5 CONCLUSIONS

The field of model recommenders is rather new and
will need a lot of research until high-quality recom-
mendations can be produced as in other domains. Un-
fortunately, adjusting the known algorithms and ap-
plying them to models does not work. Thus, we
created a research environment that is meant to en-
able experimenting with model recommender UIs
and model recommender search strategies, i.e., al-
gorithms. This environment comprises a software
framework as explained in section 3 and tool support
in form of an simulation environment as explained in
section 4. It was realized in the context of the HER-
MES project (Ganser, 2013a), it is available as an
Eclipse P2 Updatesite (Ganser, 2013b), and a video
shows its functionality, (Ganser, 2013c).

In more detail, we, first, explained a bit on the con-
ceptual architecture of the actual software and how it
can be extended. The point was that several UIs, con-
texts, and recommender search strategies are required
due to several possible deployment scenarios. Sec-
ond, we elaborated on the details with an exemplary
realization and illustrated the calls in a sequence di-
agram. Last, we described our simulation environ-
ment, which is meant as developer support for devel-
oping and testing recommender search strategies.

In this paper, due to lack of space, we omitted to
mention a further tool support; a dashboard that offers
user guidance and helps to jump-start the framework.
This dashboard guides a user through important con-
figuration steps and creates plug-ins for the hot spots
described in section 3.2. The former comprise ready
to use classes and helpful skeleton source code, along
with all the necessary configurations.

Objectives of publication and future work are:
First, an enhanced context management that provides
more detailed contextual information to recommender
search strategies. Second, a template engine that al-
lows for building place holder into models and offer-
ing user guidance while model templates are applied.
And, last, concepts and algorithms to produce good
recommendations based on enhanced model libraries
like MoCCa (Ganser and Lichter, 2013).

Last, but most importantly, we hope to provide a

A�Framework�for�Model�Recommenders�-�Requirements,�Architecture�and�Tool�Support

289



useful and easy to use framework for model recom-
mender research. We are very excited and curious
about community feedback, since each and every dis-
cussion we had on model reuse, let to the consensus
that there is huge need and potential.

ACKNOWLEDGEMENTS

We would like to thank all our reviewers for their
comments! We would also like to thank Junior
Lekane Nimpa, Daniel Schiller, and Viet Ngoc Tran
for their contributions.

REFERENCES

Banks, J. (1998). Handbook of Simulation: Principles,
Methodology, Advances, Applications, and Practice.
A Wiley-Interscience publication. Wiley.

Bruch, M., Schäfer, T., and Mezini, M. (2008). On Evalu-
ating Recommender Systems for API Usages. In Pro-
ceedings of the 2008 international workshop on Rec-
ommendation systems for software engineering, RSSE
’08, pages 16–20, New York, NY, USA. ACM.

Dyck, A. (2012). Recommender System Architecture for
Ecore Libraries (Master Thesis, RWTH Aachen Uni-
versity).

Dyck, A., Ganser, A., and Lichter, H. (2013). Enabling
Model Recommenders for Command-Enabled Edi-
tors. In MoDELS MDEBE - International Workshop
on Model-driven Engineering By Example 2013 co-
located with MODELS Conference, September 29,
2013, Miami, Florida.

Dyck, A., Ganser, A., and Lichter, H. (2014). On Designing
Recommenders for Graphical Domain Modeling En-
vironments. In Modelsward 2014, Proceedings of the
2nd International Conference on Model-Driven Engi-
neering and Software Development, Lisbon, Portugal,
7.-9. January 2014. SCITEPRESS.

Eclipse (2012a). Code Recommenders. http://www.eclipse.
org/recommenders/.

Eclipse (2012b). Ecore Tools. http://wiki.eclipse.org/ in-
dex.php/Ecore Tools.

Eclipse (2012c). Graphiti. http://www.eclipse.org/graphiti/.
France, R., Bieman, J., and Cheng, B. (2007). Repository

for model driven development (ReMoDD). In Mod-
els in Software Engineering, volume 4364 of Lecture
Notes in Computer Science, pages 311–317.

Ganser, A. (2013a). Reusing Domain Engineered Artifacts
for Code Generation – The HERMES Project (Har-
vesting, Evolving, and Reusing Models Easily and
Seamlessly). http://goo.gl/4LRdN.

Ganser, A. (2013b). The HERMES Project - Eclipse P2
Updatesite: HERMES.reuse. http://goo.gl/ZGxIf.

Ganser, A. (2013c). YouTube: Model Autocompletion
Demo. http://goo.gl/fqwxl.

Ganser, A. and Lichter, H. (2013). Engineering Model
Recommender Foundations - From Class Comple-
tion to Model Recommendations. In Modelsward
2013, Proceedings of the 1st International Conference
on Model-Driven Engineering and Software Develop-
ment, Barcelona, Spain,19.-21- February 2013, pages
135–142. SCITEPRESS.

Glc, C., Pennec, S., and Harris, C. (2012). Logback-beagle.
http://logback.qos.ch/beagle/.

Hummel, O., Janjic, W., and Atkinson, C. (2008). Code
Conjurer: Pulling Reusable Software out of Thin Air.
Software, IEEE, 25(5):45–52.

Janjic, W., Hummel, O., Schumacher, M., and Atkinson,
C. (2013). An Unabridged Source Code Dataset for
Research in Software Reuse. In Proceedings of the
10th Working Conference on Mining Software Repos-
itories, MSR ’13, pages 339–342, Piscataway, NJ,
USA. IEEE Press.

Kuhn, A. (2010). On recommending meaningful names in
source and UML. In Proceedings of the 2nd Inter-
national Workshop on Recommendation Systems for
Software Engineering, RSSE ’10, pages 50–51, New
York, NY, USA. ACM.

Lucrdio, D., de M. Fortes, R., and Whittle, J. (2010).
MOOGLE: A Metamodel-based Model Search En-
gine. Software and Systems Modeling, 11:183–208.

Mazanek, S., Maier, S., and Minas, M. (2008). Auto-
completion for diagram editors based on graph gram-
mars. In Visual Languages and Human-Centric Com-
puting, 2008. VL/HCC 2008. IEEE Symposium on,
pages 242–245.

Meszaros, G. (2006). XUnit Test Patterns: Refactoring Test
Code. Prentice Hall PTR.

Pree, W. (1996). Framework Patterns. SIGS Books and
Multimedia, New York.

Sen, S., Baudry, B., and Vangheluwe, H. (2008). Domain-
Specific Model Editors with Model Completion. In
Giese, H., editor, Models in Software Engineering,
volume 5002 of Lecture Notes in Computer Science,
pages 259–270. Springer Berlin Heidelberg.

Sprague, R. H. (1980). A Framework for the Development
of Decision Support Systems. MIS Q., 4(4):1–26.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

White, J. and Schmidt, D. C. (2006). Intelligence Frame-
works for Assisting Modelers in Combinatorically
Challenging Domains. In In Proceedings of the Work-
shop on Generative Programming and Component
Engineering for QoS Provisioning in Distributed Sys-
tems at the Fifth International Conference on Gen-
erative Programming and Component Engineering
(GPCE), page 90.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

290


