
On Designing Recommenders for Graphical Domain Modeling
Environments

Andrej Dyck, Andreas Ganser and Horst Lichter
Software Construction, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

Keywords: Model, Recommender, Recommender Systems, User Interface and Interaction, Modeling Support, Survey.

Abstract: Recommender systems for source code artifacts are newly emerging and are now successfully supporting pro-
grammers. Their underlying knowledge bases, recommender algorithms, and user interfaces are well studied.
Integrated into the development environment, they do a fairly good job in reducing complexity and develop-
ment time.
In contrast, research in recommender systems for domain modeling is widely missing. As a matter of fact,
knowledge bases, studied as model libraries, are only a possible foundation but concerning recommender al-
gorithms and user interface design research needs to be conducted.
Hence, we provide some foundations for graphical user interface design by answering how domain model rec-
ommender systems should look and feel like in graphical environments. To do so, we conducted a three-phased
survey relating to modeling of UML class diagrams. Most importantly, we found that various user interfaces
are required to meet different user needs. Finally, several algorithms are desired for diverse knowledge bases
and diagram types; hence, leading to a demand for a flexible recommender architecture.

1 INFORMATION OVERFLOW

In order to make use of masses of information, sev-
eral approaches emerged. Most popular among these
are certainly recommender systems (Resnick and Var-
ian, 1997). These became famous through Ama-
zon (Linden et al., 2003) and Netflix (Bennett and
Lanning, 2007), which recommend related products
alongside search results. For example, a query for a
book or video also presents products that were bought
or viewed by customers with similar liking. In doing
so, product portfolios become much more accessible
for customers and they are not drowning in informa-
tion overflow any more. In other words, recommender
systems help users to overcome the information over-
load problem by exposing users to the most interest-
ing items, and by offering novelty, surprise, and rele-
vance (Systems, 2009).

Looking into software development, the amount
of artifacts is steadily increasing as well and manag-
ing these became a major issue in lots of develop-
ment projects. One kind of these artifacts is source
code. Hence, state of the art integrated develop-
ment environments (IDEs) offer query mechanism
and code completion functionality to ease informa-
tion overflow. Furthermore, ideas from recommender

systems were recently adapted to bolster code reuse.
For example, an Eclipse project called Code Recom-
menders learns from existing code bases to provide
best guesses of what the programmer might want to
do next (Bruch, 2012), (Bruch, 2008), (Weimer et al.,
2009), (Eclipse, 2012). This means, as a programmer
just created a new text object (cf. figure 3) the code
recommender will offer a set of methods which other
programmers invoked on such objects.

Other artifacts, which are often designed in soft-
ware development, are domain models. Unfortu-
nately, there is no recommendation support for mod-
elers available yet. This is quite surprising, since a lot
of effort has been put in researching model libraries
and how to preserve modeling experience. Hence, the
data which could form the knowledge base for a rec-
ommender is available, but, to the best of our knowl-
edge, no efforts have been undertaken to make it rea-
sonably accessible. This means, recommender algo-
rithms and user interfaces are unavailable.

In fact, modeling tools are lacking in usability and
barely support modelers beyond model validation and
automatically arranging elements (Bobkowska and
Reszke, 2005). As a consequence, modelers need
to integrate models from knowledge bases manually
from such sources if found at all (cf. figure 1). This

291Dyck A., Ganser A. and Lichter H..
On Designing Recommenders for Graphical Domain Modeling Environments.
DOI: 10.5220/0004701802910299
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 291-299
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



Model 

Library 

IDE 

paste / modify 

Figure 1: Model Reuse: How it is.

Model 

Library 

IDE 

recommend 

Figure 2: Model Reuse: How it should be.

means, each time modelers want to reuse models from
a library, they are distracted from modeling because
they need to mediate between the modeling tool and
the model library. Obviously, this has most likely
a negative impact on the time spent and the quality
achieved in modeling; therefore, making model reuse
unappealing.

We want to put forward a design for an integrated
recommender as illustrated in figure 2. Here, the de-
veloper interacts with the modeling tool only, which
uses model libraries and recommender algorithms to
recommend models for reuse. Unfortunately, there
is no common sense on how a user interface should
look and feel like. This is why we conducted a three-
phased survey to find out how a graphical recom-
mender should look and feel like for domain model-
ing. First, we study existing approaches from related
domains in section 2. Second, we define the survey in
section 3 explaining our methodology in section 3.1
as a three-phased approach. After that, we analyze
the results in section 4 and discuss further ideas in
section 4.4. Finally, we conclude with highlighting
the most important findings and discuss future work
in section 5.

2 RELATED RECOMMENDERS

Until lately, most recommender systems have been
mostly tied to the web, e.g., as part of commercial
systems, such as Amazon’s recommenders. However,
recommender systems specific to software engineer-
ing are emerging to assist software developers in a
wide range of activities including code reuse (Robil-
lard et al., 2010). Most of these systems are inte-
grated in an IDE and suggest software artifacts, such
as code snippets, and focus on “you might like what
similar developers like” scenarios. A detailed discus-
sion is provided by Happel and Maalej in (Happel and
Maalej, 2008).

Three code recommender systems have inspired
us. First, the project Code Recommenders is a recom-

mender system for the Java programming language
and is integrated into the Eclipse IDE (Bruch, 2012),
(Bruch, 2008), (Weimer et al., 2009), (Eclipse, 2012).
It comprises various intelligent code completion en-
gines and documentation providers. For example, its
intelligent call completion recommends only methods
which will most likely be called at the current editing
position (cf. figure 3).

Figure 3: Code Recommenders’ Call Completion (Eclipse,
2012).

Code Recommenders’ dynamic templates com-
pletion take this to the next level by recommending
a complete sequence of method calls. To this end, it
uses available open-source code repositories analyz-
ing common code structures. These code templates
can serve as additional documentation that quickly
shows how an API can be used, and thus, save de-
velopers’ time with APIs they are not familiar with.

Second, SnipMatch recommends common code
snippets similar to Code Recommenders’ dynamic
templates. However, here the developer queries the
system describing the task they want to accomplish
(cf. figure 4) (SnipMatch, 2012).

Figure 4: Querying SnipMatch (SnipMatch, 2012).

SnipMatch is now part of the Code Recom-
menders project.

Last but not least, Code Conjurer is a recom-
mender system that uses code-search engines to de-
liver high-relevance software-reuse recommendations
with minimal disturbance to a developer’s work-
flow (Hummel et al., 2008). It seamlessly integrates
code search and reuse functionality into the Eclipse
Java development environment, and thereby, allow-
ing the developer to search for reusable code, for
example, by defining unit tests (test-driven search).

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

292



Code Conjurer delivers code recommendations as re-
sults which satisfy the tests and even generate adapter
classes to match the interface specified in the tests, if
needed.

3 SURVEY

With model libraries and autocomplete functions of
IDEs in mind, we had a vision of bringing these two
together to gain easy access from graphical model-
ing environments. To the best of our knowledge, ex-
isting autocomplete functions in modeling tools have
barely exceeded completion of textual elements. In
fact, an autocomplete function gives proposals for all
possible syntactical tokens within a certain syntacti-
cal position. However, the graphical syntax of mod-
els, e.g., class diagrams, is fairly simple. Thus, in-
stead of an autocomplete function, we now consid-
ered recommender systems, which then could recom-
mend restructuring of a model w.r.t. the semantics of
that model. In the interests of simplicity, we have re-
stricted ourselves in this survey to class diagrams and
tools to design such.

There already exist recommender systems embed-
ded into IDEs focusing on code reuse. However, if
one considers modeling as a graphical task, one could
imagine that the model recommender UI has to differ
from UI of textual recommenders. Moreover, the rec-
ommender system can be triggered, either re-actively
by the user, or pro-actively by the system. As a con-
sequence, we have to consider different UIs for both
cases. In this survey, we studied possible interac-
tions with different UIs for recommending models
and asked users what recommendations for class di-
agrams could be. As a constraint, we assumed that an
ideal interaction is embedded into the modeling envi-
ronment.

3.1 Methodology

The conducted survey consists of three phases in
which we determined possible UIs for a model rec-
ommender. Starting with brainstorming and sketch-
ing mock-ups, we continued with guided interviews,
and finally, we collected further opinions with an on-
line questionnaire.

In the first phase, we did several sessions of brain-
storming, where we gathered ideas for a model rec-
ommender system and sketched mock-ups showing
possible graphical user interfaces (GUIs). We used
the mock-ups to show users what a GUI might look
like.

In the next phase, we conducted guided interviews
with several Ph.D. students in order to refine and im-
prove the designs. Since all of the participants have
an extended knowledge in modeling and user inter-
face design, we included a brainstorming session at
the end of these interviews as well. Here, the partic-
ipants should consider themselves using a build tool
and wonder if and how it would blend in and support
their modeling. This unveiled further design and in-
teraction ideas, which we discussed iteratively with
other Ph.D. students.

In the last phase, we condensed the gathered ideas
and put them into an online questionnaire. The over-
all goal of this was twofold. First, we wanted to get
participants opinion on how beneficial each user in-
terface would be, and second, we wanted to stimu-
late further thinking on the topic. Hence, thoughts
on this topic could be noted at the end of the ques-
tionnaire. The participants in this phase can be sub-
divided into three groups. Firstly, related team mem-
bers from the research project were asked to fill out
the questionnaire. Secondly, computer science stu-
dents in general were asked to participate. Lastly, we
posted a link on a modeling board asking members to
contribute (EMFBoard, 2012).

3.2 Conducted Survey

As prototyping is an important technique to reduce
risks by identifying design flaws before implementing
the actual system, we have drawn mock-ups upfront
and in multiple steps. While iterating over model rec-
ommender UI sketches in the brainstorming sessions,
we tried to answer the following questions: How
should the system be triggered best? What should
the GUI look like? How could recommendations be
presented, previewed, and picked? In order to focus,
we restricted our survey to class diagrams as mod-
els and assumed the modeling software is used on a
PC with a pointing device, e.g., computer mouse, and
keyboard. Our ideas of a model recommender and its
GUI evolved with each session of brainstorming.

After having collected several ideas and sketched
GUI mock-ups in brainstorming sessions, we de-
signed a guided interview, which was conducted with
five Ph.D. students at the department at our univer-
sity. Two of the interviewees assessed themselves
as modeling experts, two as advanced modeler, and
one as a beginner. All interviewees have experi-
ence with today’s modeling software like AgroUML,
AndroMDA, EMF, IBM’s Rational Architect, Yatta’s
UMLLab, Visual Paradigm, and other tools.

We started an interview by introducing recom-
mender systems like Amazon’s “Customers Who

On�Designing�Recommenders�for�Graphical�Domain�Modeling�Environments

293



Bought This Item Also Bought”-recommendations
and Code Recommenders for programming Java with
Eclipse as explained above. Then, we asked the in-
terviewees what they think would be useful to be rec-
ommended while modeling and if they miss a recom-
mender system in today’s modeling software. More-
over, we asked them how they could picture the user
interaction with a possible recommender system for
modeling software, e.g., how the system should be
triggered, or how the results and previews should be
displayed. Finally, we showed our mock-ups to en-
courage further discussion. An interview lasted about
60 minutes on average.

Having all the results in mind, we designed a ques-
tionnaire, which was published online eventually. The
questionnaire was subdivided into four sections: The
first section covered general questions about model-
ing with software, about a possible recommender sys-
tem in modeling tools, about EMF, and questions re-
garding our mock-ups. Therefore, after introducing
the recommender system as an “intelligent autocom-
plete function” for class diagram modeling tools, we
asked for the modeling expertise and if they used soft-
ware tools for modeling. Moreover, we wanted to
know if existing models are reused and where the
users get these models from. The second section cov-
ered the question if participants ever missed a recom-
mender system in today’s modeling software. Fur-
thermore, we were interested in what recommenda-
tions participants consider to be useful. In the third
section the “Eclipse Modeling Framework” (EMF)
arouse from curiosity how popular this framework is
and how pleasant the work with it’s editors is. It will
not take any role in our results since it was not the
focus of this survey. Still, these information can be
used to study correlations in more details which is out
of focus here. In the last section, we presented our
mock-ups in a slide show and examined how appeal-
ing the mock-ups appeared. Moreover, we questioned
what keyboard shortcuts participants expect and what
kind of preview would fit best for small and big dia-
grams. Finally, we gave participants the possibility to
add additional thoughts.

A participation in this survey took eight and a half
minutes to fill in on average (standard deviation: five
minutes). The survey was open for three weeks.

4 SURVEY RESULTS

As this survey was subdivided into three phases,
we dedicate a results section to each; the mock-ups
phase, the guided-interviews phase and the online-
questionnaire phase.

4.1 Mock-ups

Initially, we experimented with sketchy mock-ups to
do reasoning on how a recommender system for mod-
eling tools might look and feel like. We explain this
reasoning because we were following the questions
mentioned subsequently:

1. How is the Recommender System triggered?
In general, there are two ways to trigger a recom-
mender. First, re-active triggering, meaning informa-
tion is provided after an explicit user request. This
is comparable to source code autocomplete which is
triggered by keyboard shortcuts in general. Second,
with pro-active triggering the system identifies cer-
tain situations based on the users context and give
recommendations automatically in a continuous, non-
disruptive way. Happel et al. state that pro-active trig-
gers are important to be considered for recommender
systems and that current recommender systems do
rarely follow this concept (Happel and Maalej, 2008).
For example, such pro-active recommender systems
exist in other areas; e.g., recommendations in e-shops
like Amazon (Schafer et al., 1999) (Linden et al.,
2003), context-aware traveler agents (Felfernig et al.,
2007) (Al Tair et al., 2012), or recommendations
while writing documents, e.g., manuals (Puerta Mel-
guizo et al., 2007). Mind that the decision whether to
use re-active or pro-active triggers has a strong impact
on the GUI.

2. What does the GUI Look Like? The GUI is
heavily influenced by the kind of trigger. Thus, we
created GUI mock-ups accordingly. First, for a re-
active recommender system we were inspired by auto-
complete functions from IDEs. Since a modeling can-
vas in general is a graphical editor, we designed fig-
ure 5 to what we call a Searchbox similar to the GUI
of the Eclipse plug-in SnipMatch (SnipMatch, 2012).
The Searchbox is activated by a keyboard shortcut and
provides a textfield, where the user can enter a query.
The query together with the context, i.e., the current
model, define the context for recommendations.

Figure 5: Re-active Recommender.

Second, a pro-active recommender system should
present information related to the current context

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

294



Figure 6: Pro-active Recommender.

only. Moreover, the recommendations should be pre-
sented in an unobtrusive manner since presenting pro-
active information can be easily disturbing. In fig-
ure 6, we designed a list of recommendations in a
separate window (lower left corner). This list is up-
dated along the context, e.g., if a class is selected or
added. A minimalist pro-active GUI can be a text field
depicting the status by updating the number of recom-
mendations found. Here, a user needs to request the
listing of recommendations explicitly.

Figure 7: Classes Overlay.

Figure 8: Attributes Overlay.

Third, overlays might integrate the user interac-
tion into the canvas (see figure 7 and figure 8). Those
are activated automatically or manually by the user.
Considering recommendations that alter elements, we
need to adapt the overlays to put emphasis on the
changes. Mind that this should be used only for re-
active recommendations since it most disturbing.

3. How are the Recommendations presented?
The most common ways to display recommendations
are lists and overlays. Lists could hold entries, which
are either textual, as shown in figure 5, graphical, or
both as depicted in figure 6. Here, one has to con-
sider the amount of recommendations shown in the
list. Bollen et al. studied the choice overload effect
in recommender systems (Bollen et al., 2010). Their

findings have implications for the design of recom-
mender system user interfaces; in particular, a recom-
mendation set that contains between five and twenty
items works best.

The overlay approach tentatively integrates rec-
ommendations into the diagram. For example, fig-
ure 7 shows how this might look like and depicts a
preview of a possible result. But, there are two prob-
lems with this approach. First, the display space is
limited, which might hide overlays or might cause
overlapping. Second, recommendations that alter or
remove elements in the diagram are difficult to stress.

4. How can a Recommendation be previewed?
We sketched two kinds of recommendation previews.
Figure 9 shows a graphical preview as a thumbnail,
which can either be a box appearing next to the selec-
tion or an outline window. Further, previews can be
overlays as depicted in figure 10. Again, we have to
consider display limitations and altered elements.

Figure 9: Thumbnail Preview.

Figure 10: Overlay Preview.

5. How does the User Pick a recommendation?
This question is strongly influenced by the presenta-
tion of recommendations. First, lists allow double-
click actions (see figure 6) or press-enter-key actions
(see figure 5). Second, overlay GUIs allow double-
click actions as well, but this interaction is not in-
tuitive for most users. Therefore, a plus-button as
shown in figure 7 and figure 8 might be the better al-
ternative. In addition, a minus-button could indicate
remove actions. Additionally, lists might have plus-
buttons like in figure 6. Last, a list of recommenda-
tions in a separate window as shown in figure 6 allows
drag-and-drop actions. The advantage over an inser-

On�Designing�Recommenders�for�Graphical�Domain�Modeling�Environments

295



tion, which includes an auto-layout, is that the user
can place elements properly.

4.2 Guided Interviews

All interviewees had no or little knowledge of recom-
mender systems. After a short introduction, they had
a vague idea of recommender systems, but could not
transfer this idea to modeling. One of the intervie-
wees said: “I can hardly imagine recommendations
[in modeling], yet.”. But after providing a domain and
an example how to recommend classes and relation-
ships, they got a good idea about it. Still, few intervie-
wees were unsure if such a system would help expert
modelers. Hence, one of the experts mentioned:

“Before I start modeling, I already have a
coarse model in mind and know how to pro-
ceed. A recommender system would have to
know the semantic meaning of what I am mod-
eling to give proper recommendations.”

One of the interviewees noted “I cannot imagine how
recommendation of class or entity names can work.”
The suggestion was recommending “reusable bigger
components”. Additionally, some interviewees were
concerned about over-automating modeling:

“One should avoid the system to be annoy-
ing. [..] Consider the auto correction in to-
day’s mobile phones. If the system thinks I
misspelled a word and auto correct the word,
I have to delete this word and retype. This cre-
ates frustration.”

Finally, we exhibited the mock-ups and the intervie-
wees gave hints for improvements. Regarding the pre-
view of recommendations one of the experts argued:

“Just a graphical representation [the preview]
of recommendations is not sufficient, but is a
nice aid. However, a text-only representation
is sufficient for me.”

Another interviewee added: “Overlays [ed., see fig-
ure 10] are cool, but can be disturbing. Especially if
they are shown in a full screen model.” To sum up the
interviews, there were concerns about the use of rec-
ommender systems in modeling, but the interviewees
were curious about the system. Yet, after we imple-
mented a functional prototype, first of all the expert
modelers said they “badly want this tool: NOW!”.

4.3 Online Questionnaire

After brainstorming, interviewing, and pretesting the
survey, we presented the survey to a broader audience
asking to participate. We found great curiosity in such

a system in the EMF modeling community. Surpris-
ingly, we got slightly different results compared to the
interviews. On the one hand, nearly half of the par-
ticipants wanted a recommender system for modeling
editors right away. On the other hand, a large percent-
age of the surveyed did not know if they could be able
to make use of such a system.

The first result is actually not part of the question-
naire, but it shows how the community responded: We
created a thread in the Eclipse-Forum at the model-
ing community with the title “An ”intelligent” auto-
complete function for Ecore diagram editors” (EMF-
Board, 2012). The title did not contain any words
like “survey” or “questionnaire” on purpose, since we
wanted to test curiosity on this topic. After introduc-
ing our research topic, we asked the people to partic-
ipate in our survey. This post got about 600 views in
less than 24 hours, while most other post never get
this many views at all. At the end of the survey, this
post had about 2400 views. Compared to other posts
on the board only “really hot topic”-post get this many
views. Thus, we can conclude that the modeling com-
munity has a great interest in an autocomplete func-
tion or a recommender system for models.

In total, forty (40) beginner, advanced and expert
modelers filled out our questionnaire. Each question
was answered by thirty-nine (39) participants on aver-
age, since, we did not make questions mandatory. As
a consequence, we only had twenty-nine (29) entirely
completed questionnaires.

Totally 
missed it. 

4 
11% 

Yes. 
10 

29% 
I do not 
know. 

15 
43% 

Why 
should I? 

2 
6% 

No 
4 

11% 

Figure 11: Do you miss a recommender?

Of thirty-nine (39) participants, about 31% con-
sider themselves having a lot of modeling experience,
41% say they have advanced modeling skills and 28%
see themselves as beginners. Only three of those
polled do not use software tools to design class dia-
grams. In a comment field they reasoned why they
are not using software for modeling.

“[Modeling software is] a little bit complex.”

“Hand-drawn sketches are usually enough
[..]. We draw it digitally only when there are
frequent updates, or when we want a perma-
nent documentation.”

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

296



Further, only 33% of these participants reuse mod-
els. Interestingly, this is a high percentage consider-
ing today’s weak support to store and retrieve mod-
els in libraries. However, only one of the participants
uses a team library, the others reuse local files, and
no participant uses libraries like MOOGLE (Lucrédio
et al., 2008), or ReMoDD (ReMMoD, 2012).

Regarding the section about recommender sys-
tems, we first asked if participants miss a recom-
mender system in modeling tools. The majority
(about 43%) unsurprisingly stated that they do not
know (see figure 11). This seems all natural, since
there is no such system in today’s modeling software.
However, approximately 40% are missing this feature
and only 17% do not.

Next, we asked users what they consider as use-
ful recommendations. As one can see in figure 12,
all suggested recommendations were highly appreci-
ated, and a lot of participants voted for design patterns
as recommendations. Moreover, one participant sug-
gested in a free text field to recommend “the normal
usage of the class” (ed., how a class is usually defined
in a specific context).

Class Names Class
Attributes &

Methods

Relationships Best Practice
Diagrams

Design Pattern Types

0

5

10

15

20

25

30

Figure 12: What should be recommended?

In the free-thoughts text field on recommender
systems for class diagram editors, we received many
suggestions. In the following, we briefly present some
of the suggestions. To begin with, one of the par-
ticipants addressed the interaction with a modeling
software and argued: “Although diagramming [ed.,
modeling] is a graphical task, a tool should be totally
keyboard-friendly for entering speed.”

Moreover, users desired a preview for a recom-
mendation in order to get an idea how the model
would look like when the recommendation is applied.
To this end, one surveyed user said: “If the best prac-
tices will be recommended, it were nice to have the
recommendation as an example in a separate part of
the window.”

One participant came up with what we called over-
lays for class attributes and methods (cf. figure 8).

“The attributes/methods of a class can appear

in other color (or better as transparent text),
and if I click on it, it will be asked if I wish
to add the transparent elements to my class or
not.”
Summarizing the results of this questionnaire sec-

tion, we found that a good share did not know if a rec-
ommender system would be useful. However, many
participants would appreciate such a system. Above
all, the participants gave us some great ideas and con-
firmed other ideas of ours, although we have not yet
presented the mock-ups.

Finally, we presented our mock-ups. Before ask-
ing them any specific questions related to the mock-
ups, we wanted to know how appealing they felt. As
we can see in figure 13, most of the participants liked
the presented ideas. Moreover, we can see that the
Searchbox approach in figure 5, the pro-active ap-
proach using the overlays in figure 7 and figure 8, and
the overlay previews in figure 10 are the favorite solu-
tions. The pro-active approach within a separate win-
dow like in figure 6 was not appealing. However, its
drag-and-drop interaction was liked. Last, the screen-
shot preview in figure 9 was not the first choice.

General Feeling

Use of Keyboard
Shortcuts

Searchbox

Screenshot Preview

Pro-active Search

Overlays
Representation

Overlay Preview

Seperate Window

Seperate Window
Drag&Drop

Seperate Window
Plus-buttons

like

neutral

dislike

Figure 13: Mock-up Assessments.

The most striking result is that a lot of these ideas
were liked, but they need to be realized quite differ-
ently. Hence, there is not only one solution for a tool
realizing all of the ideas at hand, but rather a frame-
work with a flexible architecture, which allows vari-
ous options for realizations.

Next, we examined what kind of recommendation
preview appeared more suitable in small (less or equal
15 elements) and big (more than 16 elements) dia-
grams. As shown in figure 14 the overlay preview is
preferred in small diagrams, but the thumbnail pre-
view is not rejected. However, for big diagrams only
a few participants think that the overlay preview is
suitable and prefer the thumbnail preview either in an
outline window or a box like in figure 9.

Furthermore, we were interested in keyboard
friendliness of such a system. To this end, we asked
participants what keyboard shortcuts they expect for

On�Designing�Recommenders�for�Graphical�Domain�Modeling�Environments

297



0

2

4

6

8

10

12

14

16

very well good neutral not good bad

Overlay Thumbnail Box Thumbnail View

Figure 14: Suitable Previews for Small Diagrams.

0

2

4

6

8

10

12

very well good neutral not good bad

Overlay Thumbnail Box Thumbnail View

Figure 15: Suitable Previews for Large Diagrams.

what interaction. We found, that 18 out of 29 partic-
ipants (about 62%) would like to simply start typing
and the searchbox should appear. Additionally, the
common shortcut CTRL/CMD+Enter was suggested
to trigger the recommender system.

Finally, we provided some space for further notes
on recommender systems and mock-ups. As con-
firmed by figure 15, some participants discussed: “At
preview with overlay, you may hide the rest of the
class.” And that “Overlaying UI can be difficult,
when there are a lot of classes around, so a sepa-
rate view [ed., for example as a sub-window] or the
screenshot box should just work fine.”

Furthermore, it seems to be a good idea to show
the overlay representation (cf. figure 7) only if the
user requests recommendations explicitly. One partic-
ipant stated this as “At pro-active search with overlay
preview, show the recommendation only after typing
a keyboard shortcut or a activate button on the class,
but not simply at selecting a class.”

There is another thought for a re-active GUI that
integrates the searchbox into the window, such that
it is always visible: “I’d expect a Searchbox that is
always visible.” To this end, the pro-active GUI in
figure 6 could be extended to provide this query field.

Altogether, the participants showed great interest
in the system, which one participant put as: “The UI
elements are looking pretty nice for me. Interaction
and previews are also OK.” Above all, the findings
suggest that there is a great curiosity in the commu-
nity for such a system.

4.4 Further Ideas

At the end of the interviews and surveys, we offered
some space to state further ideas. We summarize:

Almost all of the interviewees proposed a sys-
tem which might analyze requirement specifications
and recommends models based on that. For exam-
ple, “If one has a domain model in a context of re-
quirement specifications, [..] one could suggest simi-
lar domain models which implements similar require-
ments.” That makes additional knowledge bases a re-
quirement which do not need to be model libraries.

Moreover, one participant hinted at profile-based
recommender systems, i.e., collaborative filtering,
and proposed that “A user should have the possibil-
ity to say ‘I do not want this recommendation, any-
more.’”. Similarly, a collaborative recommender is to
say that “[The system] should be flexible enough to
let users decide about whether something is ‘recom-
mendable’.” One can even extend this idea to a social
rating in order to opt out bad recommendations. Such
a feature is, e.g., implemented in SnipMatch.

Regarding listed recommendations, a participant
proposed a filter to classify, because “It were also
good, if it were possible to classify the given recom-
mendations. [..] [They] will be given only for the
chosen category [..].” Quite similarly, an interviewee
wanted to categorize the recommendations because
there could “be a lot of recommendations. Thus, you
can use accordions or tree views to categorize these.”

Furthermore, a participant yield an idea to provide
descriptions for the recommendations because “you
get info about its usage, advantages and so on.” As
marginal note, such information should be provided
by the underlying model library. However, an archi-
tecture of a recommender system should be as flexible
to integrate this into the UI.

Figure 16: Association Context Recommendation.

Last to mention is that many class diagram edi-
tors support drawing an association into empty space.
This opens a context menu offering to create new el-
ements at the other end of the association (cf. fig-
ure 16). An idea, which has to be examined, is to put
recommendations into this menu, e.g., top five classes
that are associated with the origin class.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

298



5 SUMMARY AND OUTLOOK

The results of this study show that model recom-
menders are new grounds. This is best illustrated
by the about eighty percent of the participants almost
equally split into two groups; who want a model rec-
ommender and who do not know. Other than that, the
results are significant in three major respects.

First, there are several alternative UIs that suggest
different triggering, user interaction, and displaying
recommendations. Most of which are reasonable and
applicable in different circumstances. Most impor-
tantly, the size of recommended models might serve
as a deal breaker if they should be displayed in an
overlay manner. Moreover, changing the type of the
model could change reasoning on alternative UIs.

Second, there seem to be different needs of what
items are recommended. In class diagrams, we
have seen desires for recommendations of classes, at-
tributes, or complex models. E.g., design patterns
were asked for and we are currently investigating on
that. Similarly, a model recommender should not be
limited to a one back-end. Hence, different recom-
mendation algorithms, each of which implementing
another algorithm, need common grounds.

Finally, not only model libraries (e.g., (Ganser and
Lichter, 2013)) are requested as data sources for rec-
ommendations. In project environments, lots of ar-
tifacts are created and could serve as inputs for pro-
ducing recommendations; e.g., a requirements docu-
ment. We can use it to help producing recommen-
dations since this can play the role of a user profile
in terms of collaborative recommender system. Yet,
we are aware of self contradicting requirements spec-
ifications. Moreover, the recommender system might
be used in diverse modeling tools. There is, therefore,
need for multiple recommendation contexts.

All in all, this leads to the need of a flexible and
generic architecture. This can bolster research by of-
fering three options for extensions, namely various
UIs, algorithms, and contexts. Our realization of this
can be found here (Dyck et al., 2014).

REFERENCES

Al Tair, H., Zemerly, M. J., and Al-Qutayri, M. (2012).
Architecture for Context-Aware Pro-Active Recom-
mender System. International Journal Multimedia
and Image Processing, 2(1/2):125–133.

Bennett, J. and Lanning, S. (2007). The Netflix Prize. In
Proceedings of KDD cup and workshop.

Bobkowska, A. and Reszke, K. (2005). Usability of UML
Modeling Tools. In Conference on Software Engineer-
ing: Evolution and Emerging Technologies.

Bollen, D., Knijnenburg, B. P., Willemsen, M. C., and
Graus, M. (2010). Understanding choice overload in
recommender systems. In ACM conference on Rec-
ommender Systems, RecSys ’10, USA. ACM.

Bruch, M. (2008). Towards Control-flow Aware Code Rec-
ommender Systems. In 3rd International Doctoral
Symposium on Empirical Software Engineering 2008.

Bruch, M. (2012). IDE 2.0: Leveraging the Wisdom of the
Software Engineering Crowds. PhD thesis.

Dyck, A., Ganser, A., and Lichter, H. (2014). A framework
for model recommenders – requirements, architecture
and tool support. In Modelsward 2014, PT.

Eclipse (2012). Code Recommenders.
http://www.eclipse.org/recommenders/.

EMFBoard (2012). EMF Forum: An “intelligent” autocom-
plete function for Ecore diagram editors.

Felfernig, A., Gordea, S., Jannach, D., Teppan, E., and
Zanker, M. (2007). A Short Survey of Recommen-
dation Technologies in Travel and Tourism. OEGAI
Journal, 25(7):17–22.

Ganser, A. and Lichter, H. (2013). Engineering model
recommender foundations - from class completion to
model recommendations. In Modelsward 2013, ESP.

Happel, H.-J. and Maalej, W. (2008). Potentials and Chal-
lenges of Recommendation Systems for Software De-
velopment. In International Workshop on Recommen-
dation Systems for Software Engineering.

Hummel, O., Janjic, W., and Atkinson, C. (2008). Code
Conjurer: Pulling Reusable Software out of Thin Air.
IEEE Software.

Linden, G., Smith, B., and York, J. (2003). Amazon.com
recommendations: item-to-item collaborative filter-
ing. Internet Computing, IEEE, 7(1):76–80.

Lucrédio, D., De M Fortes, R., and Whittle, J. (2008).
MOOGLE: A Model Search Engine. In Model Driven
Engineering Languages and Systems, LNCS.

Puerta Melguizo, M. C., Boves, L., Deshpande, A., and
Ramos, O. M. n. (2007). A Proactive Recommenda-
tion System for Writing: Helping Without Disrupting.
In European Conference on Cognitive Ergonomics.

ReMMoD (2012). http://www.cs.colostate.edu/remodd/v1/.
Resnick, P. and Varian, H. R. (1997). Recommender Sys-

tems. Communications of the ACM, 40(3):56–58.
Robillard, M., Walker, R., and Zimmermann, T. (2010).

Recommendation Systems for Software Engineering.
In IEEE Software, volume 27, pages 80–86.

Schafer, J. B., Konstan, J., and Riedi, J. (1999). Recom-
mender Systems in E-Commerce. In ACM Conference
on Electronic Commerce.

SnipMatch (2012). http://www.snipmatch.com/.
Systems, A. R. (2009). http://recsys.acm.org/2009/.
Weimer, M., Karatzoglou, A., and Bruch, M. (2009). Max-

imum Margin Matrix Factorization for Code Recom-
mendation. In ACM conference on Recommender sys-
tems, RecSys ’09, New York, NY, USA. ACM.

On�Designing�Recommenders�for�Graphical�Domain�Modeling�Environments

299


