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Abstract: Typical engineering and verification workflows for safety-relevant systems are performed with many different
tools. For such workflows safety standards like the automotive ISO 26262 require traceability of all V&V-
related work products. Therefore, efficient tool-integration, while ensuring all traceability needs for functional
safety, is a highly relevant topic for industrial domains. Recent research projects like CESAR have addressed
this topic by reusing tools and methods for different workflows in the context of requirements and systems en-
gineering as well as verification and validation. This reuse is done in a Reference Technology Platform (RTP)
with common services and a common understanding of exchanged information based on an Interoperability
Specification (IOS). Recently, OSLC is discussed for such an IOS. The open question is how tools are con-
nected efficiently and how traceability is ensured. This document provides a guideline on how to use the IOS
for engineering workflows performed with different tools based on OSLC. We call it recipe. The recipe was
developed in the MBAT project. It considers a systematic definition of semantic concepts for an IOS ensuring
traceability and the level of granularity required to perform workflows with a set of tools.

1 INTRODUCTION

Workflows related to different engineering disciplines
like requirement definition, system design, analysis,
and testing are typically performed with several dis-
tributed tools. These workflows have to comply with
standards like the automotive ISO 26262 (ISO, 2011)
for functional safety which e.g. requires traceability
of engineering information. Yet, this engineering in-
formation is normally very heterogeneous with regard
to the tools and their interfaces. Lately, Open Ser-
vices for Lifecycle Collaboration (OSLC) has become
a promising approach for tool interoperability (OSLC
Community, 2013). It can be used as a foundation
for an Interoperability Specification (IOS) that en-
ables communication between tools to support engi-
neering lifecycle workflows in a Reference Technol-
ogy Platform (RTP). Typical engineering disciplines
like architecture management or requirements man-
agement are addressed by the semantic concepts of
OSLC. Yet, they are quite generic and do not reflect
workflows that shall actually be implemented in an
RTP. Therefore, the semantic concepts of OSLC must
be extended when implementing workflows with in-
teroperating tools.

This publication addresses a practical problem of
developers responsible for tool integration. They typ-

ically have to create or modify tool adapters to sup-
port workflows and need to comply with existing pro-
cesses and standards. Tool integration effort is a
highly relevant cost factor for industrial projects. Cre-
ation and extension of many point-to-point connec-
tions is very expensive and complicates traceability
required by standards. A logical consequence is the
reduction of interfaces. It is possible to reduce the set
of interfaces to one big meta-model covering the data
models of all tools. Yet, with this approach common-
alities are not shared and traceability is not necessar-
ily enabled. The level of granularity required for the
interfaces and a useful modularization of exchanged
information elements is therefore crucial. An efficient
solution for tool interoperability is tailorable to differ-
ent workflows, implemented with different tools, and
supports traceability.

Our contribution is a development guideline in the
form of a recipe. It allows systematic definition of the
semantic concepts for an interoperability specification
and takes into account the implementation of work-
flows with different tools. The guideline considers
the usage of agreed semantic concepts from existing
meta-models and standards. With this approach a ho-
mogeneous view on the tools is established in which
all information is fully traceable at the right level of
granularity required for the workflows.
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This document is structured as follows. Subse-
quent to this introduction we describe the basic prin-
ciples needed for the proposed guideline and discuss
the related work. In our main section we define the
guideline, which we call “recipe”. Finally, we evalu-
ate the manual application of the recipe for a typical
engineering scenario and finish with our conclusion.

2 BASICS

The guideline for tool interoperability, that we pro-
pose as a recipe, considers some basic concepts which
will be explained in this section. The first is an Inter-
operability Specification (IOS) whose semantic con-
cepts are defined with regard to tools and workflows.
The other basic concept is a Reference Technology
Platform (RTP) with multiple logical layers address-
ing workflows, tools, and interoperability.

2.1 Interoperability Specification

The purpose of the IOS is to provide basic technical,
syntactical, and semantical principles for interoper-
ability between tools. Together with implementation
guidelines, tools can be easily integrated to achieve
specific workflows. The proposed recipe builds upon
the systematic definition of the semantic concepts as
a refinement of OSLC specifications by using meta-
models:
OSLC is an open community project aiming to ease
integration of tools with other tools. The approach
builds upon ubiquitously established internet and
linked-data standards like HTTP, RDF/XML, REST-
ful services, as well as open and extendible minimal-
istic data specifications. RDF/XML provides com-
mon syntax for data resources using a triplet struc-
ture that gives them the form subject-predicate-object.
Resource type specifications contain definitions of
such resources, their semantics, links to other re-
sources, and simple properties. They are defined
based on OSLC core principles like resources and
properties allowing their usage for OSLC-based ser-
vice definitions. Common namespaces such as RDFS
(W3C, 2004), FOAF (Brickley and Miller, 2010) or
DC (Dublin Core Metadata Initiative, 2012) are used
for standardized communication of resource proper-
ties. OSLC resource types are modular with regard
to domains like Requirements Management or Archi-
tecture Management that reflect different engineering
disciplines. Yet, for typical workflows these resource
types need to be extended for which we propose the
usage of meta-models.

Meta-Models consist of concepts, relationships, and
properties with defined semantics. They allow ex-
pressing parameters and results of methods used for
workflows. The meta-model concepts are abstractions
from domain-specific work products and from tool-
specific data elements. As such they are usable to de-
fine interfaces for tools and services that support the
methods. These interfaces can be reused with other
tools that comply with the needed concepts from the
meta-model. For instance methods for requirements
can be performed with tools that can handle require-
ments.

The set of meta-model concepts and relationships
required in an RTP depends on the workflows and
methods that shall be supported. For their support
tool-specific data models must be mappable to these
meta-model concepts and relationships. Since tools
and workflows can vary the meta-model is no static
structure but is flexible with regard to the usage sce-
nario. Therefore, defining one big meta-model cov-
ering all considerable concepts does not help to spec-
ify needed tool interfaces. The meta-model should be
minimalistic with regard to the information exposed
or required by the tools to support the workflows
and allowing traceability of exchanged information.
Yet, the usage of widely agreed concepts from ex-
isting standards like UML/SysML (OMG, 2010) and
EAST-ADL (EAST-ADL Association, 2013) as well
as project results like HRC (SPEEDS Project, 2009),
the SPES 2020 methodology (Pohl et al., 2012), or the
meta-model of the CESAR project (Rajan and Wahl,
2013) for the names of the concepts is highly recom-
mended.

Meta-model concepts and methods are typically
related to engineering disciplines like Requirements
Management or Architecture Management. There-
fore, the meta-model concepts can be associated with
respective modules like the resource types in OSLC.
Such a modular meta-model providing common con-
cepts with the scope of analysis and testing methods
is in development in MBAT (MBAT Project, 2013).

2.2 Reference Technology Platform

A Reference Technology Platform (RTP) is a collec-
tion of tools and services that can interact with each
other to support specific engineering scenarios and
workflows. The RTP includes common principles for
tool interoperability and can therefore be regarded at
three different logical layers (Vasaiely et al., 2012).
These layers are workflow layer, tool layer, and IOS
layer. They are depicted in Figure 1 illustrating a
small RTP example for which the proposed recipe has
been applied.
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Figure 1: IOS and Meta-Model.

Workflows and Work Products: On the first RTP
layer activities and work products of domain-specific
but tool-independent workflows and methods are
described. The work products are part of pre- and
post-conditions of the activities. In Figure 1 the
typical engineering workflow “Allocate requirement
to architecture” is shown as an example. It is
described within all systems engineering standards
(e.g. the ISO 26262) and requires traceability of
architectures and allocated requirements. The pre-
conditon of the workflow is a defined requirement.
The example workflow could consist of activities
like “define architecture” and “allocate requirement”.
Post-condition is that the requirement is allocated to
an architecture.

Tools and Engineering Models: On the second
layer different tools and services are considered
which shall be used to perform the activities of
the workflow layer. Work products are mapped to
elements native to the data models of the tools and
services – we will call them engineering models. In
the depicted example the activities are mapped to the
UML modeling tool Papyrus with an EAST-ADL
profile and to the requirements management tool IBM
Rational DOORS. An architecture as work product
is represented by an EAST-ADL model in Papyrus.
Requirements are stored in DOORS together with the
allocation information.

IOS and Resource Types: The third layer addresses
the IOS and provides basic technical, syntactical, and
semantical principles for the interoperability of tools.
For the semantics of communicated data elements the
IOS layer includes resource types. These resource
types are specifications of concepts, relationships, and
properties. They reflect a meta-model with concepts
and relationships needed for interoperability between
the tools to achieve the workflows.

The meta-model concepts used for the IOS are an
abstraction of data elements that shall be communi-
cated between the tools. This abstraction allows a

common understanding and traceability of informa-
tion shared among the tools by establishing a ho-
mogeneous view. In this view methods required for
workflows can be performed on different tools that re-
late to the same meta-model concepts. All engineer-
ing information in this homogeneous view is traceable
with regard to the traceability concepts of the meta-
model.

As mentioned in Section 2.1 the meta-model con-
cepts can typically be modularized with regard to spe-
cific engineering disciplines like requirements man-
agement or architecture management. Such modules
reflect the role of the tools and their data elements
in a workflow. In the illustrated example the meta-
model concepts Requirement, Satisfy Link, and
Component are identified from the requirement al-
location workflow that is mapped on DOORS and
Papyrus. A Requirement is a concept from Re-
quirements Management expressing a specific need.
A Component is a concept from Architecture Man-
agement expressing a reusable architectural element
that has defined interfaces, which can be decomposed
and which can have an implemented behavior. The
Satisfy Link is a Traceability Management concept
having the semantics that the Component shall sat-
isfy the Requirement. It enables traceability required
for the allocation of requirements to architectures
given by component models. On the IOS layer the
corresponding resource types ios rm:Requirement,
ios tm:SatisfyLink, and ios am:Component are
defined all representing the respective meta-model
concepts and modules.

3 RELATED WORK

In this section related work done in research projects
is discussed and used to motivate our approach.
The topic of tool interoperability has been discussed
in many research projects like CESAR or iFEST.
Several commercial platforms and freely available
frameworks support tool interoperability like Enovia
from Dassault Systèmes, ModelBus from Fraunhofer
FOKUS, the ATHENA Interoperability Framework,
EIF or IADBC. Many recent approaches are related
to OSLC. On the commercial side OSLC is supported
by the Jazz platform from IBM.

Partners of the iFEST project (Zhang et al., 2012)
propose an artifact model and the usage of OSLC-
technologies for implementing adapters. They real-
ize interoperability between tools in contrast to our
solution directly by accessing tool APIs. The arti-
fact model allows an abstraction of tool-specific meta-
model elements as artifacts and considers trace-links
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between such artifacts in different tools. Yet, special-
izations of artifacts are tool-specific. Semantic com-
monalities for engineering disciplines or different en-
gineering domains are not considered for the model.
The approach allows light-weight tool integration and
traceability by using the generic artifact concept for
information exchange. It does not abstract from tool-
specific data to common meta-model concepts that
support the implemented workflows.

CESAR partners (Vasaiely et al., 2012) discuss
a common interoperability approach for heteroge-
neous tool environments. The approach consid-
ers an open interoperability specification including
a service-oriented architecture, a common data for-
mat with defined syntax like RDF and semantics as
well as common communication protocols like HTTP
and REST. These principles are those addressed by
OSLC. The approach considers an interoperability
specification as part of a layered RTP as described in
section 2.2. Each layer has semantic concepts. It is
mentioned that those on the IOS layer can be based
on OSLC domain specifications but typically require
additional concepts and shaping with regard to higher
domain layers. Yet, it is neither defined which con-
cepts should belong to this layer nor it is defined how
the concepts are chosen to support specific engineer-
ing workflows.

In our prior work (Baumgart et al., 2012) we pro-
posed the usage of a meta-model as semantic model
to define common interfaces that support tool interop-
erability in an RTP. The meta-model was developed
in CESAR and addresses different topics of systems
engineering like requirements, component-based de-
sign or verification and validation. The idea is that
the common interfaces establish a homogeneous view
on a heterogeneous set of tools that shall interact with
each other. Tools can be easily integrated into this
view as data-repositories by implementing the inter-
faces in tool-adapters. Other tools can be integrated
as clients and use the common interfaces for engi-
neering scenarios independently from those tools they
interact with. Yet, in this prior work we did not men-
tion how meta-model types are derived for the inter-
faces with regard to engineering workflows that shall
be supported.

In contrast to the approaches discussed above our
recipe addresses interoperability with OSLC by iden-
tifying and adapting semantic concepts based on ex-
isting models to enable a specific workflow on differ-
ent integrated tools.

4 THE RECIPE

Our recipe for tool interoperability targets a system-
atic implementation of an IOS fitting the needs of
workflows and methods that shall be achieved with
different interoperating tools. Like a cooking recipe,
we describe the ingredients in terms of work products
and steps that need to be performed. These steps and
work products are depicted in Figure 2. The recipe
considers five steps which will be described in detail
in the following section together with the prerequi-
sites and the expected outcome.

Engineering Model Elements

Identify engineering model 
elements exposed by tools

Engineering Model Elements
Scenario 
mapped 
on tools

Common Meta-Model Concepts

Define common meta-model 
concepts

Common Meta-Model Concepts

OSLC Resource Types

Identify OSLC resource types 
matching meta-model concepts

OSLC Resource Types

IOS Resource Types

Refine OSLC resource types 
towards meta-model concepts

IOS Resource Types

Existing 
Meta-Models
and 
Standards

OSLC 
resource type 
specifications

IOS Implementation

Implement the resource types

Figure 2: The Recipe with its inputs, outputs, and steps.

4.1 Prerequisites

Before applying the recipe it is assumed that a work-
flow or method with activities and work products is
defined and mapped to involved tools. Therefore, it
is defined which activities are performed with which
tools. In particular, it is also defined how the work
products are represented by the tools and their engi-
neering models.

4.2 Identify Engineering Model
Elements exposed by Tools

In a first step all relevant engineering model elements
are identified. Relevant elements are those provided
or consumed by the tools in order to perform the ac-
tivities that are mapped to the respective tools. The
step is done when all engineering model elements of
the tools are identified which represent work products
of the scenario activities. It is not necessary to look
deeper into further details of the engineering models
because all model elements, relationships, and prop-
erties needed to support the workflow or methods are
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identified by now. The outcome of this step is a min-
imal set of engineering elements that is sufficient to
implement the methods or scenarios with the tools.

4.3 Define Common Meta-Model
Concepts

In a second step a meta-model is defined for the iden-
tified engineering model elements. The meta-model
is an abstraction of these elements and must be rich
enough to cover them. It shall on the one hand repre-
sent the commonalities of the engineering model ele-
ments and on the other hand represent their specifics
where needed. Generally the meta-model must cover
all traceability needs coming with the workflows to
be implemented with the tools and their engineering
models.

Granularity depends on the information needed
for the implementation of the workflows with the
tools. Therefore, the concepts of the meta-model can
be defined in a granularity range between the full en-
gineering model and only abstract artifacts and re-
lationships. For example if single components have
to be assigned to an implemented behavior in a sim-
ple traceability scenario, the meta-model must only
provide abstract concepts for components, behavior,
and the implementation link between them. Yet, in a
more enhanced integration testing scenario the single
components have to be more detailed and are imple-
mented and interconnected via their ports with other
components to form a component architecture. In this
case also the information about the parts of the com-
ponent architecture, the ports, the implemented in-
terfaces and the interconnections is needed. The re-
quired level of abstraction can be even finer and very
specific to an engineering model. A typical example
is a tool-specific formalism used to define the imple-
mented behavior.

The meta-model concepts should be defined based
on already existing concepts. Many concepts, rela-
tionships, and properties are provided by standards or
project results as described in Section 2.1. Typically,
the exact scope of the workflow at hand varies, but
concepts can be reused and extended in a way that
the workflow is supported. Trace-links between el-
ements should be represented explicitly as elements.
This allows bidirectional relationships with additional
attributes, direct traceability of proof obligations, and
external storage of links for tools that do not support
additional relationships.

This step of the recipe is finished when the meta-
model is rich enough to cover every identified engi-
neering model element, relationship, and property. In
the end, every identified engineering object is mapped

to a corresponding concept, relationship, or property
in the meta-model. Therefore, it is ensured that the
meta-model can be used to express the work products
of the workflow and to implement it with the tools.

4.4 Identify Matching OSLC Resource
Types

In a third step, all concepts, relationships, and proper-
ties of the meta-model are mapped to OSLC resource
types. The OSLC project defines several domains for
typical engineering disciplines specifying resource
types with specific links and properties. Therefore,
the meta-model concepts are grouped with regard to
engineering domains and then they are mapped to re-
source types. The relationships and properties of the
meta-model concepts are mapped to existing links and
properties defined by the OSLC resource types where
applicable. Examples of OSLC domains are the Re-
quirements Management (OSLC RM) which defines the
basic requirement resource type and the Architecture
Management (OSLC AM) which defines abstract archi-
tecture resources and links.

If a meta-model concept cannot be mapped to a re-
source type of an existing OSLC engineering domain
then it has to be mapped to a Resource as defined by
the OSLC Core.

The step is done when all meta-model concepts
are mapped to OSLC resource types and when all re-
lationships and properties of the meta-model concepts
are processed and mapped to links and properties of
the resource types where applicable.

4.5 Refine OSLC Resource Types
towards Meta-Model Concepts

In a fourth step the OSLC resource types are re-
fined. The purpose of this refinement is to support the
level of granularity required for the workflows on IOS
level. This level of granularity is given by the iden-
tified meta-model concepts, relationships, and prop-
erties that are mapped to the OSLC resource types.
Therefore, OSLC resource types must be made fully
compliant to the concepts, relationships, and prop-
erties of the meta-model. Further type information,
properties, and links maybe needed. By adding them
to the OSLC resource types, refined IOS resource
types are defined that support the level of granularity
required for the workflows.

The refinement of the resource types is done in
a systematic way. All mappings of meta-model con-
cepts to OSLC resource types are processed. If the
identified OSLC resource type is fully representing
the mapped meta-model concept with its properties

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

304



and relationships then the step is done for that meta-
model concept. Typically, the corresponding OSLC
resource type is not fully sufficient to represent the
meta-model concept. Thus, it has to be extended to-
wards the respective meta-model concept.

The extension of an OSLC resource type towards
a meta-model concept is also a systematic procedure.
The OSLC resource type is considered as a base type.
The meta-model concept must become visible as a
refinement. This can be done by defining an own
namespace and a URL for the identification of the
meta-concept as resource type. This resource type
URL is simply added to the definition of the resource
type. Typically, the type of an OSLC resource is iden-
tified either by the URI of an RDF node or the value
provided with the rdf:type. Therefore, the addi-
tional resource type URL identifying the meta-model
concept is either one of a set of RDF types or it is the
identifier of the RDF node. This can be formulated as
a constraint as part of the description of the resource
type.

As an example the meta-model concept of
a Component is defined related to the Architec-
ture Management engineering domain. There-
fore, the concept of a Component is mapped to
the OSLC Architecture Management resource type
(AM) Resource as base type. In order to iden-
tify Component as extended resource type a URI is
defined for that type which addresses the concept
and its namespace. In this example the namespace
is IOS AM and has a URI http://ios.artemis.
eu/am# with a defined prefix ios am. Therefore, a
Component resource can be identified via the URI
http://ios.artemis.eu/am#Component or via the
shorter prefixed URI ios_am:Component. The
rdf:type is constrained in its description that it must
contain the URIs ios_am:Component and oslc\am:
Resource if not already addressed by the RDF node
identifier. Thus, a Component resource is understood
as Component and as OSLC (AM) Resource.

For the extension of an OSLC resource type to-
wards a meta-model concept also the additional ref-
erences and properties of the meta-model concept
have to be made available. Therefore, for each
reference or property an OSLC link or property is
defined extending the specification of the resource
type. It is highly recommended to reuse links and
properties from existing namespaces in order to im-
prove compatibility and common understanding of
relationships and properties communicated via IOS.
A typical namespace used by OSLC is DC (Dublin
Core Metadata Initiative, 2012) which contains many
common properties and links like dcterms:title,
dcterms:description, or dcterms:identifier.

If existing links and properties cannot be reused
for a reference or property of a meta-model concept
then a new link or property has to be defined accord-
ing to the OSLC core specification guideline “Defin-
ing OSLC Properties”: For the definition the link or
property requires a URI which typically consists of
a namespace part and an appended identifier for the
property or link. Furthermore, a set of properties
needs to be defined, e.g. the number of occurring val-
ues for a property (“Occurs”), the value-type or the
range of resource types allowed for linked resources.

As an example the meta-model concept
Component has a port reference. This port reference
cannot be mapped to an existing link or property.
Therefore the new link ios am:port is specified for
the namespace ios am and added to the specification
of the resource type ios am:Component. The value
of the “Occurs” property is zero-or-many – a com-
ponent may have an arbitrary number of ports. The
value-type is Resource and the value of the Range
property is ios am:Port. Therefore, the value of
this link may only consist of ios am:Port resources.
The “Representation” property is set to “Either” so
a port may either be contained or referenced. The
“Read-only” property is considered false because
ports may be added. The link also has a description.

This step of the recipe is done when all resource
types are defined in a way that they are fully sufficient
to represent the corresponding meta-model concepts.
Result of this step is a set of refined resource types
which we call IOS resource types.

4.6 Implement IOS Resource Types

In the final step of the recipe the IOS resource types
are implemented. For that purpose technological prin-
ciples defined by OSLC (OSLC Community, 2013)
for the IOS are applied (e.g. RDF and HTTP). Dif-
ferent ways are possible to implement resource types
together with OSLC-compliant communication. We
consider two possible implementations. One imple-
mentation is based on existing Java technologies like
the Eclipse Modeling Framework (EMF), the servlet-
engine, and HTTP-server Jetty from the Eclipse Foun-
dation, as well as the RDF-library and the serializer
Jena from the Apache Software Foundation. The
other implementation is based on the reference im-
plementation Lyo respectively OSLC4J which is also
hosted by the Eclipse Foundation.
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<rdf:RDF 

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

 xmlns:rdfs=“http://www.w3.org/TR/rdf-schema/#” 

 xmlns:dcterms=“http://purl.org/dc/terms/” 

 xmlns:ios_am="http://ios.artemis.eu/ns/am#" 

 xmlns:ios_tm="http://ios.artemis.eu/ns/tm#" 

 xmlns:mylinktool="http://linkage.com/mylinktool/"> 

 <rdf:Description rdf:about="http://127.0.0.1:8005/00002722/links/1"> 

  <ios_tm:implementedBy rdf:nodeID="A0"/> 

  <ios_tm:implements rdf:nodeID="A1"/> 

  <dcterms:title rdf:datatype=" http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral ">C0_implements_B0</dcterms:title> 

  <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">satisfy</rdfs:label> 

  <rdf:type>http://ios.artemis.eu/ns/tm#ImplementationLink http://linkage.com/mylinktool/Link</rdf:type> 

 </rdf:Description> 

 <rdf:Description rdf:nodeID="A0"> 

  <rdf:_1 rdf:resource=“http://modelserver.local/models/testcomponents.model#12693 "/> 

  <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/> 

 </rdf:Description> 

 <rdf:Description rdf:about="http://modelserver.local/models/testcomponents.model#12693"> 

  <rdf:type>http://ios.artemis.eu/ns/am#Component</rdf:type> 

 </rdf:Description> 

 <rdf:Description rdf:nodeID="A1"> 

  <rdf:_1 rdf:resource="http://simulinkserver.local/models/testmodel.slx/19238# "/> 

  <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/> 

 </rdf:Description> 

 <rdf:Description rdf:about=" http://simulinkserver.local/models/testmodel.slx/19238# "> 

  <rdf:type>http://ios.artemis.eu/ns/am#Behavior</rdf:type> 

 </rdf:Description>  

</rdf:RDF> 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#” xmlns:rdfs=“ttp://www.w3.org/TR/rdf-schema/#” xmlns:dcterms=“http://purl.org/dc/terms/”  

 xmlns:oslc_rm="http://open-services.net/ns/rm#" xmlns:ios_rm="http://ios.artemis.eu/ns/rm#" 

 xmlns:myrequirements=“http://mycompany.com/local/ns/requirements/” 

 xmlns:ios_am="http://ios.artemis.eu/ns/am#" xmlns:ios_tm="http://ios.artemis.eu/ns/tm#">  

 <rdf:Description rdf:about="http://127.0.0.1:8005/00002722/278#//@attribute1"> 

  <dcterms:title rdf:datatype=“http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral"> 

  Assumption</dcterms:title> 

  <dcterms:description rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral "> 

  always speed < 30 km/h</dcterms:description> 

  <rdf:type>http://rtp.artemis.eu/ns/rm#Assertion http://mycompany.com/local/ns/requirements/Attribute</rdf:type> 

 </rdf:Description> 

 <rdf:Description rdf:about="http://127.0.0.1:8005/00002722/278#//@description"> 

  <dcterms:title rdf:datatype=“http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral"> 

  Promise</dcterms:title> 

  <dcterms:description rdf:datatype=" http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral "> 

  whenever crash_detected occurs deploy_airbag does not occur</dcterms:description> 

  <rdf:type>http://ios.artemis.eu/ns/rm#Assertion http://mycompany.com/local/ns/requirements/Description</rdf:type> 

 </rdf:Description> 

 <rdf:Description rdf:about="http://127.0.0.1:8005/00002722/278"> 

  <ios_rm:promise rdf:resource="http://127.0.0.1:8005/00002722/278#//@description"/> 

  <ios_rm:assumption rdf:resource="http://127.0.0.1:8005/00002722/278#//@attribute1"/> 

  <dcterms:title rdf:datatype=" http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral ">R0</dcterms:title> 

  <rdf:type> http://ios.artemis.eu/ns/rm#Contract 

   http://open-services.net/ns/rm#Requirement 

   http://mycompany.com/local/ns/requirements/MyCompanySpecialRequirement</rdf:type> 

 </rdf:Description> 

 <rdf:Description rdf:about="http://127.0.0.1:8005/00002722/links/1"> 

  <oslc2_tm:satisfiedBy rdf:nodeID="A0"/> 

  <oslc2_tm:satisfies rdf:nodeID="A1"/> 

  <dcterms:title rdf:datatype=" http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral ">C0_satisfy_R0</dcterms:title> 

  <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">satisfy</rdfs:label> 

  <rdf:type>http://ios.artemis.eu/ns/tm#SatisfyLink http://linkage.com/mylinktool/Link</rdf:type> 

 </rdf:Description> 

 <rdf:Description rdf:nodeID="A0"> 

  <rdf:_1 rdf:resource=“http://modelserver.local/models/testcomponents.model#12693 "/> 

  <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/> 

 </rdf:Description> 

 <rdf:Description rdf:about="http://modelserver.local/models/testcomponents.model#12693"> 

  <rdf:type>http://ios.artemis.eu/ns/am#Component</rdf:type> 

 </rdf:Description></rdf:RDF> 
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Figure 3: Application of the different steps of the recipe to a black-box testing scenario using DOORS (requirements), Papyrus
(component model), and Matlab Simulink (implementation model).

5 EVALUATION OF THE RECIPE

In this section we present our evaluation of the recipe
on an extended scenario based on the requirement al-
location workflow described in Section 2.2. For the
scenario we wanted to create an RTP which facilitates
interoperability between different industrial relevant
tools hosting data. The idea is to not only support
linking of requirements to components (satisfy link),
but also support linking of implementation models to
components (implementation link). This enables the
RTP to perform black-box testing of the implementa-
tion of a component against its requirements. Similar
to the original scenario (see Section 2.2), the com-
ponents are modeled in Papyrus by using the EAST-
ADL profile and function types. The requirements are
managed within DOORS. In addition, we extended
DOORS to support the contract-based specification
of requirements, which allows to specify assumptions
on the environment in which a requirement must hold
and the guaranteed/required behavior. For the imple-
mentation of a component we decided to use Matlab
Simulink / Stateflow models and for the creation of
the link elements we used an inhouse RTP link tool.

The first step was the identification of the ele-
ments of the internal engineering models which are
part of the scenario (Figure 3, step 1). From DOORS
we need to be able to access the tables / modules of
the database which store the individual requirements
and their additional information in different columns.

In addition, DOORS supports tracing of requirements
and therefore the satisfy relationship between require-
ments and components is the second model element.
EAST-ADL is a very rich model. Therefore, within
the scenario it is important to limit the scope of ex-
posed elements. Only the function types defining a
component hierarchy are relevant for the scenario to
be able to link requirements and implementations to
individual (sub-)components. Since the implementa-
tion shall be linked as basically a black box object, the
work item is only the full model itself without the de-
tailed behavior description. The implementation rela-
tion between components and implementation mod-
els is the last work item needed for the scenario. In
contrast to the satisfy links, the management of these
links is not supported by any of the tools and had to
be realized in a separate link repository.

The next step was to map the engineering model
elements to concepts of a common meta-model (Fig-
ure 3, step 2). As suggested by the recipe, we derived
our meta-model concepts from existing meta-models
which were in this case HRC and the concepts from
the SPES 2020 methodology. The DOORS table en-
tries are assigned to the concept of a Contract which
explicitly names its assumptions and its guarantees.
The EAST-ADL function types are mapped to the
Component concept and the Matlab implementation
to the Behavior concept. Finally, both traceability
links are mapped to the concepts of Implementation
Link respectively Satisfy Link. After this step, a
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first high level view connecting the different engineer-
ing models had been established.

Within the third step we allocated the meta-
model concepts to basic elements of the dif-
ferent OSLC domains (Figure 3, step 3). A
Contract is a specialization of the generic concept
of a oslc rm:Requirement and the Component is
mapped to the basic concept of a oslc am:Resource.
For the Behavior we decided to also use the
oslc am:Resource as a basis because it is an archi-
tectural related artifact. For both trace-link concepts
there is no direct counterpart in the OSLC domains
and they could only be mapped to the basic OSLC
core Resource.

Within the fourth step we refined the OSLC con-
cepts by adding additional properties to the original
OSLC concepts. In this example we created the new
domain identifiers IOS RM, IOS AM, and IOS TM
to denote these extensions (Figure 3, step 4). Espe-
cially the basic OSLC core Resource type does not
define any properties and had to be extended for the
representation of the trace-link concepts.

The last step was the implementation of the newly
refined IOS concepts. For this we implemented server
application using the Jena and Jetty libraries (as sug-
gested in Section 4.6). Figure 3 illustrates in step 5
how the final RDF for data interchange looks like.

To further evaluate the benefits of the recipe ap-
proach, we modified the scenario by replacing one of
the integrated tools. We replaced the requirement and
link storage in DOORS with a solution based on MS
Excel sheets. In this case, we only had to identify
and map the relevant structures of the Excel sheets
to the meta-model artifacts (step 1 and step 2) and
could reuse the rest of our implementation. Within the
MBAT project we extended the presented scenario it-
eratively to support definitions of faults, failures, ver-
ification / validation activities, as well as their results.
We realized the extended scenario in an RTP by a fur-
ther application of the recipe and by implementing
OSLC-compliant consumers and providers.

6 CONCLUSIONS

In this document we described a recipe on how to sys-
tematically connect tools with an OSLC-based inter-
operability specification to support engineering work-
flows. The recipe is a guideline for developers for
which it eases tool integration and enables traceabil-
ity required by standards. With the recipe a common
meta-model is constructed which establishes a homo-
geneous view on the semantic concepts of the tools
and therefore allows common understanding of ex-

changed engineering information at the level of gran-
ularity required for the workflows. The evaluation
showed an easy integration of tools for a typical engi-
neering workflow. It revealed reuse capabilities com-
ing with the separation of tool-specific engineering
models and meta-model concepts that support such a
workflow. Tools can be replaced with limited effort by
other tools whose engineering models can be mapped
to the same meta-model concepts. It is also possible
to extend a workflow by adding meta-model concepts
which only leads to minor modifications of existing
tool adapters. Since our evaluation was purely man-
ual, future work could address automatization of the
recipe’s steps e.g. derivation of needed meta-model
concepts based on ontologies.
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