Modeling of Tool Integration Resources with OSLC Support

Weiging Zhang and Birger Mgller-Pedersen
Department of Informatics, University of Oslo, Oslo, Norway

Keywords:

Abstract:

Tool Chain Management, Tool Integration, Model, Web Services, OSLC.

This paper discusses a class modeling approach for managing tool integration. Model concepts like Artifact

and Role are introduced as integration backbones. Artifacts represent real artifacts like model elements that
are maintained by tools. Different kinds of tools require different kinds of Artifact classes. The Role classes
capture integration scenario-specific properties for Artifacts. As the same Artifact may be involved in different
scenarios, and as integration scenarios may come and go, Roles can be dynamically attached to Artifacts. It is
also demonstrated the possibility to model with Artifacts and Roles alone, without any real model elements.
OSLC Web services (and as part of that, OSLC resources) are generated from these class models, and it is
demonstrated that class modeling of Artifacts are superior to plain OSLC specification of resources.

1 INTRODUCTION

Development processes for software systems involves
a large number of different tools that are special-
ized for certain tasks within their engineering do-
mains, such as requirement analysis, architecture de-
sign, model simulation, code generation, software
configuration. These tools are usually designed with
focus on their specific domains, and they are not de-
signed with integration in mind.

An effective solution is to integrate tools based
upon tool adaptors with services that work on com-
monly defined representatives of the real artifacts
(model and model elements), and a modeling ap-
proach to this would be to define representative class
models for the real artifacts. Experiences from apply-
ing this approach to industrial cases have shown that
a straight forward representative approach has to be
extended in several respects.

With respect to semantics of model elements, the
same model element in different engineering domains
may be interpreted differently (e.g., a UML Class
could represent a hardware component in hardware
platform, or represent an application in software de-
sign). Different model elements in different lan-
guages and tools may also have the same semantic
interpretation, e.g. elements of a UML model and the
corresponding elements of the corresponding C code.

Model elements in different models in different
languages may be derived from a common definition
(in another language). For instance, common defini-

Zhang W. and Mgller-pedersen B..
Modeling of Tool Integration Resources with OSLC Support.
DOI: 10.5220/0004713000990110

tions of data types (e.g. temperature and wind speed
classes in a wind turbine project) in a UML class
model are used to derive the corresponding definitions
in e.g. Simulink and IEC61131 (Rzonca et al., 2007),
and placed into Simulink and IEC61131 models, re-
spectively.

The same model element (through its representa-
tive) may be involved in multiple integration scenar-
ios, and handled differently in each of these. Dif-
ferent properties of the element are required in addi-
tion to the plain representative properties, in order to
support the different integration scenarios. E.g. us-
ing a UML class as a transformation source based
upon a common semantics scenario requires scenario-
specific properties that are different from those used
in a transformation as part of a common definition
scenario.

All of this has led to an approach based upon Ar-
tifacts and Roles attached to Artifacts (Zhang et al.,
2012a) (Zhang and Moller-Pedersen, 2013b). Based
upon the above discussions, in this paper we con-
tribute to further properties of Artifacts and Roles.

In addition we provide some more details on the
modeling of Artifacts and Roles. The implementation
of the approach is based upon OSLC (Open Services
for Lifecycle Collaboration, 2013) Web Services, as
OSLC is becoming more and more accepted by tool
vendors as a vehicle for tool integration. However, the
modeling approach itself is independent of OSLC.

The rest of the paper is organized as follows. Sec-
tion 2 gives the background, including previous work.

99

In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 99-110

ISBN: 978-989-758-007-9

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

(_models)

IEC 61131

Class ‘ Vo
> i

" transformation
models

) [
MOFScript i ‘Turbine

(traces)| -‘ ‘

'
1| (requirements \}1

IRQA Trace|Tool UML Tool

1 Adaptor

Role | « plays| Artifact | * uses| Service

assists J represents
1,* I L
Scenario Model ——> Model Element produces| Tool
S)

. icontrol
(_models) |

Simulink
Development of Wind Turbine Control System

Figure 1: Development Tools in Industrial Cases.

Section 3 describes the model-based approach, with
details of Artifacts and Roles. Section 4 presents the
extended notions of Artifact and Roles and how to
model with these. Section 5 describes how to pro-
vide OSLC-based services from the model. Section 6
compares with related work. Section 7 concludes the
paper.

2 BACKGROUND

2.1 Industrial Case

We use an wind turbine project (from ABB Norway)
throughout this paper. This project is to develop
an embedded system to control wind turbines. An
overview of involved development tools is illustrated
in figure 1.

Sensors are deployed around the wind turbines
to collect the environmental data. The control sys-
tem contains two modules executed on the same mi-
croprocessor: a C code module generated from a
Simulink model for high speed performance, and a
C code module generated from an IEC 61131 model
for low speed performance. The control system per-
forms calculations according to the sensor data and
sends commands to control the wind turbine. A num-
ber of development tools from different engineering
domains are involved: A tool for making require-
ments (IRQA), then tools for designing the IEC 61131
and Simulink models, and a traceability tool for cre-
ating traces between these tool elements. A UML
tool is used to specify class models that are com-
mon to Simulink and IEC 61131 design, and then
transform these class models into Simulink and IEC
61131 tools through MOFScript (Object Management
Group, 2010).

2.2 Review of Previous Work

In previous work, we defined representatives for real
models and model element artifacts, named Artifacts,
and these formed the basis for the generation of OSLC
resources with adequate properties, and we made tool

100

1 *

Figure 2: Concepts of the Integration Approach.

integration based upon tool Adaptors with services
that work on these representatives. Instead of relying
on mappings between proprietary representations of
model elements, Artifacts define model element rep-
resentatives that are common to all tool adaptors and
to other kinds of application that use these tool adap-
tors. Asrepresentatives, Artifacts have properties that
reflect the actual model elements for the purpose of
tool integration. General kinds of tool integration, e.g.
tracing between any kinds of model element, are read-
ily supporting by Artifacts, by defining a trace that
links between Artifacts. Tool integration that involves
transformations between models may need Artifacts
with properties like source and target language.

The above industrial case revealed that tool inte-
gration is more than adapting tools to a common way
of representing model elements in different languages
or formats. As more advanced integration scenarios
were identified as part of applying it to the industrial
case, we found that integration requires more than
just Artifacts as representatives of model elements.
The industrial case includes integration issues where
the handling of model elements depends not only on
language/tool-specific properties, but also on prop-
erties that are specific for the integration scenarios.
Therefore we introduced the Role concept for captur-
ing these integration scenario specific properties.

Figure 2 introduces the main concepts of the ap-
proach. Tool integration is performed through tool
adaptors. An Adaptor is a software unit or plug-in
that exposes a subset of tool functionalities to other
tools in terms of Services, which work on Artifacts.
The legal services that can be applied to the Artifact
instances are constrained by the operations defined by
Artifact classes. Model Elements are the real model
elements produced and manipulated by tools. Data
models, e.g. analysis data about models, are con-
sidered as special kinds of models in our approach
(Zhang et al., 2012a). Scenario provides an overview
of how tools collaborate according to certain process
and integration requirements. In our approach the ex-
change of messages in scenarios are specified in terms
of Artifacts and Roles.

The overview of this approach is illustrated in fig-
ure 3. When using this approach, tool integration
modelers create integration models, such as Artifact,
Roles, and Choreography models. Because various

o —

Modeling of Tool Integration Resources with OSLC Support

// Artifact Model \\\ _ provide
\ ~Integration ™ integration services
‘ R?\Ie | ‘ Role ‘ Role H Role ‘ N (L service) PN
— N\, e s N
plays Role L ~Integration” “Integration ™ \)
1 - Role v . Service /. Service /" Cloud <,‘
Artifact Artifact cod] Y .
\ | generatio Web Services /G€f’/
Artifact Artifact / RSN
N 4 Adaptor ‘f’o;\,
+ e
Integrate with Tool AP! | ModelElement
/ Choreography Model N Artifact
“‘ L easapiSiiisias - — \‘ - - _UID
'___' = = : (" model element ,‘) VersionNO
e : = = ~ - -URI
. = @del element) (model element & A
“\ SoaML Sequence BPMIN. '0. / Model N feET)
. Diagram Diagram Diagram / SPUT()
- . = Tool represents
Integration Model y o +...()

Figure 3: Overview of the Integration Approach.

OSLC integration adaptor servers and clients are op-
erated in a similar way, the server and client code
can be specified in a standard way. Therefore, model
transformation scripts are prepared for the purpose
of generating adaptor server code.. The integration
models are independent of implementation technol-
ogy, while Web services are based upon specific tech-
nologies like J2EE or .Net. Therefore different trans-
formation scripts are applied to the same integration
models to obtain Web Services that runs on different
platforms. The adaptors manipulate the tool model
elements through tool-specific APIs, and represent
them as predefined Artifact objects through integra-
tion services.

3 MODEL-BASED INTEGRATION

3.1 Details of the Artifact Concept

One solution to the integration of tools supporting lan-
guages with different metamodels is to have a com-
mon, exhaustive metamodel that merges all the con-
cepts defined in all tool metamodels. However, expe-
rience tells us that the resulting metamodel would be
large, complicated and hard to maintain when tools
come and go. A common partial metamodel may be
used for extracting certain aspects of the various mod-
els, but it will not solve full tool integration.

Instead of being metamodel-based, our approach
is therefore model-based in the sense that it relies
on representatives for the real models and model el-
ements as the means for tool integration (Zhang et al.,
2012b). These representatives are called Artifacts. A
model-based approach to tool integration implies that
Artifact is defined as a class of objects, so that each

Artifact object represents a real model or model ele-
ment.

As shown in figure 4, the kinds of tool integrations
above are based upon a fixed set of Artifact defini-
tions, with a fixed set of properties.and operations that
are common for model or model element in specific
set of tools. The common properties of general Arti-
fact are software lifecycle management properties that
support integration, such as unique identifier (UID),
name of Artifact, URI of the represented model ele-
ments, description of Artifact, and etc.

The specific Artifacts only require properties that
have to do with the represented model elements, e.g.
UML metamodel and metaclass of the represented
class model element that are required for e.g. a
UML model transformation. Artifact like Transfor-
mation Artifact contains properties like source and
target, which point to the Model Element Artifact in-
stances that represent the source model and the tar-
get metamodel, respectively. Model Element Arti-
facts that represent models or model elements in a
given language will, in addition to the common prop-
erties, have a property that identifies the metamodel
for the language, and a property that identifies the
metaclass of the model element, such as the UML
Artifact, Simulink Artifact and ReglF (Object Man-
agement Group, 2011) Artifact in figure 4. Thus we
can access the metamodels that are required for trans-
formations.

DomainClassArtifact is used to represent model
elements when they are involved in different specific
semantic domains. In the Domain Class Artifact,
the ”domainModel” property identifies the domain
(semantics) model while the "domainClass” property
identifies the domain class that the Role links to. This
covers the cases where a model from one tool (in
one language) must be represented by a model in an-

101

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

Trace Artifact
-source

[target UML Artifact
H...() "
:)
Model Element Artifact
Artifact -metamodel Simulink Artifact

FuID -metaclass 3 S
-name +..() H...(}
-URI K—

Domain Class Artifact
-domainModel
-domainCl

lomainClass L0
()

Transformation Artifact

ReqlF Artifact

-description

+...()

-source
-target
H ()

Figure 4: Artifact Overview.

other tool (in a different language), and where this is
based upon an interpretation of the models according
to the semantics/domain concepts of some common
domain. The best-known characterization (Wasser-
man, 1989) of tool integrations identifies five views
of integration, where language of model is only as-
sociated with the data view, and this view does not
even-consider the semantics-based mapping between
languages. DomainClassArtifact will cover this.

The operations of Artifact are the legal operations
that other tools can perform to manipulate the model
element that is represented by the Artifact. A UML
Avrtifact with GET() and PUT() operations would only
allow other tools to GET or PUT its represented UML
model element.

Each real tool model element has its correspond-
ing Artifact. The Artifact relates to the real tool model
element through its URI. Assume there is a model el-
ement (e.g. a requirement item in a requirement tool)
that is associated and used by many (M) other devel-
opment tools (e.g. trace tool, baseline tool, configura-
tion tool). If we want to replace this requirement tool
with another similar requirement tool, a common pro-
cess is that we transform the requirement model ele-
ments to the other tool, and then re-establish the asso-
ciations between these elements and elements of other
tools. It takes M times to establish the re-associations.
If there are N such elements in the requirement model,
then it costs (N * M) times for the re-establishment.
Alternatively, if we use Artifact for the above tool re-
placement scenario, we will have Artifact objects for
each model element and all integration between tools
are based upon Artifacts. As illustrated in figure 5, as
the development tools only know the Artifact, we will
only need to simply change the URI of Artifact from
the old tool element to the new tool element, then the
other development tools are connect to the new tool
model elements. We can thus reduce the complexity
from N*M times to N. Using Artifact for integration
is a flexible solution and will ease tool replacement.

102

old requirement tool trace tool (7‘)
L -~ Y —
<_requirement item _ traceitem | (..)
e nent _ . -)
N — ¢ ™
@ &y X Baseline tool

<baseline item

= : 7
g3 :ReqlF Artifact
E |
2 4
oy e " configuration tool
& =0]
& \Vconﬁguratlun |tem)
new requirement tool » Coe) ()
[requirement |}e/njf i
EPNED]
S’ =

Figure 5: Artifact Benefits.

This implies a need for storing Artifacts, which
may be kept in a central repository. When tools
modify their data like adding or deleting data items,
the corresponding updates for Artifact should also be
done in this central repository.

In addition to the benefits described above, using
Artifact also has the following benefits:

Standard Interfaces: All integration services work
on the same Artifact/ Role objects, so tool-internal
elements are handled in a uniform way, facilitat-
ing standardization for industrial tool vendors.

Generic: Tools of the same kind share the same
Artifacts, thus integrations is not constrained by
any tool internal way of handling their elements.

Traceable: Artifact has traceability feature by na-
ture, so very little has to be known about the real
traced model elements when integration is per-
formed.

Finally, in the Artifact class it is possible to define
various tool integration properties, which enhance the
tool capabilities to manage different lifecycle tool el-
ements.

3.2 Details of the Role Concept

Roles are designed to cover scenarios-based informa-
tion that is required for integration, but cannot be cov-
ered by the general notion of Artifact. For instance, a
UML class, represented by a UML Artifact, may be
transformed into different models when different se-
mantics are applied. This semantics information is
captured by a Role class.

3.3 Identified Roles

As shown in figure 6, we encountered several kinds of
Roles from the industrial integration scenarios. How-
ever, the approach is open-ended, in the sense that
custom-made Roles (as subclasses of Role) can de-
fined by integration engineers to support their specific
integration scenarios.

Domain Class Artifact
tdomainModel
tdomainClass

SemanticRole |domainClassArtifact

1 *
Role — . . Model Element Artifact
Chame AssociationRole| associatedArtifact [metamodel
HD 1,* tmetaclass

,<,-»ECust0m Made Role

Figure 6: Role Overview.

Semantics Roles. In transformation scenarios it is
common that a source model is transformed into dif-
ferent target models governed by different interpre-
tations of the elements of the source models. This
is normally captured by different transformations. In
the cases we have encountered there is a standard way
if transforming most of a source model, while some
model elements should be treated differently. In ad-
dition, model elements of different models are sup-
posed to be interpreted in the same way, indepen-
dently of the languages in which these different mod-
els are made.

This calls for a mechanism where a model element
(and in our case the corresponding Artifact) can play
a certain semantic Role. It would be possible to do
this by means of a simple annotation of the model
element, but as we have already Artifacts as repre-
sentatives of model elements, it is much more flexi-
ble to attach the semantic information to the Artifact.
For UML models we could have used stereotypes, but
the approach should be independent of what kinds of
tools are used and their support for stereotyping.

As our approach is model-based it is obvious to
require that the semantic information for a given inter-
pretation is defined by some kind of model element.
As different interpretations are often due to the inter-
pretation given by different domains, we simply de-
fine a semantic Role to have a reference to a domain
class in a domain model (see figure 6). A Seman-
tics Role (Zhang and Moller-Pedersen, 2013b) there-
fore identifies a domain class in a domain model that
applies to certain Artifact. As this domain class is a
model element that is also represented by an Artifact,
this reference ("domainClassArtifact”) is a reference
to an Artifact (Domain Class Artifact).

Another benefit of having Roles defined indepen-
dently of language and tool (i.e. as attached to Arti-
facts) is that several Artifacts (representing model el-
ements in different models) may have the same Role,
thereby capturing that we have common semantics
across languages/tools. In a transformation scenario,
a common Semantics Role for two different Artifacts
preserves the semantics consistency of the transfor-
mation source and target. As an example, a UML

Modeling of Tool Integration Resources with OSLC Support

class, a Simulink block and a part of a C code may
all play the Role of a being a special kind of part of
a system design. Transformation between the differ-
ent model elements, or updates of the different model
elements, must take this common semantics into ac-
count.

Association Roles. In a transformation sce-
nario where various model elements are derived from
a common definition model element, the Artifact that
represents the common definition model element may
have associations to the Artifacts that represent these
derived model elements. The common Artifact has
an_Association Role (Zhang and Moller-Pedersen,
2013b) which links to the Model Element Artifacts
that tell where the derived model elements should be
placed inside these models. If the common Artifact
is changed, the derived Artifacts have to be changed
correspondingly.

In the wind turbine model design we transformed
UML model elements to Simulink model elements.
The transformation engine can only transform the
temperature and wind speed UML classes to Simulink
model elements; it cannot know where these trans-
formed Simulink model elements should be placed in-
side Simulink models. An association Role helps to
provide this information. The association Role links
to the Simulink Artifact in which we can specify the
locations of the generated Simulink model elements.

4 EXTENDED NOTIONS OF
ARTIFACTS AND ROLES

4.1 Synthesis Artifact

An Artifact model element may represent a synthe-
sis of properties of a number of other Artifact model
elements, e.g. a report, analysis result, testing result
from applying a set of tests. Whenever some of the
involved model elements change, the synthesized Ar-
tifact may have to be updated.

There are synthesis links from all the involved Ar-
tifacts to the synthesis Artifact, which in turn will
know which Artifacts to be involved in the synthe-
sis. E.g. an Artifact that represents a test result in
terms of a document may have synthesis links (as
”contain” relation in this case) to many other Arti-
facts that represent elements like texts and tables that
compose this document. The multiplicity of synthesis
links between Artifacts is usually one to many.

103

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

SemanticRole UML Artifact AssociationRole
- name -role . -role | name
- ID . - metamodel . [P
_ domainModelArtifact| 1+ - metaclass 1. | associatedArtifact

SemanticRole for UML Artifact in
Shared Comman Semantic Scenario,/”

i
| represents

AssociationRole for UML Artifact in
Shared Common Data Definition Scenario

Transformation

Tool
Bluebee Tool

Tools in Shared Commeon Semantic Scenario

Transformation

Tool

\
IEC61131
Tool

Simulink

Tools in Shared Common Data Definition Scenario

Figure 7: Example of Artifact with Different Roles.

4.2 Dynamicity of Roles

One Artifact may have multiple Roles in different sce-
narios. For instance, a UML Class defined by a mod-
eler-that is involved-in-a shared common semantics
scenario may be used differently when it is involved
in a common definition scenario. As figure 7 shows,
in the left scenario (described in an ellipse) the Se-
mantics Role of a UML class (represented by a UML
Artifact) are used to interpret it according to a com-
mon semantics, while in the right scenario the As-
sociation Role captures the associated Artifacts that
record the placement information when transforming
a common definition from a UML model to Simulink
and IEC61131 models. The same UML Artifact has
different Roles as it requires different context-based
information to support the different scenarios.

The same model element (through its representa-
tive) may be involved in multiple integration scenar-
ios, and these may change. Different properties of the
element are required in addition to the plain represen-
tative properties, in order to support the different inte-
gration scenarios. E.g. using a UML class as a trans-
formation source in a process based upon a common
semantics scenario requires scenario-specific proper-
ties that are different from those used in a transforma-
tion process as part of a common definition scenario.

The Role of a model element is not fixed in ad-
vance and depends on the actual integration. A model
refinement transformation would generally produce a
more precise model with the properties of its Role be-
ing extended. E.g. a UML Class representing a Com-
puting Resource at one level of abstraction might be
refined when it later represents a Processor. The Roles
of model elements are required to be dynamically as-
signed, removed, and updated.

When engineers create UML Artifact object, it

104

only represents UML model elements with certain
dedicated software lifecycle management properties.
However, it is still uncertain what specific informa-
tion may be required for various integration scenarios.
The dymamicity of Roles overcomes this shortcom-
ing. The semantic Role is attached to UML Artifact
when this Artifact involved in shared common seman-
tic scenarios. When the scenario is not valid anymore,
the UML Artifact can remove this semantic Role and
play e.g Association Role in shared common data def-
inition scenario. The dynamicity feature brings flex-
ibility and complementariness for additional integra-
tion information for Artifact models.

A usual way of modeling that an object may play
different Roles is to model the corresponding class
with an interface for each Role. However, this has
to be determined when the class (in this case the spe-
cial Artifact class) is defined, and Artifact classes are
defined based upon the kind of the represented model
element, the language in which the model element is
specified, and perhaps the tool being used.

Another approach to role modeling (Reenskaug,
1997) is that roles really are the things that are spec-
ified in order to know what objects do (or shall do)
and how they interact, while classes are merely imple-
mentations of roles. The role approach of Rolv Braek
is similar (Braek, 2000) (Floch and Brek, 2003), al-
though classes of objects are recognized as the main
way of modeling objects. Both of these approaches
have tried to come up with a more or less automated
role synthesis, the idea being that in order to make
classes of objects, make first all the role specifications
and then synthesize these into classes. The reason that
this is important is that when models are supposed to
form the basis for implementations in some program-
ming language (and not just be analysis models), then
roles models have to be turned into class model, as

most programming languages support classes, but not
roles.

All of these approaches to roles have in common
that role modeling is part of modeling, which is the
outcome of role modeling is to come up with classes
of objects that play the roles that have been specified.

For tool integration the situation is that Artifacts
may be defined based upon the language used for
making model elements that the Artifact objects are to
represent, and this does not change once a model ele-
ment has been made. However, integration scenarios
may be made after the model elements (and the cor-
responding Artifacts) have been made, therefore the
scenario-specific properties required for tool integra-
tion (defined by Roles) have to be attached to existing
Artifacts. While models and their model elements are
usually maintained, and some even are used in sev-
eral projects, integration scenarios may come and go
depending on how the models are used in different
settings. Therefore Roles may also be removed from
Artifacts.

4.3 Modeling with Artifacts and Roles
4.3.1 Choreography Models

In the approach we also model the integration pro-
cesses that correspond to various required interaction
scenarios. While Artifacts form the basis for tool
Adaptors with services, the integration processes use
these services. The models that are specifying the col-
laborations between tool Adaptors are called choreog-
raphy models. Choreography models are used to de-
fine, control, and monitor integration processes, and
they are using Artifact and Role instances.

From the investigation (Guo and Jones, 2009) we
know that widely-used modeling languages such as
UML /SysML do not give full support for modeling
of tool integration, so one of our future work items
is to define a domain specific language for this. For
the purpose of this paper, and in order to explore
to which extent mechanisms of existing languages
may be used, we have experimented with the use of
SoaML, UML Sequence Diagrams and BPMN for
making choreography models.

In our experiment the integration services are
specified by SoaML Service Architecture models and
Service Contract models. The requirements from
the integration process are viewed as service archi-
tecture, thus indicating tool adaptors act as partici-
pants in the integration process. The service contracts
specify how participants interact, and how their ser-
vices and requests are orchestrated. Service architec-
ture formally specifies the integration requirements

Modeling of Tool Integration Resources with OSLC Support

performed by interacting service participants, with-
out addressing any implementation concerns. Ser-
vice Contracts simply indicate the agreed-upon inter-
actions between participants that play the indicated
Roles in the service architecture.

We have illustrated how it would be possible to
use SoaML models, UML sequence diagrams, and
BPMN models for constructing of the choreography
models (Zhang and Moller-Pedersen, 2013a). The or-
chestrator orchestrates integration scenarios. It makes
the individual tools integrated through adaptor ser-
vices. To simplify the implementation, orchestrators
for various scenarios are driven by user inputs, and
they are based on the core principles of OSLC and
calls OSLC services using basic HTTP commands.
However, it is also possible to generate these orches-
trators with process models like BPMN.

Choreography models have been specified by Ser-
vice Architecture diagrams and service contract di-
agrams from SoaML. Part 1 of figure 8 illustrates
a Service Architecture diagram and shows how dif-
ferent adaptor participants enable the tool integration
through service contracts in shared common data def-
inition scenario. For instance, the MOFScript adap-
tor participants provide Transformation Management
Services for the Simulink and IEC 61131 adaptors.
Part 2 illustrates the Transformation Services details
that are provided and consumed in the Transformation
Management Service Contracts.

4.3.2 Modeling with just Artifacts and Roles

In (Zhang and Moller-Pedersen, 2013b) the notions
of integration models were shortly introduced. There
it was assumed that the involved Artifacts with their
respective model elements are defined when the in-
tegration models were made. However, we also in-
troduced the distinction between integration models
and the base models maintained by the integrated
tools. We compared integration models with variabil-
ity models within software product lines (exemplied
by CVL (Object Management Group, 2013)(Haugen
et al., 2008)), with both integration models and vari-
ability models being emphorthogonal to the (base)
models. CVL variability models have variability el-
ements that reference real model elements, and these
variability elements have properties that express what
kind of variability that applies to the referenced model
element, like our Artifact and Roles have properties
that tell what kind of tool integration the real model
element may be subject to.

Variability modeling is used to specify variability
within a product line, with a base model, a number
of variability models, and for each variability model
a number of resolution models. Feature models are

105

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

° =" <<Service Architecture>> S~

- ~

- -7 Wind_Turbine_Tool_Chain_Service_Architecturé T

’ <<Participant>> <<Participant>> <<Participant>> s,
#" | TraceMe: TraceTool || Rhapsody : UMLTool | | MOFScript: TransformationTool | "~

/ N - \
/ TraceTool ,’ TraceTarget .~ ~~. _TransformationSource “JTransformationTool A
P S~ ~

/ , ~ \
I/ 7 -

i < ~oLT <<ServiceContract>>
-~ <<ServiceContract>> N, L7 L

]

I

| { k

| . :traceManagement .« - S I e
\

! T —— o 7\ TraceTargef =~-. _-TransformationTarget , !
\
\ TraceSource Y <<Participant>> / !

\ e M

N Al N Simulink : Simulink / J
\

N <<Participant>> Y / i
| : Requir: Y) " 7

~| IRGA: RequirementTool ‘. TraceTarget TransformationTarget’ e

<<Participant>> ! -7

" . Control Builder: IEC61131Tool -

P <<Service Contract>> =~
o P transformationManagement ~

—
«Consumer» (/1 «Consumer» (
TransformationSource TransformationTarget
I

/ +getModel(ModelURI : String) : XMI +getMetamodel(languageName : String) : EMF \
i |+getMetamodel(languageName : String) : EMF | | +setModel(ModelURI : String, Model : XMI) : boolean \

| |

\
1
1
|
« » « »
Wy “use: \ “use H
!
i’

«Provider» ()
‘\\ TransformationTool l,'
A /
\\\ +executeTransformation() : targetModel XMI ,‘/
AN +setTransformationScript(scriptURI : String) : boolean e
. +setSource(model : XMI, metamodel : EMF) : boolean /’
\\\ +setTarget(metamodel : EMF) : boolean e
“~. |+setTarget(metamodel : XM, targetPosition : String) : boolean /’/
o +linkDomainModel(sourceModel : XMI, targetModel : XMI) : boolean | -~

Figure 8: Sample of Service Architecture Diagram and Service Contract Diagram.

Prefixed Name | Occurs | Read-only ‘ Value-type | Representation | Range ‘ Description

OSLC common properties

All OSCL common properties are to be used as defined in http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA

TraceRelationship additional properties

oslc: FileDescriptor
oslc: FileVersion

iftrace:source exactly-one False Resource Either Reference | ifcore:ElementDescriptor | The reference to the source
or Inline ifcore:ResourceDescriptor | element of the relationship

iftrace:target one-or-many | False Resource Fither Reference | ifcore:ElementDescriptor | One or more references to the
or Inline ifcore:ResourceDescriptor | target element(s) of the
oslc: FileDescriptor relationship
oslc: FileVersion
iftrace:traceType | one-or-many | False String n/a n/a Type of the relationship
iftrace:parent exactly-one False Resource Reference Trace The parent of the TraceRelationship

Figure 9: Traceable OSLC Resource.

106

special kinds of variability models, where there may
not be any base model to which the variability models
are associated: they simply specify the desired fea-
tures, including relations and restrictions on features,
and feature dependencies. Later, in order to use fea-
ture models in order to make specific models for each
selected configuration of features, the feature models
are associated with base models.

Similarly, integration models with Artifacts and
Roles may be made without any real model elements
being made. Up front it may very well be determined
that a development of a certain system should result
in a number of model element Artifacts (with Roles)
and that they have to be integrated in a certain way.

The developers know that wind speed and tem-
perature will be defined in a common language, and
from this language they can generate IEC61131 and
Simulink models. There may be a number so such
common definitions, they may e.g. come from a dy-
namically generated domain analysis result. Thus
we can specify integration model before making the
detailed UML. definitions of the common concepts,
and execute this integration model when some or all
the common definitions have been made in a UML
model.

The implication of this for Artifact is that the
property of an Artifact object that references the real
model element has to a property of its own and not
just an inherent property of the Artifact, e.g. given by
the unique identification of the Artifact object. Inte-
gration models may therefore be made before the real
model elements are made.

5 PROVIDE OSLC INTEGRATION
SERVICES

As the tool integration approach is model-based, it is
independent of the underlying implementation tech-
nology. In our case we chose OSLC Web Services to
implement and validate the approach.

5.1 Models of Traceable OSLC
Resource

Our class modeling approach was worked out in com-
parison with an approach where OSLC specifications
were made directly. The following shows one of the
main differences between the two approaches.

The difference is illustrated with traces. In this
section traces are a little more elaborated than those
that we have seen before. For other purposes than
tracing, the following Resources had been identified:

Modeling of Tool Integration Resources with OSLC Support

ElementDescriptor, ResourceDescriptor, FileDescrip-
tor, and FileVersion. E.g. all elements represented by
ElementDescriptor should be traceable, based on the
ElementDescriptor common properties. When trace-
ability were to be modelled in the pure OSLC ap-
proach, the modeller was left with the option of spec-
ifying the range of source and target as a list of these
resources, see figure 9.

With a modeling approach, one would do as de-
scribed above, i.e. make all artifacts traceable (and
define all kinds of Artifacts as subclasses of Artifact).
Alternatively, as illustrated in figure 10, one would
define a common superclass for all the traceable arti-
facts, in case not all of them should be traceable. The
obvious benefit is that introducing a new kind of ar-
tifact that shall be traceable amounts to define it as a
subclass of Traceable, while in the pure OSLC speci-
fication style one would have to go through all ranges
in other parts of the specification and change these.

5.2 From Models to OSLC Web Service

Tools can be loosely coupled via a set of services,
or web services applied on standardized communi-
cation protocols. The recent framework provided by
the OSLC community finds an agreement among the
stakeholders on specification for tool integration. The
key concepts are a uniform access to shared resources,
a common vocabulary/formats, and a loose coupling
approach between tools through REST architectures
(Fielding, 2000). Using OSLC specifications implies
that adaptors work on representatives of the real arti-
facts of tools in terms of artifact resources, and that
these have to be specified in terms of OSLC-tables of
properties (OSLC specifications). In addition, adap-
tors also specify services. A tool is integrated by im-
plementing such adaptor specifications. Our experi-
ment supports the generation of the part of adaptor
implementations (server and client code) that adhere
to the OSLC specification.

OSLC specifications define a small set of common
properties that are common among all resources. In
addition there are often some project-specific proper-
ties.

In the OSLC experiment we chose UML class
model to define Artifact and Role models. In OSLC,
Resources are representatives of models and model
elements. A Resource Shape defines the set of OSLC
Properties expected in a Resource for specific oper-
ations (i.e. creation, update or query) for each their
value types, allowed values, cardinality and option-
ally. Models are made in languages defined by meta-
models - this includes models for which there may
be no concrete syntax, as e.g. requirements models.

107

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

FileDescriptor ElementDescriptor ResourceDescriptor

-container: Resource
-elementldentifier: EString

-format: EString
-source: Resource

-elementldentifer: EString
-elementType: EString

-conformsTo: Estring -elementType: EString -label: EString
-content: Resource -lable: EString -resource: Resource
-encoding: EString

V -source TraceRelationship

1
Traceable | - -traceType: EString
-target [-comment: Resource
—_ |-parent:Resource

1.*

Figure 10: Model the Traceable OSLC Resource

Resources are elements according to models, but not
metamodels.

The Artifact and Role models are the basis for
the generation of OSLC resource definitions and
server/client code for tool adaptor interfaces in terms
of services. Moreover, giving some mapping rules de-
fined between the tools concepts and engineering do-
main concepts, Roles can be automatically attached
or removed from their artifact during the process exe-
cution.

As there are different development tools involved,
UUID (universally unique identifier) is chosen as
standardized UID to identify every single Artifact
and Role. The experiment code is based upon the
OSLC Eclipse LYO (The Eclipse Foundation, 2013)
project. It adopts OSLC specifications and builds
OSLC-compliant tool adaptor server and client. The
code is based upon RDF and Web Service technology.
The tool adaptor server part includes the common def-
initions used for the adaptor, such as Resource defini-
tions (compliant to Artifact model and Role model)
and constants. It mainly includes three parts. The
OSLC Registry web application is used as an OSLC
Catalog for the service providers. When each appli-
cation starts, it registers its OSLC service provider
details with OSLC Registry. The OSLC Wink is the
framework that builds RESTful Web services. The
OSLC Provider provides OSLC Resources in RDF
or JSON. The adaptor server provides services and
receives requests from consumers to manipulate the
OSLC Resource through HTTP methods (GET, PUT,
DELETE, and POST). The OSLC project uses anno-
tations and JAX-RS methods to simplify the develop-
ment process, which can also be generated from the
models. The client code acts as service consumer to
test the services provided by adaptor server.

Beside the implementation code, our experiment
shows it is also feasible to generate tool adaptor spec-
ifications (e.g. in Microsoft Office Word format)
from above class models. The generated specifica-
tions mainly include the data description (e.g. OSLC
property tables, figure 9) and service description (e.g

108

Artifact operations). Data specification defines a set
of specific Resources for delegated tool adaptor, and
their properties and relationships to be exposed by
the provided adaptor services. Provided Services de-
fine functionalities made available to tools, while Re-
quired Services defines set functionalities needed by
tool type to function as expected.

6 RELATED WORK

Tool integration has been a research area since the
90’s, and it has been subject to many characteriza-
tion attempts. (Brown et al., 1992) splits integration
in a Conceptual axis that represents the understand-
ing of integration and the Mechanistic axis that repre-
sents the technical way of realizing it. In (Wasserman,
1989) integration is characterized by five dimensions
control, data, presentation, process and platform. Be-
sides (Brown and McDermid, 1992) classifies integra-
tion into interoperability levels where syntactic relates
to the-agreement of tools on.common data structures,
and semantics addresses the meaning of exchanged
data.

Several integration patterns have emerged: point
to point consists of ad-hoc tools connections, Inte-
gration Framework Environments that integrate tools
around a common framework based on standardiza-
tion architectures (e.g. CORBA (Vinoski, 1997)),
common formats (e.g. EIA/CDIF (Flatscher, 2002)),
or infrastructures facilitating tool collaboration (e.g.
Jazz (Jazz, 2011)). Tools can be loosely coupled via
a set of services, or web services applied on standard-
ized communication protocols (Web Service Oriented
Acrchitecture).

The above work forms the basis of our discus-
sion. With the increasing complexity of systems,
more and more development tasks are realized by
models conform to metamodels as common represen-
tations for data, and tools have to agree on both the
syntax and semantics of models that are to be ex-
changed (Kapsammer and Reiter, 2006). Tool meta-
models are used in different ways. The Fujaba (Hen-
kler et al., 2010) approach provides a generic solu-
tion for integrating different tool data through vari-
ous metamodel design patterns. Due to the nature of
MDE, approaches like VMTS (Gergely Mezei, 2006)
focuses on the integration of various model-based de-
sign tools, but ignore the tools in other software devel-
opment phases. Thus, lifecycle management aspects
are not covered accordingly. Some of the approaches
(e.g. MOFLON (Amelunxen et al., 2008), Gener-
alStore (Reichmann et al., 2004), CDIF (Flatscher,
2002), VMTS (Gergely Mezei, 2006), and Seman-

tic Integration from Vanderbilt (Karsai and Gray,
2000)) are designed for generic integrations without
investigating specific tool integration scenarios. WO-
TIF(Karsai et al., 2006), JETI (Margaria et al., 2005),
and ModelBus (Sriplakich et al., 2008), build the in-
tegration based upon Web Services.

Recently, ontologies for semantics integration
have been used. Ontology is defined as a represen-
tation of knowledge of a domain and represents se-
mantics information in a form that enables reasoning
about data. Ontology is considered as a domain model
and is different from of a metamodel which defines a
language for models within a domain of. ModelCVS
(Kramler et al., 2006) utilizes semantic technologies
based on ontologies to fill the gaps between different
tool metamodels.

Tools are used in different contexts and thus data
semantics may evolve. The Role mechanism (Kris-
tensen and @sterbye, 1996) can make tool chains
more dynamic, adapting an object to different needs
through attached Roles, each one representing a role
played in one particular context (Reenskaug et al.,
1996) and (Baumer et al., 2000). (Steimann, 2000)
gives a broad overview of Role implementations, and
(Seifert et al., 2010) proposes one example of Role-
based metamodelling approach to tool integration.

In (Weiging Zhang, 2013), we introduced three
different approaches to the modeling of OSLC Re-
source/ Resource Shapes by class modeling. Com-
parison of the different approaches is illustrated and
discussed.

Our paper handles both metamodel and ontologies
issues through representative Artifact models, and use
the Role concept in order to dynamically assign the
required integration information to Artifacts.

7 CONCLUSIONS

This paper has presented extended notions of Arti-
facts and Roles, to enhance their features for integrat-
ing tools. The same Avrtifacts are involved in multiple
scenarios, which extends integration support by using
the dynamicity of Roles and attach them to these Ar-
tifacts. Integration models may also be specified by
just Artifacts and Roles, even before any real model
elements (represented by Artifacts) are made. Finally
the paper has shown that class modeling of Artifacts
and Roles may be used for generating OSLC specifi-
cations, and also implementation code for construct-
ing tool adaptors with OSLC Web Services.

Modeling of Tool Integration Resources with OSLC Support

ACKNOWLEDGEMENTS

The authors would like to thank for the support given
by ARTEMIS Tool Integration project iFEST (iFEST
Project, 2013), including our industrial partners.

REFERENCES

Amelunxen, C., Klar, F., Konigs, A., Rotschke, T., and
Schiirr, A. (2008). Metamodel-based tool integration
with moflon. In Proceedings of the 30th international
conference on Software engineering, ICSE ’08, pages
807-810, New York, NY, USA. ACM.

Baumer, D., Riehle, D., Siberski, W., and Wulf, M. (2000).
Role Object, pages 15-32. Addison-Wesley, Mas-
sachusetts.

Brak, R., editor (2000). Using Roles with Types and Ob-
jects for Service Development.

Brown, A. W., Feiler, P. H., and Wallnau, K. C. (1992). Past
and future models of CASE integration. In [1992]
Proceedings of the Fifth International Workshop on
Computer-Aided Software Engineering, pages 36—45.
IEEE Comput. Soc. Press.

Brown, A. W. and McDermid, J. A. (1992). Learning from
ipse’s mistakes. IEEE Softw., 9:23-28.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. Phd thesis,
University of California.

Flatscher, R. G. (2002). Metamodeling in eia/cdif—meta-
metamodel and metamodels. ACM Trans. Model.
Comput. Simul., 12:322-342.

Floch, J. and Brak, R. (2003). Using sdl for modeling be-
havior composition. In In: Proc. of the 11th Int. SDL
Forum. Springer.

Gergely Mezei, Sandor Juhasz, T. L. (2006). Integrating
model transformation systems and asynchronous clus-
ter tools. In 7th International Symposium of Hungar-
ian Researchers on Computational Intelligence.

Guo, Y. and Jones, R. (2009). A study of approaches for
model based development of an automotive driver in-
formation system. In Systems Conference, 2009 3rd
Annual IEEE, pages 267 —-272.

Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G.,
and Svendsen, A. (2008). Adding standardized vari-
ability to domain specific languages. In Software
Product Line Conference, 2008. SPLC ’08. 12th In-
ternational, pages 139-148.

Henkler, S., Meyer, J., Schafer, W., von Detten, M., and
Nickel, U. (2010). Legacy component integration by
the fujaba real-time tool suite. In Proceedings of the
32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 2, ICSE 10, pages 267—
270, New York, NY, USA. ACM.

iIFEST Project (2010- 2013). iFEST - industrial Frame-
work for Embedded Systems Tools. ARTEMIS-2009-
1-100203, .

109

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

Jazz (2011). Jazz. http://jazz.net/.

Kapsammer, E. and Reiter, T. (2006). Model-based tool
integration- state of the art and future perspectives 1.

Karsai, G. and Gray, J. (2000). Component gen-
eration technology for semantic tool integration.
2000 IEEE Aerospace Conference Proceedings Cat
No0O0TH8484, pages 491-499.

Karsai, G., Ledeczi, A., Neema, S., and Sztipanovits, J.
(2006). The model-integrated computing toolsuite:
Metaprogrammable tools for embedded control sys-
tem design. In Computer Aided Control System De-
sign, 2006 IEEE International Conference on Control
Applications, 2006 IEEE International Symposium on
Intelligent Control, 2006 IEEE, pages 50 —55.

Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Rets-
chitzegger, W., and Schwinger, W. (2006). Towards
a semantic infrastructure supporting model-based tool
integration. In Proceedings of the 2006 international
workshop on Global integrated model management,
GaMMa ’06, pages 43-46, New York, NY, USA.
ACM.

Kristensen, B. B. and @sterbye, K. (1996). Roles: concep-
tual abstraction theory and practical language issues.
Theory and Practice of Object Systems, 2(3):143-160.

Margaria, T., Nagel, R., and Steffen, B. (2005). jJETI:
A Tool for Remote Tool Integration Tools and Algo-
rithms for the Construction and Analysis of Systems.
volume 3440 of Lecture Notes in Computer Science,
chapter 38, pages 557-562. Springer Berlin / Heidel-
berg, Berlin, Heidelberg.

Object Management Group (2010). MOF Model to Text
Transformation. OMG Document ad/05-05-04.pdf .

Object Management Group (2011). Requirements

Interchange Format (ReqlF), Version 1.0.1.
http://www.omg.org/spec/ReqlF/.

Object Management Group (2013). Com-
mon Variability Language Wiki.

http://www.omgwiki.org/variability/doku.php.

Open Services for Lifecycle Collaboration (2013). OSLC -
Open Services for Lifecycle Collaboration Core Spec-
ification Version 2.0 .

Reenskaug, T. (1997). Working with objects: A three-
model architecture for the analysis of information sys-
tems. JOOP, 10(2):22-29, 40.

Reenskaug, T., Wold, P., and Lehne, O. A. (1996). Work-
ing with objects: the Ooram software engineering
method. Manning Publications, Greenwich, CT.

Reichmann, C., Kiihl, M., Graf, P., and Muller-Glaser, K.
(2004). Generalstore - a case-tool integration platform
enabling model level coupling of heterogeneous de-
signs for embedded electronic systems. In Engineer-
ing of Computer-Based Systems, 2004. Proceedings.
11th IEEE International Conference and Workshop on
the, pages 225 — 232.

Rzonca, D., Sadolewski, J., and Trybus, B. (2007). Proto-
type environment for controller programming in the
iec 61131-3 st language. Comput. Sci. Inf. Syst.,
4(2):133-148.

110

Seifert, M., Wende, C., and ABmann, U. (2010). Antici-
pating Unanticipated Tool Interoperability using Role
Models. pages 52-60.

Sriplakich, P., Blanc, X., and Gervais, M.-P. (2008). Collab-
orative software engineering on large-scale models:
requirements and experience in modelbus. In Wain-
wright, R. L. and Haddad, H., editors, SAC, pages
674-681. ACM.

Steimann, F. (2000). On the representation of roles
in object-oriented and conceptual modelling. Data
Knowledge Engineering, 35(1):83-106.

The Eclipse Foundation (2013). Eclipse Lyo Project.
http://lwww.eclipse.org/lyo/, 2012.

Vinoski, S. (1997). Corba: integrating diverse applications
within distributed heterogeneous environments. Com-
munications Magazine, IEEE, 35(2):46-55.

Wasserman, A. 1. (1989). Tool integration in software engi-
neering environments. In SEE, pages 137-149.

Weiging Zhang (2013). Class Modeling of OSLC Re-
sources. Technical Report, University of Oslo.

Zhang, W., Leilde, V., Moller-Pedersen, B., Champeau, J.,
and Guychard, C. (2012a). Towards tool integration
through artifacts and roles. 'In The 19th Asia-Pacific
Software Engineering Conference.

Zhang, W. and Moller-Pedersen, B. (2013a). Establishing
tool chains above the service cloud with integration
models. In IEEE 20th International Conference on
Web Services.

Zhang, W. and Moller-Pedersen, B. (2013b). Tool integra-
tion models. In The 20th Asia-Pacific Software Engi-
neering Conference.

Zhang, W., Moller-Pedersen, B., and Biehl, M. (2012b). A
light-weight tool integration approach— from a tool in-
tegration model to oslc integration services. In 7th In-
ternational Conference on Software Paradigm Trends.

