
Typing and Subtyping of Metamodels

Henning Berg and Birger Møller-Pedersen
Department of Informatics, University of Oslo, Oslo, Norway

Keywords: Metamodelling, Typing, Subtyping, Domain-specific Modelling, Languages.

Abstract: In model-driven engineering, models are considered first-class entities. Model-driven engineering has been
around for over a decade. Still, there has not been much work on how to type models or metamodels, which is
important to realise true model-driven software development. In this paper, we discuss how a metamodel can
be typed by means of an enclosing class whose state can be utilised by tools such as editors and interpreters.
This allows using established object-oriented mechanisms on the metamodel level and supports specialisation
of metamodels.

1 INTRODUCTION

Model-Driven Engineering (MDE) (Kent, 2002) is
a collective term for a number of approaches and
methodologies for software development in which
models are first-class entities. MDE can be seen as
a natural progression of object-orientation by rais-
ing the abstraction level from the class level to the
model level. A model is a set of interconnected ob-
jects, whose descriptions are formalised by a meta-
model (class model). In spite of MDE’s model-centric
view on software design and development, most MDE
technologies and tools do not have native support for
typing models or metamodels. This has consequences
with respect to reuse of models, model transforma-
tions and interpreters. The notion of polymorphism at
the metamodel level is also unclear, as the type of a
metamodel is not well defined. The work of (Khne,
2010) motivates strongly why model substitutability
is a valuable property to aim for in MDE, whereas
(Khne, 2006) discusses using inheritance, in the form
of subtype specialisations, as a basic relationship be-
tween models.

The work of (Steel and Jzquel, 2007) presents one
approach for realising model typing in MDE. In par-
ticular, the work adresses concerns related to reuse of
model transformations and interpreters, or in general,
situations where externally defined code should be ap-
plicable to a number of different models all sharing
a minimum set of properties as specified by a refer-
ence model type. However, there are still many open
questions on how to support cases where model types
also cover behavioural semantics, and not just model

structure, software evolution and how to define func-
tional model types. That is, model types whose defi-
nition also cover behavioural semantics in addition to
structure.

The success of object-orientation is to a large ex-
tent a consequence of its powerful mechanisms, e.g.
specialisation, polymorphism and composition (us-
ing object references). The MDE philosophy sup-
ports the idea that such mechanisms should also be
available at the model and metamodel levels. Many
mechanisms address these aspects of (meta)model us-
age and evolution, e.g. (Fabro et al., 2006)(Kolovos
et al., 2006)(Groher and Voelter, 2007)(Fleurey et al.,
2008)(Morin et al., 2009)(Morin et al., 2008). How-
ever, these mechanisms require the use of additional
frameworks. Furthermore, composition and vari-
ability directives are described in separate resources
(files) in the form of either a weaving model, point-
cut model or composition/variability rules. Such ad-
ditional resources complicate reuse. They also pose
certain challenges in maintaining files to reflect alter-
ations of the metamodels.

The notion of specialising (as in subtyping) meta-
models has not received the same attention as model
transformations and composition. In this paper, we
discuss how metamodels can be typed by nesting
them within an enclosing class. We will see how the
enclosing class may indeed represent the type of the
enclosed metamodel. The enclosing class can be sub-
typed which allows us to specialise metamodels. We
will focus on metamodels whose behavioural seman-
tics is defined in methods or operations, as supported
by the Eclipse Modeling Framework (EMF) (Eclipse-

111Berg H. and Møller-pedersen B..
Typing and Subtyping of Metamodels.
DOI: 10.5220/0004713901110118
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 111-118
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Foundation, 2013a), Kermeta (Muller et al., 2005)
and Epsilon Object Language (EOL) (EclipseFoun-
dation, 2013b).

The paper is organised in five main sections. Sec-
tion 2 discusses the basic mechanics of using class
nesting to type metamodels, and the purpose of typing
metamodels. Section 3 delves into the matter of using
class nesting for defining metamodel types, whereas
Section 4 presents related work. Section 5 concludes
the paper.

2 METAMODEL TYPES

A metamodel defined in the Essential MetaObject Fa-
cility (EMOF) (OMG, 2013) architecture comprises
a set of classes contained in one or more packages,
whose objects constitute one or more models. The
classes are related by association and specialisation
relationships (in the form of class properties). A
metamodel can be uniquely identified by the name
and namespace of its containing package. However, a
package is not a semantically powerful concept (Mon-
perrus et al., 2009), and can not be used as a type
specification for the contained metamodel. Specifi-
cally, it is not clear how different packages relate and
which operations that can globally be applied on the
data (model objects) described by the package con-
tents (classes).

A class specifies the type of its instances. The type
is defined by the attributes and operations of the class.
In addition, non-static nested classes (inner classes)
contribute to the type, as they can be considered class-
valued attributes. In this paper, we pursue the idea
of defining a metamodel within an enclosing class.
The enclosing class is contained in a package. The
purpose of defining a metamodel within an enclosing
class is that the class explicitly describes a type for the
metamodel. Hence, using an enclosing class allows us
to take advantage of established principles of object-
orientation - at the metamodel level. The metamodel’s
type is that of the enclosing class. In the context of
this paper, we will simply refer to a class that encloses
a metamodel as a metamodel type. A specific instance
of a metamodel type represents a specific metamod-
el/language, and models of this metamodel/language
will be in terms of objects of the classes enclosed in
the specific instance. The instances of a given meta-
model type will be generated by tools, while mod-
ellers will only be concerned with making models us-
ing the enclosed classes.

2.1 Definitions and Example

Definition 1. A metamodel type is an enclosing class
containing an arbitrary number of non-static nested
classes, attributes and operations. The nested classes
constitute an EMOF-compatible metamodel. A meta-
model type tm can be described as the sequence
hname;c;a;oi � s, where c� C - a finite set of EMOF-
compatible (nested) classes, a � A - a finite set of
attributes (or references), o � O - a finite set of op-
erations and s � T - a finite set of super metamodel
types.

An example of a state machine metamodel type,
named TStateMachine, is given below:

tm = hT StateMachine;fStateMachine; State;
Transition; Eventg;fsm : StateMachine; events :
Eventg; ftransitionTable : Stringgi �nil

Definition 2. A metamodel type instance is an object
of the class defining a metamodel type. The meta-
model classes of a metamodel type can be accessed
and instantiated via a metamodel type instance. Sev-
eral models can be created using the same instance.
A metamodel type instance may have attributes (ac-
cording to the metamodel type definition) whose val-
ues can be used to customise the metamodel.

We will use Kermeta to illustrate the idea of meta-
model types1. However, we will only use a subset of
Kermeta to avoid complicating the picture. Kermeta
is an object-oriented language for creating EMOF-
compatible metamodels. It allows specifying the be-
havioural semantics of metamodels within class oper-
ations. The operations are invoked at runtime when
executing a model/program. We do not discuss static
semantics (OCL) in this paper.

Figure 1 gives the metamodel type TStateMachine
implemented in Kermeta syntax. The metamodel type
encloses a metamodel/language for modelling of state
machines. The metamodel comprises the four classes:
StateMachine, State, Transition and Event. StateMachine
is the top node class of the metamodel from which
all other classes are reachable through relationships.
There is a reference typed with this class in the en-
closing TStateMachine class. This reference is used to
access the current model being processed by a tool
(editor, interpreter, etc.). The metamodel details are
not of interest, therefore three consecutive dots are
used to represent content.

As seen in Figure 1, the enclosing class has a ref-
erence typed with the metamodel’s top node class. It
also has a global operation named transitionTable() that

1Note that the current version of EMOF/Kermeta does
not support nesting of classes as discussed in this paper.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

112

returns a textual description of all possible state tran-
sitions captured by a state machine model (i.e. the
model referenced by the sm reference). A step of the
state machine is performed by invoking step(...) in the
State class. The step is carried out if the current state
has a transition whose event value is equal to the op-
eration argument.

package state_machine;

class TStateMachine {
// Reference typed with the top node metamodel class
reference sm : StateMachine [1..1]

// Events that may occur
attribute events : Event[1..*]

// Operation global to all the metamodel classes
operation transitionTable() : String is do

sm.states.each{ s | ... }
...
result := ...

end

// Metamodel classes
class StateMachine {
attribute states : State[0..*]
reference currentState : State[1..1]
reference initialState : State[1..1]
...

}

class State {
attribute name : String
reference incoming : Transition [0..*]
attribute outgoing : Transition [0..*]# source
operation step(event : Event) is do ... end
...

}

class Transition {
reference source : State [1..1]# outgoing
reference target : State[1..1]
reference event : Event[1..1]
operation trigger() is do ... end

}

class Event { ... }
}

Figure 1: A simple metamodel type for state machines (lan-
guage).

A weighted state machine is a variant of the ba-
sic state machine that supports the description of a
probabilistic aspect of events: how likely that a given
transition should be triggered. This aspect can be ap-
plied to the basic state machine using specialisation.
A first attempt to define this special kind of state ma-
chine would be to define a subclass of StateMachine.
This seems obvious, as objects of the class StateMa-
chine represent state machine models, and as such the
class StateMachine appears to be the type of all these
models. However, this would not work as intended, as
the addition should be in the Transition class. Hence, a
next step would be to create a subclass of Transition (in
addition to the existing Transition class). However, this
would imply that even simple state machine models
might have weighted transitions. Instead, by defining
the additional properties of a weighted state machine
within a subclass of TStateMachine, we are able to spe-
cialise the state machine metamodel as a holistic en-
tity and clearly differentiate the state machine variants
while still being able to use tools defined according to

the general variant of the state machine metamodel
(tools e.g. editors will not be able to instantiate new
classes that have been added in subtypes). The exist-
ing models of the initial state machine metamodel are
still valid, as changes and added properties are given
in the metamodel type variant. Existing tools may
then invoke redefined virtual operations in the nested
classes of the metamodel subtype. A metamodel type
for a weighted state machine is given below (the ar-
rows indicate inheritance):

tmw = hTWeightedStateMachine; fState "
State; Transition " Transitiong;fg;fgi �
fT StateMachineg

Figure 2 illustrates the new metamodel type in
Kermeta. Notice that TWeightedStateMachine is as
a specialisation of TStateMachine. Specifically, the
classes Transition and State are given additional prop-
erties.

package weighted_state_machine;
require "state_machine.kmt"

class TWeightedStateMachine inherits TStateMachine {
class State inherits TStateMachine.State { ... }
class Transition inherits TStateMachine.Transition {

attribute probability : Real
}

}

Figure 2: A metamodel type for weighted state machines.

Alternatively, a state machine that supports com-
posite states can be defined as:

tmc = hTCompositeStateMachine;
fCompositeState " State;g;fg;fgi �
fT StateMachineg

Figure 3 shows the metamodel type in Kermeta
syntax.

package composite_state_machine;
require "state_machine.kmt"

class TCompositeStateMachine inherits TStateMachine {
class CompositeState inherits State {

attribute stateMachine : StateMachine [0..1]
}

}

Figure 3: A state machine metamodel type with simple and
composite state constructs.

Note that this metamodel type includes two
classes for modelling of states: State and CompositeS-
tate.

2.2 Specialisation and Polymorphism

Changing or refining an artefact of a system is not
trivial since changes may impact other parts of the
system, or even other systems. Changes made to arte-
facts at higher abstraction levels typically are more
severe when it comes to impacting other parts of a

Typing�and�Subtyping�of�Metamodels

113

software system. A metamodel is a model describing
a set of models, i.e. the language of realisable mod-
els (Favre, 2004). Changing a metamodel impacts
all the conformant models. That is, the language of
valid models that can be recognised is changed. In
most cases, changing a metamodel may render its ex-
isting conformant models incompatible. This in turn
requires manually changing the models or automat-
ing this process by creating a model transformation
that incorporates knowledge about the changes to ap-
ply. Changes to a metamodel also impact its tools. By
using specialisation based upon metamodel types it is
possible to create new metamodel variations without
render existing tools unusable. That is, the tools will
still work by invoking redefined virtual operations.
Hence, some of the challenges of software evolution
(additions) can be tackled.

One of the main contributions using metamodel
types is the ability to use polymorphism. In the exam-
ple, the metamodel type TWeightedStateMachine may
be used as a substitute for TStateMachine. Importantly,
this can be achieved without type casting. External
code defined according to basic state machines can
still be used with weighted state machines.

Metamodel type hierarchies may form a type sys-
tem that facilitates reuse of commonly occurring
metamodel structure and semantics (Cho and Gray,
2011). Using an enclosing class to specify a meta-
model type yields a high degree of encapsulation; a
tool that is built to be compatible with the TStateMa-
chine type can also operate on subtypes of this, e.g.
TWeightedStateMachine.

3 IMPLICATIONS OF
METAMODEL TYPES

3.1 Interpretation and Code Generation

In Kermeta, the metamodels’ behavioural semantics
are defined in class operations. For instance, the se-
mantics for stepping/triggering a new state in the state
machine metamodel is defined in the step(...) and trig-
ger() operations in the State and Transition classes. The
exact definition of this semantics is not interesting.
However, it is clear that the default stepping/trigger-
ing semantics will not suffice for a weighted state ma-
chine. By subtyping State and Transition, the semantics
of these classes can be redefined for the new state ma-
chine type. The main point here is that a framework
for interpretation of state machine models will still
work on the redefined semantics due to dynamic bind-
ing, e.g. such a framework may invoke the step(...)

and trigger() operations. Figure 4 shows a skeletal of
such a framework. This code will work regardless of
state machine variants (a consequence of virtual oper-
ations).

class StateMachineInterpreter
{
operation interpret(TStateMachine.StateMachine sm) is do
var initial : State init sm.initialState
...
initial.step(event)
...

end
}

Figure 4: Excerpt of an interpreter for execution of state
machine models.

A typical approach for generating executable
DSLs is to use code generators that work on purely
structural metamodels/models.

However, the operations may also be used to im-
plement a code generator (where each class contains
code for a target language). Since we allow subtyp-
ing both the enclosing class and the inner classes of
a metamodel type, we are able to redefine the code
generator using virtual operations (and types).

3.2 Analysis Tools

The operations in the classes may also be used to
generate information about the conformant models.
In particular the enclosing class may contain opera-
tions that work on models as a whole. We have given
one such operation in the TStateMachine, namely tran-
sitionTable(). This operation contains semantics that
is not part of of the metamodel/language for creat-
ing state machines. Yet, it allows calculating infor-
mation about a state machine that can be presented
to the modeller during the modelling process. By us-
ing subtyping it is possible for analysis tools to work
on metamodel variants, since the access points of the
analysis tools are predefined as global operations in
the enclosing class.

3.3 Type Safety

In this paper, we relate variants of metamodel types
using the subtyping relation (Liskov and Wing, 1994).
Subtyping imposes certain restrictions on subtypes:
the parameter types of an operation are required to be
contravariant, whereas the return type needs to be co-
variant. What this means is that virtual operations of
subtypes can be invoked type-safely in place of their
supertype equivalents. As pointed out in (Steel and
Jzquel, 2007), types of class properties are required
to be invariant in MetaObject Facility (MOF) (OMG,
2013) metamodels. This latter requirement is diffi-
cult to fulfill, as additions of attributes and references

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

114

to a class is common when creating metamodel vari-
ants. Such additions change the type of the contain-
ing class, which in turn results in a covariant redefi-
nition of attributes and references that are typed with
the class. Let us see how this affects metamodel types
as presented in this paper.

There are two places where subtyping occurs in
creating a metamodel type variant. First, the enclos-
ing class is subtyped. Second, the inner classes con-
stituting the metamodel may be subtyped selectively
depending on which specialisations that are required.
Recall how the Transition class needs an additional at-
tribute probability to create a weighted state machine
metamodel from the basic state machine metamodel.
Let us assume that this would be the only required
addition to the basic state machine metamodel. What
we have now is a situation of covariant type redefini-
tion. The attributes incoming and outgoing of the State
class (see Figure 1) are typed with Transition. The new
Transition class variant contains an additional attribute.
Hence, the types of the incoming and outgoing refer-
ences in the State class of the metamodel type variant
(TWeightedStateMachine) are not invariant, but covari-
ant. A potential problem would occur when related
metamodel types are mixed, e.g. when a model con-
tains instances of both state machine and weighted
state machine metamodel classes. However, these sit-
uations do not occur since e.g. a model editor has to
instantiate either of these types. Hence, it is not pos-
sible to instantiate the subtype of the Transition class
when creating a basic state machine.

Attributes and references have multiplicities
which indicate the possible amount of values/objects
the properties may take. We consider attributes and
references to be immutable.

An important ability in metamodels is to define
bi-directional relationships. Using bi-directional re-
lationships in the nested metamodel of a metamodel
type does not induce any new challenges.

According to (OMG, 2011), classes in MOF do
not define XMI namespaces. Nesting of classifiers
may thus yield name collisions. However, the idea
presented in this paper utilises a constrained form of
class nesting, where the enclosing class has a special
role. We do not discuss arbitrary nesting of classes.

3.4 Multiple Inheritance

We have seen how metamodel types can be used to
represent metamodel patterns or fragments, e.g. a
state machine. We have also discussed how a meta-
model can be considered and interpreted from the per-
spective of one specific metamodel type. Seen in the
light of this, a metamodel may have several types. Put

differently, a metamodel can be constructed by com-
bining an arbitrary number of patterns. This means
that a metamodel can also be considered from sev-
eral perspectives depending on situation and purpose
(e.g. a tool may present several viewpoints to the
user, where each viewpoint correspond to a meta-
model type).

package metamodel;
require "state_machine.kmt"
require "game.kmt"

class TMetamodel inherits TStateMachine , TGame
...

}

Figure 5: Using multiple inheritance to relate metamodel
types (yielding a composite metamodel).

Regardless of specialisations of the inner classes,
the enclosed metamodel of TMetamodel can still be
considered from two perspectives/aspects: state ma-
chines and game. That is, tools defined for TStateMa-
chine and TGame can still be used. For example, it is
convenient to analyse a model conforming to the com-
posite metamodel from the state machine perspective
alone, e.g. by writing out the state transition table or
similar. This is possible regardless of the added prop-
erties in specialisations of the inner classes.

Using multiple inheritance may potentially re-
quire resolution of name conflicts. There are several
approaches to improve the applicability of multiple
inheritance, e.g. Kermeta allows the modeller to ex-
plicitly specify the operation to override in ambigious
situations. We will not go into details on this subject.

3.5 Defining Metamodel Types

A metamodel type can be created automatically by
enclosing the metamodel in a class. Additional at-
tributes and operations may then be added by the
metamodel developer if required. An enclosing class
may also be created implicitly by tools, e.g. if a meta-
model is not defined as a metamodel type. This works
as long as no additional elements are required in the
enclosing class.

3.6 Using Virtual Classes and Generic
Parameters

The classes of a metamodel type can both be defined
as virtual and utilise generic type parameters. Let us
return to our example. If the language for making
metamodels (e.g. Kermeta) supports virtual classes
(Madsen and Mller-Pedersen, 1989), then the Transi-
tion could be defined as a virtual class and then rede-
fined in TWeightedStateMachine (by extending the Tran-

Typing�and�Subtyping�of�Metamodels

115

sition class). This allows code in TStateMachine to gen-
erate Transition objects with the additional property,
given that the context in which this code is executed
is an object of TWeightedStateMachine. For an in-depth
discussion on this topic, see (Berg et al., 2011). Vir-
tual classes also allows existing tools like editors to
instantiate redefined classes in subtypes.

3.7 Metamodel Customisation

In its simplest form, an enclosing class does not
contain other elements than the nested metamodel
classes. The enclosing class may also contain at-
tributes and operations. This adds a new dimension
to metamodels. Specifically, the state of a meta-
model type object can be used to customise the be-
havioural semantics of its encapsulated metamodel.
As an example, the behavioural semantics of a meta-
model (as defined in operations) may use different
algorithms depending on context. These algorithms
may share basic properties (attributes) whose values
can be changed with the intention of tuning the be-
havioural semantics for a specific usage or context.
Being able to adjust these properties simultaneously
for all the algorithms allows customising the seman-
tics easily without changing the actual models. The
properties with their values are in the object of the en-
closing class. Hence, this object’s state captures an
(execution) configuration for models of a given meta-
model/language. Changing such values for a meta-
model/language would change the meaning for all
conformant models/programs. It would also be possi-
ble to maintain several objects of the enclosing class
and thereby facilitate execution profiles (serialised to
files). However, this will give rise to an additional
level of polymorphism as different object states give
different execution results.

4 RELATED WORK

There are several mechanisms that address model
composition and variability. Some of these are dis-
cussed in (Berg and Mller-Pedersen, 2013). Common
to these mechanisms is their external definition from
the language used to define the models and/or meta-
models. Moreover, most mechanisms use some kind
of merging techniques to combine the metamodels
which compromises the principle of encapsulation.

We have used Kermeta to illustrate metamodel
types. Kermeta features a mechanism known as static
introduction. This mechanism allows specifying par-
tial class definitions using aspects. Several aspect def-
initions are combined (or woven) at runtime to form

the definition of a class. The mechanism allows defin-
ing new aspects that are combined with an existing
class definition. Aspects allow creating metamodel
variants. However, they can not be used to type a
metamodel - the resulting classes are contained in a
regular package.

Model types, as described in (Steel and Jzquel,
2007) resembles the work of this paper. There are
some differences and similarities that we will discuss.
First, a model type can be seen as a type-safe set
of an arbitrary number of model object types. The
model type mechanism defines a conformance rela-
tion between model types, which allows reusing code
or transformations. Specifically, code for manipulat-
ing or executing models (interpretation) can be de-
fined according to a reference model type. All models
that are typed with a model type conformant to the ref-
erence model type can be manipulated or executed by
the same code. A model type is created by referring to
classes of an arbitrary number of existing metamod-
els. This is a powerful ability, since classes defined in
different packages can be ”extracted” to constitute a
model type.

A metamodel type, as discussed in this paper, al-
lows typing metamodels as holistic MDE structures.
We have used the notion metamodel type instead of
model type because of a significant difference be-
tween the approaches. An instance of a metamodel
type (object of the enclosing class) represents one par-
ticular metamodel. The object can be used to access
the metamodels’ classes and thereby create model ob-
jects. The object of the enclosing class also refer-
ences one model whose semantics is e.g. intended
to be executed at runtime. Conversely, in the work
of (Steel and Jzquel, 2007), an instance of a model
type can not be used to instantiate the classes of the
model type. Instances of these classes are instead
added to the model type instance. The model type in-
stance acts as a filter where only objects of the model
type’s classes can be added to the model type instance
successfully. The similarity in this respect between
the approaches is that both a metamodel type instance
and a model type instance can be used to reference a
conformant model. The capabilities of the two model
typing approaches differ. Model types are designed to
simplify reuse of code from an external perspective,
e.g. from the perspective of an interpreter or transfor-
mation. Conversely, metamodel types allow creating
metamodel variants. By design, metamodel types are
functional types. Reuse of code is achieved by cre-
ating type variants in the form of subtypes. Model
types, on the other hand, are structural. They can not
be combined, or be related to create variations.

The inability to use substitution in model typing

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

116

is addressed by (Guy et al., 2012). The paper dis-
cusses four subtyping mechanisms, and how these al-
low defining relations between model types as defined
in (Steel and Jzquel, 2007). The work differentiates
between total and partial subtyping relations, that are
either isomorphic (model type matching with respect
to properties and operations) or non-isomorphic. Ac-
cording to the definitions of (Guy et al., 2012), using
an enclosing class as type specification for metamod-
els can be seen as a total isomorphic subtyping rela-
tion that is declared explicitly. The explicitly declared
subtyping relation allows reusing structure of super-
types through inheritance. And, as we have seen, the
inherited classes can be redefined. Using an enclos-
ing class supports compile-time checking of the sub-
typing relations between types. It is stated in (Guy
et al., 2012) that it is not possible to achieve type
group substitutability using object subtyping. The
work on metamodel types shows that this is in fact
possible when a metamodel is a property of an object
- as realised using class nesting. Hence, we are able
to achieve type group substitutability based upon es-
tablished object subtyping principles. This includes
the ability to reuse existing type checking algorithms.
The drawback of our approach is that substitutability
of metamodels can not be defined partially. However,
as illustrated, a metamodel can be typed according to
several metamodel types, which addresses this con-
cern to some extent.

An approach for generic specification of meta-
model’s behaviour is discussed in (de Lara and
Guerra, 2011). The approach relies on the use of
generic concepts to define behaviour that is applica-
ble to a family of unrelated metamodels. Concepts
allow specifying details of models’ structure by util-
ising parameters. A concept can be bound to meta-
models that satisfy the concept’s requirements using
pattern matching. There is no dependency between a
metamodel and a concept. Hence, utilising concepts
is non-intrusive. Conversely, we have seen how meta-
model types are related using subtyping in two levels.
In other words, we utilise a typical object-oriented
typing scheme that allows defining metamodel vari-
ants explicitly using subtyping.

Specialisation relationships between models are
carefully discussed in (Khne, 2010). The work for-
malises two relations for specifying forward- and
backward-compatibility between models and applies
these relations to, e.g. models related using subtyp-
ing. The compatibility relations are defined using a
definition of conformance. Forward-compatibility is
achieved if instances of a submodel conform to the su-
permodel, and vice versa for backward-compatibility.
One important point discussed is the desire to max-

imise the forward-compatibility of a language since
this allows reusing existing tools on new models (via
redefined virtual operations). The subtyping relation
ensures a high degree of forward-compatibility. Sub-
typing also guarantees mutator forward-compatibility.
This supports a round-trip between new instances of
submodels and support of these by existing tools.
That is, the submodel instances appear like super-
model instances. Subtyping is the most restrictive
specialisation relationship, with strict behaviour con-
formance of subtypes. We believe that this type of re-
lationship is the best suited to relate metamodel types.

5 CONCLUSIONS

The work discussed in this paper presents a novel way
of typing a metamodel by defining it within an enclos-
ing class. The purpose of the enclosing class is to fa-
cilitate object-orientation at the metamodel level that
can be utilised by tools. Hence, we achieve a man-
ner of defining functional types for metamodels that
can be related using subtyping. An object of the en-
closing class is not part of a model, but used by tools
to manage the enclosed metamodel. Subtyping en-
sures substitutability between metamodel types. That
is, tools defined according to a metamodel type can be
reused on subtype variations of this metamodel type
(possible by redefinition of virtual operations). An-
other important aspect of using subtyping is the abil-
ity to maintaining conformance between models and
their metamodels.

To the best of our knowledge, there are currently
no metamodelling tools or environments that support
nesting of classes. Formalising and implementing a
complete type system with inner classes is a very
time-consuming endeavour. As a first iteration, we
have therefore focused on the theoretical approach to
the subject.

REFERENCES

Berg, H. and Mller-Pedersen, B. (2013). Type-safe symmet-
ric composition of metamodels using templates. In
7th International Workshop on System Analysis and
Modelling (SAM ’12), LNCS vol. 7744, pp.160-178.
Springer (2013).

Berg, H., Mller-Pedersen, B., and Krogdahl, S. (2011). Ad-
vancing generic metamodels. In SPLASH ’11 Work-
shops Proceedings, pp.19-24. ACM Press (2011).

Cho, H. and Gray, J. (2011). Design patterns for metamod-
els. In SPLASH ’11 Workshops Proceedings, pp.25-
32. ACM Press (2011).

Typing�and�Subtyping�of�Metamodels

117

de Lara, J. and Guerra, E. (2011). From types to type re-
quirements: Genericity for model-driven engineering.
In Software and Systems Modeling. Springer (2011).

EclipseFoundation, T. (2013a). Eclipse modeling frame-
work (emf).

EclipseFoundation, T. (2013b). Epsilon object language
(eol).

Fabro, M. D. D., Bzivin, J., and Valduriez, P. (2006). Weav-
ing models with the eclipse amw plugin. In Eclipse
Modeling Symposium, Eclipse Summit Europe 2006.

Favre, J.-M. (2004). Towards a basic theory to model model
driven engineering. In 3rd International Workshop on
Software Model Engineering (WISME ’04).

Fleurey, F., Baudry, B., France, R., and Ghosh, S. (2008).
A generic approach for automatic model composition.
In Models in Software Engineering, LNCS vol. 5002,
pp.7-15. Springer (2008).

Groher, I. and Voelter, M. (2007). Xweave - models and
aspects in concert. In 10th International Workshop on
Aspect-Oriented Modeling (AOM ’07) pp.35-40. ACM
Press (2007).

Guy, C., Combemale, B., Derrien, S., Steel, J., and
Jzquel, J.-M. (2012). On model subtyping. In Mod-
elling Foundations and Applications, LNCS vol. 7349,
pp.400-415. Springer (2012).

Kent, S. (2002). Model driven engineering. In Inte-
grated Formal Methods, LNCS vol. 2335, pp.286-298.
Springer (2002).

Khne, T. (2006). Matters of (meta-) modeling. In Soft-
ware and Systems Modeling, vol. 5, no. 4, pp.387-394.
Springer (2006).

Khne, T. (2010). An observer-based notion of model inher-
itance. In Model Driven Engineering Languages and
Systems, LNCS vol. 6394, pp.31-45. Springer (2010).

Kolovos, D., Paige, R., and Polack, F. (2006). Merging
models with the epsilon merging language (eml). In
Model Driven Engineering Languages and Systems,
LNCS vol. 4199, pp.215-229. Springer (2006).

Liskov, B. and Wing, J. (1994). A behavioral notion of sub-
typing. In ACM Transactions on Programming Lan-
guages and Systems, vol. 16, no. 6., pp.1811-1841.
ACM Press (1994).

Madsen, O. L. and Mller-Pedersen, B. (1989). Virtual
classes - a powerful mechanism in object-oriented
programming. In Proceedings of OOPSLA ’89.

Monperrus, M., Beugnard, A., and Champeau, J. (2009). A
definition of abstraction level for metamodels. In 16th
Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Sys-
tems (ECBS ’09), pp.315-320, IEEE Computer Soci-
ety (2009).

Morin, B., Klein, J., and Barais, O. (2008). A generic
weaver for supporting product lines. In 13th Interna-
tional Workshop on Early Aspects (EA ’08), pp.11-18.
ACM Press (2008).

Morin, B., Perrouin, G., Lahire, P., Barais, O., Van-
wormhoudt, G., and Jzquel, J.-M. (2009). Weav-
ing variability into domain metamodels. In Model
Driven Engineering Languages and Systems, LNCS
vol. 5795, pp.690-705. Springer (2009).

Muller, P.-A., Fleurey, F., and Jzquel, J.-M. (2005). Weav-
ing executability into object-oriented meta-languages.
In Model Driven Engineering Languages and Sys-
tems, LNCS vol. 3173, pp.264-278. Springer (2005).

OMG (2011). Omg issue 7603, received 27th of july 2004,
closed 27th of may 2011.

OMG (2013). Meta object facility (mof) core specification.
Steel, J. and Jzquel, J.-M. (2007). On model typing. In

Software and Systems Modeling, vol. 6, no. 4, pp.401-
413. Springer (2007).

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

118

