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Abstract: In this paper, we proposed a segmentation approach that not only segment an interest object but also label 
different semantic parts of the object, where a discriminative model is presented to describe an object in real 
world images as multiply, disparate and correlative parts. We propose a multi-stage segmentation approach 
to make inference on the segments of an object. Then we train it under the latent structural SVM learning 
framework. Then, we showed that our method boost an average increase of about 5% on ETHZ Shape 
Classes Dataset and 4% on INRIA horses dataset. Finally, extensive experiments of intricate occlusion on 
INRIA horses dataset show that the approach have a state of the art performance in the condition of 
occlusion and deformation. 

1 INTRODUCTION 

Image segmentation is a fundamental and long-
standing problem in computer vision, which aims to 
cluster pixels in an image into distinct, semantically 
coherent and salient regions. Solutions to image 
segmentation serve as the basis for a broad range of 
applications, which include content-based image 
retrieval, object detection, video surveillance and 
object tracking. Unfortunately, the work to segment 
an image is found difficult and challenging for two 
main reasons (Maji et al., 2009). One is the 
fundamental complexity of modeling a vast amount 
of visual pattern, and the other is the intrinsic 
ambiguities in image perception. In recent 
researches, there are mainly three ways to solve the 
problem pertaining to segmentation and recognition: 

First method is commonly known as the Top-
down segmentation, which is a method using prior 
knowledge of an object, such as its characteristic to 
propose plausible pixels that may compose a certain 
object. The principal difficulty in top-down 
segmentation stems from the large variability in the 
appearances and shapes of objects within a given 
class. Unfortunately, recent extensive experiments in 
(Li et al., 2012) demonstrated that a single region 
generated by image segmentation can rarely be 
equated with a physical object. Since there is a 

variety of object shapes, only an approximate edge 
alignment between the training masks and new 
object instances can be predicted. The approach 
adopted in this paper is more general and does not 
rely on its coherent appearance of the entire object 
but rather on the semantic parts. It can also 
comprehend the novel inner-class relationship 
between parts of the object, which makes the 
representation of a movable joints object in relative 
positions more naturally and powerful. 

The second method, Bottom-up approach, is to 
over-segment the image into regions or pixels and 
then identify them as corresponding labeled object. 
This approach mainly relies on continuity principles 
and joint local features such as SIFT, color and 
texture. The Bag of Regions model (Hu et al., 2011), 
representing object shape at multiple scales and 
encoding shapes even in the presence of adjacent 
clusters, has recently delivered impressive 
performances. In the subsequent work, a semantic 
context was joined in recent works (Chen et al., 
2011) and has a good performance. In particular, the 
bottom-up approach is incapable of capturing the 
segmentation of an object from its background, thus 
an object might be segmented into multiple regions. 
The approach in this paper differs from this line of 
work, because the model not only takes advantage of 
local features, but also avails itself of the shape and 
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clique features. 
In order to address these shortcomings appeared 

in top-down and bottom-up approach, recent works 
have started to study the integration of higher-order 
potentials into random field models. For reasons of 
computational tractability, successful approaches 
rely on relatively small clique sizes (Sun et al., 
2011), despite their strongly increasing expressive 
power. These models still mainly focus on encode 
local image properties. Unfortunately, because of the 
approach’s lack of consideration for the global 
features such as shape of the integral object, 
overcoming these limitations to build effective 
structural object descriptions has proven to be quite 
challenging. Our approach is more along random 
field model as we focus on both the representation 
and classification of individual regions and 
modeling the relations between regions in the intact 
object. Our discriminative model can be interpreted 
as powerful pluralistic potentials with graph-based 
models. It uses features and relationship between 
parts to represent objects in images. In particular, a 
novel inner-class relationship is proposed to describe 
the relationship between different parts in an object. 

We describe an object in real world images as an 
assembly of flexible skeleton and parts based on the 
skeleton, i.e., an object that is composed of multiply, 
disparate and correlative parts. A discriminative 
model is proposed and inferenced by a multi-stage 
segmentation algorithm. It is performed as a multi-
stage segmentation via the maximization of a 
discriminative function, which is similar to the two-
stage-segmentation showed in (Gould et al., 2008). 
The function formulates local features, including the 
local shape and visual appearance, and sets the 
possible skeletal shape of the object, which is 
performed by the inner-class pairwise features. Our 
method can not only segment an interest object but 
also label different semantic parts of the object. We 
validate our approach by conducting extensive 
experiments on ETHZ Shape Classes and INRIA 
horses dataset, and we also test our method in 
intricate occlusion on INRIA horses dataset and in 
real world. The results show that our approach has a 
satisfying performance.  

Our main contributions in the paper are as 
follows: 
1. We propose a discriminative model that can not 

only segment an interest object but also label 
different semantic parts of the object, especially 
the various parts of articulated body animals’ 
bodies. As we know, this is a frontier in 
recognition and has been left largely unexplored 
as (Arbelaez et al., 2012) touch upon it.  

2. We propose inner-class and clique features to 
describe the relationship between different body 
parts and a discriminative model to semantically 
label different parts of an object. Specifically, we 
solve the problem of object proposal, a NP-hard 
problem, via our multi-stage segmentation 
algorithm, and we train the model via the latent 
structural SVM learning framework.  

3. We validate our approach by conducting 
extensive experiments on two acknowledged 
datasets and showed that our method boost an 
average increase of about 5% on ETHZ Shape 
Classes Dataset and 4% on INRIA horses 
dataset. Above all, we conduct extensive 
experiments of intricate occlusion on INRIA 
horses dataset shows that the approach have a 
state of the art performance in the condition of 
occlusion and deformation. 
The rest of this paper is organized as follows; our 

proposed discriminative model is described in 
Section 2. We discuss the features we used and how 
to parameterize them in Section 3. We detailed the 
training and inference process in Section 4 and 
Section 5, respectively. In Section 6, we show 
complex and comprehensive experimental results on 
real world and two Datasets. Then we conclude the 
result in Section 7. 

2 APPROACH 

We design a discriminative model that can not only 
segment an interest object but also label different 
semantic parts of the object. The model takes visual 
appearance, inner-class relationship and the shape of 
the object into account, which make our model 
ability to interprete as powerful pluralistic potentials. 
Furthermore, we take latent variables into account 
for different inner-class parts, which describe an 
object by a set of parts of the object (e.g. a giraffe is 
represents by the set {head, neck, body, forelegs, 
hindlegs}). We use a multi-stage segmentation 
algorithm to inference labels in our approach, and it 
is fast and effective because it avoids combinatorial 
computation in optimization. In addition, the model 
is trained within the latent structural SVM learning 
framework. 

Given an image, our approach starts with an 
initial over-segmentation of the image by 
partitioning it into multiple homogeneous regions. 
To make certain that pixels in a region belong to the 
same label and abstain from obtaining regions which 
are larger than the object we intended, we over-
segment the image using NCuts (Cour et al., 2005).  
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Fig.1. illustrates the graphic model in our 
approach; a graph model is used to describe an 
image, where each over-segmented region 
corresponds to a node. Let the set of nodes that we 
want to label be denoted by x. Then, we associate a 
hidden part label h୧ with each node x୧, and represent 
these hidden part labels as a connected graphical 
model. Every h୧  represents one part of the object. 
Each hidden node can take a label from a label set L. 
For example, nodes in Fig.1. have their class labels 
ሼGiraffeሽ  and their hidden label must be 
Lୋ୧୰ୟୣ ൌ{head, neck, body, forelegs, hind legs}.  

 
Figure 1: Graphical representation of the graphic model 
based on the discriminative model. Spots denote the 
regions we want to segment, the hidden nodes which 
speculate the regions’ part category, denoted by h୧ (Here 
the redundant undirected edges are not show but all the 
nodes h୧  adjacent to each other with the same y are 
connected). And each hidden node has its own object label 
y୧. The most left part showed the object proposal of the 
neck part of the giraffe. 

In particular, a node x୧ which belongs to class y୧ has 
its own hidden part label h୧, and h୧ is an element of 
L୷. For simplicity, we fix the relationship between 
the object labels and hidden part labels as our 
priority. In particularly, we make a clear demand in 
the number of parts for each compound class, and do 
not share parts between classes. In other words, we 
restrict a regions’ part category h to a class label y 
only from a subset of values so that h  uniquely 
determines y. For example, a part of ሼGiraffeሽ must 
choose a hidden label from 
ሼhead, neck, body, forelegs, hind	legsሽ , and it is 
impossible that a region with a hidden label of mug-
body belongs to ሼGiraffeሽ . We denote this 
deterministic mapping from parts to objects by 
yሺh୧ሻ. τ denotes the object proposal, which means it 
defines merger of the over-segmented regions in an 

image, because the images merge sets of regions 
which belong to the same semantic hidden part 
together. For example, the object proposal τ in the 
neck part is ሼx1, x2, x3ሽ , which means our approach 
would merge ሼx1, x2, x3ሽ together to be a proposed 
region r , and the region r  is labeled with 
ሼh: neck; y: Giraffeሽ. 

Our goal is to predict both the semantic labels of 
objects and the labels of each parts (hidden labels). 
We define a discriminant function f୵ሺx, y, h, τሻ 
which is parameterized by a set of weight w. The 
optimal object proposal and corresponding label and 
hidden label are given by 

ሺy∗, h∗, τ∗ሻ ൌ argmax୷,୦,தf୵ሺx, y, h, τሻ 

Where f୵ሺx, y, h, τሻ  includes terms for unary and 
pairwise potentials. More specifically, f୵ሺx, y, h, τሻ 
is defined as 

௪݂ሺݔ, ,ݕ ݄, ߬ሻ ൌݓఈ
௬,்ߙሺݎሻ

∈ఛ

	

  ఉݓ
,൫݄ߚ் ݄, ,ݕ ,ݕ ,ݎ ൯ݎ

,∈ఛ

									

  ,൫݄ߩఘ்ݓ ݄, … , ݄, ,ݕ ,ݕ … , ൯ݕ
,,…,∈ఛ

 

(1)

Where αሺx୧ሻ  represents unary features of x୧  and 
β൫h୧, h୨, y୧, y୨, r୧, r୨൯  represents pairwise features of 
inner-class between two regions x୧, x୨  with their 
labels y୧, y୨  and their hidden labels h୧, h୨ . 

ρ൫h୧, h୨, … , h୪, y୧, y୨, … , y୪൯  is the clique feature to 
ensure that there is no two regions correspond to the 
same hidden label, which we will explain at the end 
of this section. The vectors w ൌ ൫w,wஒ,w൯  are 
the corresponding weight. Also, r୧  represent the 
object regions given by the object proposal τ. αሺr୧ሻ 
is a unary observation feature function and 
β൫h୧, h୨, y୧, y୨, r୧, r୨൯ is a pairwise feature function. In 
particular, αሺr୧ሻ is used to describe the features that 
belong to single object, including color, texture, 
shape, size, etc. And β൫h୧, h୨, y୧, y୨, r୧, r୨൯ is used to 
depict the pairwise spatial relationship and the visual 
appearance differences. 

The weights w are the parameters to be learned 

in our model. The unary weights w
୷,୦ consist of a 

few components and each component corresponds to 
a specific subclass of a certain object category. 
Determining the number of subclasses for each 
object is described in section 4. 

We will explain about the clique feature function 
ρ൫h୧, h୨, … , h୪, y୧, y୨, … , y୪൯ in the following way: In 
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the model, different hidden nodes of pixels or super-
pixels can belong to the same label. However, there 
is much more restriction in our model. As a cup 
cannot have more than one cup handles and a human 
being just have one head, one certain class of object 
in the picture has no reason to contain two regions 
with the same hidden part label. Even though there 
are some regions with the same hidden part label 
which are adjacent to each other, they must be 
merged together to be an integral region, and that is 
what τ  is defined (To make sure that any label 
corresponds to only one region instead of multiple 
regions, and regions with same hidden label should 
be merged together). Because compared to the 
separate regions, an integral region has a very 
different shape features. The shape features play a 
very important role in our model. We will discuss it 
in Section 3. 

To calculate 
ሺݕ∗, ݄∗, ߬∗ሻ ൌ ௬,,ఛݔܽ݉݃ݎܽ ௪݂ሺݔ, ,ݕ ݄, ߬ሻ is a NP-hard 
problem with three variables τ∗ , h୧

∗  and y୧
∗ , so we 

calculate the ሺy୧
∗, h୧

∗ሻ  and τ∗  individually and 
repetitively, and we will explain how to do it in 
Section 4. 

3 FEATURES 

3.1 Unary Features 

Interactions between the image content and the 
variables of interest are described by the unary 
observation factors performed by g୧. For each over-
segmented region, we extract multiple types of 
region-level features representing appearance 
statistics based on shape, color and texture. 

The shape features include two parts. One is the 
size of the region, and the other is the shape feature 
based on tensor scale which is a morphometric 
histogram presented by (Andalóet et al., 2010). The 
shape feature unifies the representation of local 
structure thickness, orientation, and anisotropy. It is 
archived by using Image Foresting Transform (IFT), 
a salience detector and a shape descriptor, both 
based on tensor scale. The color features include the 
mean HSV value, its standard deviation, and a color 
histogram. The texture features are average 
responses of filter banks in each region. To do this, 
we utilize textons (Liu et al., 2010) which have been 
proven effective in categorizing materials. A 
dictionary of textons is learned by convolving a 17-
dimensionalflter bank (Winn et al., 2005) with all 
the training images and running K-means clustering 
(using Mahalanobis distance) on the filter responses. 

3.2 Pairwise Features 

In the past, a significant amount of work (Gould et 
al., 2008) has been done on proving that the 
semantic context is very useful for image 
categorization. In our work, we use two parts of 
pairwise features.  

One part is the similarity of two regions, i.e. the 
visual appearance differences between two parts. We 
measure the color and texture difference using χଶ 
distance of color and texture histogram. 

The other part is to measure the context between 
two regions, and we proposed an inner-class 
pairwise feature that models the interaction of 
regions’ hidden labels ൫h୧, h୨൯  that belong to the 
same class. We define the pairwise features f୧୨ 
between two regions r୧  and r୨  ,and their 
corresponding y୧ and y୨ values in Eq. (2) as equal.  

݁ܿ݊ܽݐݏ݅ܦ

ൌ ቊ
0, ݄ ൌ ݄, ݎ ݏ݅ ݎ	ݐ	ݐ݆݊݁ܿܽ݀ܽ

݂,
ଵ ሺ݀ሻ, ݄ ് ݄

	

݈݁݃݊ܣ

ൌ ቊ
0, ݄ ൌ ݄, ݎ	ݐ	ݐ݆݊݁ܿܽ݀ܽ	ݏ݅	ݎ	

݂,
ଶ ሺߠሻ, ݄ ് ݄

 

(2)

d is the normalized distance between two regions’ 
centroid and θ (θϵሾ0,πሻ) is the angle between them. 
The normalized distance d  is calculated by the 

formula 
ௗೝೌ

ඥ		௦	ା
 . f୧,୨

ଵ  and f୧,୨
ଶ  are the 

probability function which obtains by look-up 
relative distance and angle histograms. Indirect 
adjacency means r୧ and r୨ are in same clique that all 
regions in the clique are interconnected and have the 
same label y. We construct relative distance and 
angle probability histograms that encode offset 
preference between regions with different hidden 
labels. We first over-segment images and merged 
segments manually on the training dataset (only 
merge segments for training processes, not for the 
inference step) to make sure the merged fractions 
belong to the same part semantically and combine 
them into an integrated region. Then we use the EM 
algorithm to label different regions’ hidden parts h 
based on unary features αሺr୧ሻ , such as shapes, 
colors, without the pairwise and clique features. The 
next step involves calculating the distance and angle 
relationship between regions with different hidden 
parts label h.  

The process of constructing the relative distance 
and angle probability histograms is simple. We 
calculate all pairs of regions’ centers’ probability of 
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distances and angles in all images, which belong to 
different labels h, and draw them as histograms. The 
relative location and angle probability histograms 
are blurred by a Gaussian filter with variance equal 
to 10% of the histograms, which reduces the bias of 
center location shift in the training data.  

At testing time, we first predict the class y୧  and 
the h୧  for each region independently using the 
unary features based on the simplified discriminative 
function (only with unary features) in Eq. (3), and 
then use the multi-stage segmentation algorithm to 
calculate the approximate solution of 
argmax୷,தPሺy୧, τ|x, θሻ  and argmax୦,ಜPሺh୧, τ|x, θሻ . 
Figure 2 is an example of probability of distances 
and angles. 

,ݕ ݄ ൌ argmax௬,ݓ
௬,்αሺrሻ (3)

Figure 2: The relative distance (left) and angle (right) 
probability histograms f୧,୨

ଵ  and f୧,୨
ଶ , i is giraffe’s head and j 

is the giraffe’s neck. 

3.3 Clique Features 

As we mentioned above, there is more restriction in 
our model. On one hand, because the shape features 
play a very important role in our model, and 
compared to the separate regions, an integral region 
has a very different shape features. So we wish all 
adjacent regions with the same hidden part label 
merging together to be an integral one. On the other 
hand, since the regions with same hidden label are 
merged, one certain class of object in the picture has 
no reason to contain two regions with the same 
hidden part label (e.g. a giraffe never has two 
heads). If there are two regions that share the same 
hidden part label in one certain object, the 
segmentation and labeling must be wrong from 
semantic point of view. In order to avoid such 
situations, we set the clique features as a penalty 
function. The features’ function 
are ρ൫h୧, h୨, … , h୪, y୧, y୨, … , y୪൯ = w

ଵρଵ + w
ଶρଶ , and 

w ൌ ൣw
ଵ,w

ଶ൧, and the value ρଵ and ρଶ are shown 
in Eq. (4). 

ρଵ ൌ ൜
െMax, h୧ ൌ h୨, r୧ is	adjacent	to	r୨

0, ݏݎ݄݁ݐ
 

ρଶ

ൌ ൜
െMax, h୧ ൌ h୨, r୧ is adjacent	to	r୨, r୧	ܽ݊

0, ݏݎ݄݁ݐ

(4)

As one certain class of object in the picture has no 
reason to contain two regions with the same hidden 
part label. If the adjacent regions share the same 
label, it would be merged together by the multi-stage 
segmentation algorithm. Therefore, nonadjacent 
regions belong to the same hidden part label will not 
be tolerated. In order to prevent this situation, we set 
them to –Max. 

4 TRAINING 

We want the area of the hidden nodes representing 
an intuitive sense, which means that each hidden 
layer represents an integrated semantic part of an 
object. For example, a mug is composed of one mug 
body part and at most one mug handle part, rather 
than a large number of insignificant fractions. Thus, 
we over-segment images and merge segments on the 
training dataset manually, which merged fractions 
semantically belonging to the same part together and 
combined into an integrated region. In other words, 
we define the τ∗ manually in the training part. Since 
we don’t have the hidden labels h, we can’t calculate 
the pairwise and clique features, thus we should 
calculate the h  first. To do that, we extract unary 
features αሺr୧ሻ from the integrated regions, then we 
use the EM algorithm to get the different regions’ 
hidden parts h based on unary features αሺr୧ሻ, such as 
shapes, colors, without the pairwise and clique 
features. When we get the regions’ hidden part 
labels h, we extract not only the unary features, but 
also the pairwise and clique features. Finally we 
train the feature vectors with both their labels y and 
hidden labels h. 

We now present the process to learn the weights 
in the model with the N  training images 
ሼሺyଵ, xଵ, τଵሻ, … , ሺy, x, τሻሽ . We merge regions 
manually and get the hidden labels of each regions 
following the above processes. In order to explain 
the notation in a simple way, we concentrate the 
features in Eq. (1) to Φሺx, yሻ ൌ ሺα, β, ρሻ, and denote  
f୵ሺx, y, hሻ as ൌ wΦሺx, yሻ. Then via the structural 
SVM learning framework (Yu et al., 2009), we train 
the weights. The formulate the large margin could be 
trained as the problem following, 

VISAPP�2014�-�International�Conference�on�Computer�Vision�Theory�and�Applications

490



min୵,ஞஹ
1
2
ww  C ξ୬



୬ୀଵ
	

s. t. ∀n, y ് y୬,max୦w୷,୦ϕሺx୬, y୬ሻ
െ max୦w୷,୦ϕሺx୬, yሻ
 ∆ሺy, y୬ሻ െ ξ୬ 

(5)

Note there is a constraints in Eq. (5), it requires that 
the any wrong labeling by at least a loss ∆ሺy, y୬ሻ ൌ
λ∑ Iሺy୧, y୬୧ ሻ୧  is lesser than discrimination score of 
ground truth labeling. Also I is the indicator function 
(means Iሺa, aሻ ൌ 0  and Iሺa, bሻ ൌ 1 , where a ് b ) 
and y୧  is label of region i . How much these 
constraints are violated is measured by the slack 
variables ሼξ୬ሽ. The numbers of constraints in Eq. (5) 
can be solved efficiently via the cutting-plane 
algorithm (Joachims et al., 2009). It works by 
finding the most violated constraints, then using 
them as active ones. the most violated constraints for 
the nth image amounts to computing could be found 
by Eq.(6). 

ሺy୬∗ , h୬∗ ሻ ൌ argmax୷,୦w୷,୦ϕሺx୬, yሻ
 Δሺy, y୬ሻ 

(6)

Once the most violated constraints are found, they 
become the only that remain active. Then the Eq. (6) 
could be rewrote as an unconstrained problem in Eq. 
(7). 

min୵
1
2
ww  C ∙൬w୷

∗ ,୦
∗ 
ϕሺx୬, y୬∗ሻ

୬

െ max୦w୷,୦ሺx୬, y୬ሻ൰ 
(7)

Here the summation is over RGB images for which 

w୷
∗ ,୦

∗ 
ϕሺx୬, y୬∗ሻ െ max୦w୷,୦ሺx୬, y୬ሻ 

Δሺy୬∗ , y୬ሻ , and the slack variables for other images 
could be directly set to zero. Eq. (7), a difference of 
two convex functions, can be solved via the 
Concave-Convex Procedure (CCCP).  

5 INFERENCE 

The problem of finding the most violated constraints 
for the image amounts to computing ሺy∗, h∗, τ∗ሻ ൌ
argmax୷,୦,தf୵ሺx, y, h, τሻ , but this is a NP-hard 
problem obviously. The multi-stage segmentation 
algorithm is used to solve the problem 
approximately by inferring the y୧

∗  h୧
∗  and τ୧

∗  in 
different steps: Predict the y୧

∗ h୧
∗ in step 1, and then 

predict the τ∗  in step 2, and then repeat this 
processes again until the algorithm converges. 

In step 1, we are typically interested in predicting 

labels for new data x. We predict them by averaging 
out the hidden variables and all label variables but 
one, to calculate the maximum marginal 

y୧
∗ ൌ argmax୷f୵ሺx, y, h, τሻ 

Alternatively, we can calculate the most likely joint 
configuration of labels by taking the maximal 
simultaneously over all y . Although such 
configurations are global consistent, the per 
fragment error tends to be slightly worse. To see 
what parts the algorithm has learned, we can look at 
the most likely parts: 

h୧
∗ ൌ argmax୦f୵ሺx, y୧

∗, h, τሻ 

In step 2, we calculate the approximate τ∗ ൌ
argmaxதf୵ሺx, y୧

∗, h୧
∗, τሻ, in order to make the shape 

and pairwise feature discrimination effectively. 
Finally each region that belongs to one certain 
semantic part should not be over-segmented. To 
ensure that there is not more than one region belongs 
to the same hidden label, all regions with the same 
hidden label cannot be simply merged. For example, 
two are considered as parts of the giraffe’s neck 
merged together and come out to be a body part. We 
designed a multi-stage segmentation algorithm on 
the thinking of greedy algorithm, which searches 
and merges regions most likely belonging to the 
same part step by step. For the sake of –Max  in 
pairwise features, we are not worry about the 
algorithm which will not converge. 

The multi-stage segmentation algorithm. 
Calculate all y, h ൌ argmax୷,୦w

୷,୦αሺr୧ሻ 
with only unary features 

Repeat 
Step1.Calculate 

ሺy∗, h∗ሻ ൌ argmax୷,୦f୵ሺx, y, h, τሻ with all 
features 

Step2. 
For r୧ in all regions 
  For r୨ border to r୧ 
   If h୧ ൌ h୨ 
Merge r୨ and r୧ together, Calculate 	

ሺy∗, h∗ሻ ൌ argmax୷,୦f୵ሺx, y, h, τሻ 
   Else 
Set hidden label of r୨ to h୧, 

Calculate ሺy∗, h∗ሻ ൌ argmax୷,୦f୵ሺx, y, h, τሻ 
   End 
  End 
 End 
 i, j ൌ argmax୧,୨ E୧୨ 
 if h୧ ൌ h୨ 
  Merge r୨ and r୧ together 
 Else 
  Set hidden label of r୨ to h୧ 
 End 
Until labels are unchanged.  
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6 EXPERIMENTS 

The ETHZ Shape Dataset (Ferrari et al., 2010) 
contains 255 images of 5 different object classes—
Applelogos (40 images), Bottles (48 images), Mugs 
(48 images), Giraffes (87 images) and Swans (32 
images). The dataset is designed in a way that the 
selected object classes do not have a distinctive 
appearance and the only representation, which can 
be used to detect object class instances, is their 
shape. 

We over-segment the image using NCuts (Cour 
et al., 2005) with n = 50 segments, and calculate 
features vectors following Section 3 from each 
segments. Actually, we are not interested in what 
hidden label the background belongs to, thus we 
don’t merge but simple recognize regions that are 
labeled ሼbackgroundሽ . It makes our approach 
running faster. In most cases, algorithm terminates 
before 30 iterations. 

As a result, we report our result on the dataset for 
evaluation, and we follow the test settings of Ferrari 
et al. (Ferrari et al., 2010). In Table 1 we show our 
model’s recall and precision of the segmented 
boundaries based on correct segmentation.  

Table 1: our model’s recall and precision of the segmented 
boundaries, and Compared our discriminative model with 
traditional HCRF model and work of Ferrari et al.. 

Precision 
(%) 

our model learn 
by HCRF 

Our 
approach 

Ferrari et al.

Applelogos 90.2/94.2 93.1/93.5 91.6/93.9 
Bottles 86.6/83.9 90.3/84.8 83.6/84.5 
Giraffes 75.7/77.3 79.5/77.7 68.5/77.3 
Mugs 78.9/77.3 83.6/77.2 84.4/77.6 

We achieve higher recall at higher precision 
compared to previous work (Ferrari et al., 2010). We 
use the first half of images in each class for training, 
and test on the second half of this class as positive 
images plus all images in other classes as negative 
images. In our approach we only use the ground 
truth outlines of objects present in the first half of 
images for each class. These statistics show results 
in precise boundaries of segmentations. The 
improvement in giraffe demonstrates the efficiency 
of our discriminative model, especially for the 
movable joints object like giraffes and swans. The 
slightly lower percentages of Mugs are due to the 
mug handles which cannot be fully captured in the 
over-segmentation step. 

To show that our discriminative model has a 
good performance in the experiences, we use the 
traditional HCRF model training on the dataset,

 

 

Figure 3: Segmentation on ETHZ Shape Dataset. For each 
example, we show on the left side of the input image and 
in the middle and the right side of the segmentation for the 
best matching model. In particular, we mask regions with 
different hidden part label of different colors. On the right 
of the selected object mask and the best matching model is 
displayed. 

and compare with our model in Table 1. We can 
now safely draw the conclusion that our model 
which trained on the latent structural SVM 
framework has a better performance than traditional 
HCRF model on the ETHZ Shape Dateset. In 
particular, our approach improves the precision of 
recognition about 5 percent to Ferra et al. We also 
evaluate our approach on the second dataset, INRIA 
horses, which has 340 images and half of them 
contain horses. We archive a high detection rate of 
89.7% at 1.0 fppi, which is higher than (Maji et al., 
2009) about 4.3%.  
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In order to show the ability of the model to 
recognizing the occluded object, we add occlusion 
picture to the INRIA horses dataset, since the 
occlusion condition in the real word is complex, we 
use rainbow ribbon with different directions to block 
the part of the target object in the image. In the 
experiment process, we train the model with the 
normal dataset, and segment the blocked dataset. We 
could find that even a major part of the target object 
is blocked by completely unrelated object, our 
model could label almost all valid parts. The 
performance of our model in the occlusion condition 
is superior to other state of the art works (Nearly all 
of other works couldn’t identify these horses). 
Examples are showed in Fig. 4. 

	
Figure 4: (left) Examples of detections of horses in 
different poses. (right) Segmentation on INRIA horses 
Dataset blocked with rainbow ribbon. 

7 CONCLUSIONS 

In this paper, we have presented a discriminative 
model, and have achieved more accurate 
segmentation results. Our method is able to 
comprehend the relationship between parts of an 
object, and make the representation of an articulated 
object in different poses more efficiently and 
naturally. However, our method computes features 
on regions instead of single pixels and thus it has 
become a weakness of our model. Therefore, we will 
focus on the edge and superpixel-level feature in the 
future.  
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