
Online Knowledge Gradient Exploration
in an Unknown Environment

Saba Q. Yahyaa and Bernard Manderick
Department of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Keywords: Online reinforcement learning, value function approximation, (kernel-based) least squares policy iteration,
approximate linear dependency kernel sparsification, knowledge gradient exploration policy.

Abstract: We present online kernel-based LSPI (or least squares policy iteration) which is an extension of offline kernel-
based LSPI. Online kernel-based LSPI combines characteristics of both online LSPI and offline kernel-based
LSPI to improve the convergence rate as well as the optimal policy performances of the online LSPI. Online
kernel-based LSPI uses knowledge gradient policy as an exploration policy and the approximate linear de-
pendency based kernel sparsification method to select features automatically. We compare the optimal policy
performance of online kernel-based LSPI and online LSPI on 5 discrete Markov decision problems, where
online kernel-based LSPI outperforms online LSPI.

1 INTRODUCTION

A Reinforcement Learning (RL) agent has to learn to
make optimal sequential decisions while interacting
with its environment. At each time step, the agent
takes an action and as a result the environment transits
from the current state to the next one while the agent
receives feedback signal from the environment in the
form of a scalar reward.

The mapping from states to actions that specifies
which actions to take in states is called a policyπ and
the goal of the agent is to find the optimal policyπ∗,
i.e. the one that maximises the total expected dis-
counted reward, as soon as possible. The state-action
value functionQπ(s,a) is defined as the total expected
discounted reward obtained when the agent starts in
states, takes actiona, and follows policyπ thereafter.
The optimal policy maximises theseQπ(s,a) values.

When the agent’s environment can be modelled
as a Markov Decision Process (MDP) then the Bell-
man equations for the state-action value functions,
one per state-action pair, can be written down and can
be solved by algorithms like policy iteration or value
iteration (Sutton and Barto, 1998). We refer to Sec-
tion 2.1 for more details.

When no such model is available, the Bellman
equations cannot be written down. Instead, the agent
has to rely only on information collected while inter-
acting with its environment. At each time step, the
information collected consists of the current state, the

action taken in that state, the reward obtained and the
next state of the environment. The agent can either
learnofflinewhen firstly a batch of past experience is
collected and subsequently used and reused oronline
when it tries to improve its behaviour at each time step
based on the current information.

Fortunately, the optimalQ-values can still be de-
termined usingQ-learning (Sutton and Barto, 1998)
which represents the actions-valueQπ(s,a) as a
lookup table and uses the agent’s experience to build
theQπ(s,a). Unfortunately, when the state and/or the
action spaces are large finite or continuous space, the
agent faces a challenge called the curse of dimension-
ality, since the memory space needed to store all the
Q-values grows exponentially in the number of states
and actions. Computing allQ-values becomes infea-
sible. To handle this challenge, function approxima-
tion methods have been introduced to approximate the
Q-values, e.g. (Lagoudakis and Parr, 2003) have pro-
posed Least Squares Policy Iteration (LSPI) to find
the optimal policy when no model of the environment
is available. LSPI is an example of both approximate
policy iteration and offline learning. LSPI approxi-
mates theQ-values using a linear combination of pre-
defined basis functions. The used predefined basis
functions have a large impact on the performance of
LSPI in terms of the number of iterations that LSPI
needs to converge to a policy, the probability that the
converged policy is optimal, and the accuracy of the
approximatedQ-values.

5Q. Yahyaa S. and Manderick ..
Online Knowledge Gradient Exploration in an Unknown Environment.
DOI: 10.5220/0004718700050013
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 5-13
ISBN: 978-989-758-015-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

To improve the accuracy of the approximatedQ-
values and to find a (near) optimal policy, (X. Xu
and Lu, 2007) have proposed Kernel-Based LSPI
(KBLSPI), an example of offline approximated policy
iteration that uses Mercer kernels to approximateQ-
values (Vapnik, 1998). Moreover, kernel-based LSPI
provides automatic feature selection by the kernel ba-
sis functions since it uses the approximate linear de-
pendency sparsification method described in (Y. En-
gel and Meir, 2004).

(L. Buşoniu and Babuška, 2010) have adapted
LSPI, which does offline learning, for online rein-
forcement learning and the result is calledonline
LSPI. A good online learning algorithm must quickly
produce acceptable performance rather than at the end
of the learning process as is the case in offline learn-
ing. In order to obtain good performance, an online
algorithm has to find a proper balance between ex-
ploitation, i.e. using the collected information in the
best possible way, and exploration, i.e. testing out
the available alternatives (Sutton and Barto, 1998).
Several exploration policies are available for that pur-
pose and one of the most popular ones isε-greedy
exploration that selects with probability 1− ε the ac-
tion with the highest estimatedQ-value and selects
uniformly, randomly with probabilityε one of the ac-
tions available in the current state. To get good perfor-
mance, the parameterε has to be tuned for each prob-
lem. To get rid of parameter tuning and to increase
the performance of online LSPI, (Yahyaa and Mand-
erick, 2013) have proposed using Knowledge Gradi-
ent (KG) policy (I.O. Ryzhov and Frazier, 2012) in
the online-LSPI.

To improve the performance of online-LSPI and
to get automatic feature selection, we propose online
kernel-based LSPI and we use the knowledge gradi-
ent (KG) as an exploration policy. The rest of the pa-
per is organised as follows: In Section 2 we present
Markov decision processes, LSPI, the knowledge gra-
dient policy for online learning, kernel-based LSPI
and the approximate linear dependency test. While
in Section 3, we present the knowledge gradient pol-
icy in online kernel-based LSPI. In Section 4 we give
the domains used in our experiments and our results.
We conclude in Section 5.

2 PRELIMINARIES

In this section, we discuss Markov decision processes,
online LSPI, the knowledge gradient exploration pol-
icy (KG), offline kernel-based LSPI (KBLSPI) and
approximate linear dependency (ALD).

2.1 Markov Decision Process

A finite Markov decision process (MDP) is a 5-tuple
(S,A,P,R,γ), where the state spaceS contains a fi-
nite number of statess and the action spaceA con-
tains a finite number of actionsa, the transition prob-
abilities P(s,a,s′) give the conditional probabilities
p(s′|s,a) that the environment transits to states′ when
the agent takes actiona in states, the reward distribu-
tions R(s,a,s′) give the expected immediate reward
when the environment transits to states′ after tak-
ing actiona in states, andγ ∈ [0,1) is the discount
factor that determines the present value of future re-
wards (Puterman, 1994; Sutton and Barto, 1998).

A deterministic policyπ : S→A determines which
action a the agent takes in each states. For the
MDPs considered, there is always a deterministic op-
timal policy and so we can restrict the search process
to such policies (Puterman, 1994; Sutton and Barto,
1998). By definition, the state-action value function
Qπ(s,a) for a policy π gives the expected total dis-
counted rewardEπ(∑∞

i=t γt rt) when the agent starts
in states, takes actiona and follows policyπ there-
after. The goal of the agent is to find the optimal
policy π∗, i.e. the one that maximizesQπ for ev-
ery states and actiona: π∗(s) = argmaxa∈AQ∗(s,a)
whereQ∗(s,a) = maxπQπ(s,a) is the optimal state-
action value function. For the MDPs considered, the
Bellman equations for the state-action value function
Qπ are given by

Qπ(s,a) = R(s,a,s′)+ γ∑
s′

P(s,a,s′)Qπ(s′,a′) (1)

In Equation 1, the sum is taken over all statess′ that
can be reached from states when actiona is taken,
and the actiona′ taken in next states′ is determined by
the policyπ, i.e. a′ = π(s′). If the MDP is completely
known then algorithms such as value or policy itera-
tion find the optimal policyπ∗. Policy iteration starts
with an initial policyπ0, e.g. randomly selected, and
repeats the next two steps until no further improve-
ment is found: 1)policy evaluationwhere the current
policy πi is evaluated using Bellman equations 1 to
calculate the corresponding value functionQπi , and 2)
policy improvementwhere this value function is used
to find an improved new policyπi+1 that is greedy in
the previous one, i.e.πi+1= argmaxa∈AQπi (s,a) (Sut-
ton and Barto, 1998).

For finite MDPs, the action-value functionsQπ for
a policyπ can be represented by a lookup table of size
|S| × |A|, one entry per state-action pair. However,
when the state and/or action spaces are large, this ap-
proach becomes computationally infeasible due to the
curse of dimensionality and one has to rely on func-
tion approximation instead. Moreover, the agent does

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

6

not know the transition probabilitiesP(s,a,s′) and the
reward distributionsR(s,a,s′). Therefore, it must rely
on information collected while interacting with the
environment to learn the optimal policy. The infor-
mation collected is a trajectory of samples of the form
(st ,at , rt ,st+1) or (st ,at , rt ,st+1,at+1), wherest , at , rt ,
st+1, andat+1, are the state, the action in the state,
the reward, the next state, and the next action in the
next state, respectively. To overcome these problems,
least squares policy iteration (LSPI) uses such sam-
ples to approximate theQπ-values (Lagoudakis and
Parr, 2003).

More recently, (L. Buşoniu and Babuška, 2010)
have adapted LSPI so that it can work online
and (Yahyaa and Manderick, 2013) have used the
knowledge gradient (KG) policy in this online LSPI.
Since we are interested in the most challenging RL
problem: online learning in a stochastic environment
of which no model is available. Therefore, we are go-
ing to compare the performance of online-LSPI with
the proposed algorithm using KG policy.

2.2 Least Squares Policy Iteration

LSPI approximates the action-valueQπ for a policyπ
in a linear way (Lagoudakis and Parr, 2003):

Q̂π(s,a;wπ) =
n

∑
i=1

φi(s,a)w
π
i (2)

where n, n << |S× A|, is the number of basis
functions, the weights(wπ

i)
n
i=1 are parameters to be

learned for each policyπ, and{φi(s,a)}ni=1 is the set
of predefined basis functions. LetΦ be the basis ma-
trix of size |S×A| × n, where each row contains the
values of all basis functions in one of the state-action
pairs (s,a) and each column contains the values of
one of the basis functionsφi in all state-action pairs
and letwπ be a column weight vector of lengthn.

Given a trajectory of lengthL of samples
(st ,at , rt ,st+1)

L
t=1. Offline-LSPI is an example of ap-

proximated policy iteration and repeats the follow-
ing two steps until no further improvement in the
policy is obtained: 1)Approximate policy evaluation
that approximates the state-action value functionQπ

of the current policyπ, and 2)Approximate policy
improvementthat derives from the current estimated
state-action value functionŝQπ a better policyπ′, i.e.
π′ = argmaxa∈AQ̂π(s,a)

Using the least square error of the projected Bell-
man’s equation, Equation 1, the weight vectorwπ can
be approximated as follows (Lagoudakis and Parr,
2003):

Âŵπ = b̂ (3)

whereÂ is a matrix and̂b is a vector. Offline-LSPI up-
dates the matrix̂A and the vector̂b from all available
samples as follows:

Ât = Ât−1+φ(st ,at)[φ(st ,at)− γφ(st+1,π(st+1))]
T

b̂t = b̂t−1+φ(st ,at)rt (4)

where T is the transpose andrt is the immediate
reward that is obtained at time stept. After iter-
ating over all collected samples, ˆwπ can be found.
(L. Buşoniu and Babuška, 2010) have adapted offline-
LSPI for online learning. The changes with respect
to the offline algorithm are twofold: 1) online-LSPI
updates the matrix̂A and the vector̂b after each
time stept. Then, after every few samplesKθ ob-
tained from the environment, online-LSPI estimates
the weight vector ˆwπ for the current policyπ, com-
putes the corresponding approximatedQ̂-function,
and derives an improved new learned policyπ′, π′ =
argmaxa∈AQ̂π(s,a). When Kθ = 1, online-LSPI is
called fully optimistic and whenKθ > 1 is a small
value, online-LSPI is called partially optimistic. 2)
online-LSPI needs an exploration policy and (Yahyaa
and Manderick, 2013) proposed using KG policy
as an exploration policy instead ofε-greedy policy.
(Yahyaa and Manderick, 2013) have shown that the
performance of the online-LSPI is increased, e.g. the
average frequency that the learned policy is converged
to the optimal policy. Therefore, we are going to use
KG policy in our algorithm and experiments.

2.3 KG Exploration Policy

Knowledge gradient KG (I.O. Ryzhov and Frazier,
2012) assumes that the rewards of each actiona are
drawn according to a probability distribution and it
takes normal distributionsN(µa,σ2

a)with meanµa and
standard deviationσa. The current estimates, based
on the rewards obtained so far, are denoted by ˆµa and
σ̂a. And, the root-mean-square error (RMSE) of the
estimated mean reward ˆµa given n rewards resulting
from actiona is given by ˆ̄σa = σ̂a/

√
n. The KG is an

index strategy that determines for each actiona the
indexVKG(a) and selects the action with the ’highest’
index. The indexVKG(a) is calculated as follows:

VKG(a) = ˆ̄σa f

(

−| µ̂a−maxa′ 6=a µ̂a′

ˆ̄σa
|
)

(5)

In this equation, f (x) = φKG(x) + xΦKG(x) where
φKG(x) = 1/

√
2π exp(−x2/2) is the density of

the standard normal distribution andΦKG(x) =∫ x
−∞ φ(x′)dx′ is its cumulative distribution. The pa-

rameter̂̄σa is the RMSE of the estimated mean reward
µ̂a. Then KG selects the next action according to:

Online�Knowledge�Gradient�Exploration�in�an�Unknown�Environment

7

aKG = argmax
a∈A

(

µ̂a+
γ

1− γ
VKG(a)

)

(6)

where the second term in the right hand side is the to-
tal discounted index of actiona. KG prefers those
actions about which comparatively little is known.
These actions are the ones whose RMSE (or spread)
ˆ̄σa around the estimated mean reward ˆµa is large.
Thus, KG prefers an actiona over its alternatives if
its confidence in the estimated mean reward ˆµa is low.

For discrete MDPs, (Yahyaa and Manderick,
2013) estimated theQ-valuesQ̂(st ,ai) and the RMSE
of the estimatedQ-value ˆ̄σ2

q to calculate the index
VKG(ai) for each available actionai ,ai ∈ Ast in the
current statest , whereAst is the set of actions in state
st . The pseudocode algorithm of the KG exploration
policy is shown in Figure 1. KG is easy to imple-
ment and does not have parameters to be tuned like
ε-greedy orso f tmaxaction selection policies (Sutton
and Barto, 1998). KG balances between exploration
and exploitation by adding an exploration bonus to
the estimatedQ-values for each available actionai in
the current statest and this bonus depends on all es-
timatedQ-valuesQ̂(st ,ai) and the RMSE of the esti-
matedQ-valueˆ̄σ2

q (steps: 2-8 in Figure 1). The RMSE
ˆ̄σ2

q are updated according to (Powell, 2007).

1. Input: current state st;discount factor γ;
the current estimates Q̂(st ,ai);the current
RMSEs ˆ̄σ2

q(st ,ai) for all actions ai in state st

2. For ai ∈ Ast

3. ´̂Q(st ,ai)← argmax
aj∈ Ast ,aj 6= ai

Q̂(st ,a j)

4. End for
5. For ai ∈ Ast

6. ζai ←−abs((Q̂(st ,ai)− ´̂Q(st ,ai))/ ˆ̄σq(st ,ai);
f (ζai)← ζai ΦKG(ζai)+φKG(ζai)

7. VKG(ai)← Q̂(st ,ai)+
γ

1−γ
ˆ̄σq(st ,ai) f (ζai)

8. End for
9. Output: at ← argmax

ai∈ A
VKG(ai)

Figure 1: Algorithm: (Knowledge Gradient).

2.4 Kernel-based LSPI

Kernel-based LSPI (X. Xu and Lu, 2007) is a kernel-
ized version of offline-LSPI. Kernel-based LSPI uses
Mercer’s kernels in the approximated policy evalua-
tion and improvement (Vapnik, 1998). Given a fi-
nite set of points, i.e.{z1,z2, · · · ,zt}, wherezi is the
state-action pair, with the corresponding set of basis
functions, i.e. φ(z) : z→ R . Mercer theorem states
the kernel functionK is a positive definite matrix, i.e.
K(zi ,zj) =< φ(zi),φ(zj)>.

Given a trajectory of lengthL of samples and
an initial policy π0. Offline kernel-based LSPI
(KBLSPI) uses the approximate linear dependency
based sparsification method to select a part of the data
samples and consists a dictionaryDic elements set,

i.e. Dic = {(si ,ai)}|Dic|
i=1 with the corresponding kernel

matrix KDic of size |Dic×Dic| (Y. Engel and Meir,
2004). Kernel-based LSPI repeats the following two
steps: 1)Approximate policy evaluation, kernel-based
LSPI approximates the weight vector ˆwπ for policy π,
Equation 3 from all available samples as follows:

Ât = Ât−1+k((st ,at), j)[k((st ,at), j)− γk((st+1,π(st+1)), j)]T

b̂t = b̂t−1+ k((st ,at), j)rt , j ∈ Dic, j = 1, · · · , |Dic|
(7)

wherek(., .) is a kernel function between two points
(a state-action pair (s,a) and j, where j is the state-
action pairzj that is element in the dictionaryDic,
i.e. j ∈ {z1,z2, · · · ,z|Dic|}). The matrixÂ should be
initialized to a small multiple of the identity matrix to
calculate the inverse of̂A or using the pseudo inverse.
After iterating for all the collected samples, ˆwπ can be
found and the approximatedQπ-values for policyπ is
the following linear combination:

Q̂π(s,a) = ŵπk((s,a), j), j ∈ Dic, j = 1,2, · · · , |Dic|
(8)

2) Approximate policy improvement, KBLSPI derives
a new learned policy which is the greedy one, i.e.
π′(s) = argmaxa∈A Q̂π(s,a). The above two steps are
repeated until no change in the improved policy or a
maximum number of iterations is reached.

2.5 Approximate Linear Dependency

Given a set of data samplesD from a MDP, i.e.
D= {z1, . . . ,zL}, wherezi is a state-action pair and the
corresponding linear independent basis functions set
Φ, i.e. Φ = {φ(z1), · · · ,φ(zL)}. Approximate linear
dependency ALD method (Y. Engel and Meir, 2004)
over the data samples setD is to find a subsetDic, i.e.

Dic⊂D whose elements{zi}|Dic|
i=1 and the correspond-

ing basis functions are stored inΦDic, i.e. ΦDic ⊂Φ.
The data dictionaryDic is initially empty, i.e.

Dic = {} and ALD is implemented by testing every
basis functionφ in Φ, one at time. If the basis func-
tion φ(zt) can not be approximated, within a prede-
fined accuracyv, by the linear combination of the ba-
sis functions of the elements that stored inDict , then
the basis functionφ(zt) will be added toΦDict andzt
will be added toDict , otherwisezt will not be added
to Dict andφ(zt) will not be added toΦDic. As a re-
sult, after the ALD test, the basis functions ofΦDic
can approximate all the basis functions ofΦ.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

8

At time stept, let Dict = {zj}|Dict |
j=1 and the cor-

responding basis functions are stored inΦDict , i.e.

ΦDict = {φ(zj)}|Dict |
j=1 andzt is a given state-action pair

at time t. The ALD test on the basis functionφ(zt)
supposes that the basis functions are linearly depen-
dent and uses least squares error to approximateφ(zt)
by all the basis functions of the elements inDict , for
more detail we refer to (Engel and Meir, 2005). The
least squares error is:

error = min
c
||
|Dict |
∑
j=1

c jφ(zj)−φ(zt)||2 < v (9)

error = k(zt ,zt)− kT
Dict

(zt)ct , where (10)

ct = K−1
Dict

kDict (zt),

kT
Dict

= [k(1,zt), · · · ,k(j,zt), · · · ,k(|Dict |,zt)]

If the error is larger than predefined accuracyv, thenzt
will be added to the dictionary elements, i.e.Dict+1 =
Dict ∪ {zt}, otherwiseDict+1 = Dict . After testing
all the elements in the data samples setD, the matrix
K−1

Dic can be computed, this is in the offline learning
method. For online learning, the matrixK−1

Dic can be
updated at each time step (Y. Engel and Meir, 2005).

At each time stept, if the error that results from
testing the basis functions ofzt is smaller thanv,
then Dict+1 = Dict and K−1

Dict+1
= K−1

Dict
, otherwise

Dict+1 = Dict ∪{zt}. The matrixK−1
Dict+1

is updated
as follows:

K−1
Dict+1

=
1

errort

[

errort K−1
Dict

−ct

−cT
t 1

]

(11)

3 ONLINE KERNEL-BASED LSPI

Online kernel-based LSPI (KBLSPI) is a kernelised
version of online-LSPI and the pseudocode is given
in Figure 2. Given the basis function setΦ, the initial
learned policyπ0, the accuracy parameterv and the
initial states1. At each time stept, online-KBLSPI
uses the KG exploration policy, the algorithm in Fig-
ure 1. to select the actionat in the statest (step: 4)
and observes the new statest+1 and rewardrt . The
action at+1 in st+1 is chosen by the learning policy
πt . The algorithm in Figure 2 performs the ALD test,
Section 2.5 on the basis functions ofzt and zt+1 to
provide feature selection (steps: 7-14), wherezt is the
state-action pair(st ,at) at time stept andzt+1 is the
state-action pair(st+1,at+1) at time stept +1. If the
basis functions of a given state-action pair, i.e.zt and
zt+1 can not approximated by the basis functions of
the elements that stored in the dictionaryDict , then

the given state-action pair will be added to the dic-
tionary, the inverse kernel matrixK−1 will be up-
dated, the number of columns and rows of the ma-
trix Â will be increased and the number of dimensions
of the vectorb̂ will be increased (step: 11). Other-
wise, the given state-action pair will not be added to
the dictionary (step: 12). Then, online-KBLSPI up-
dates the matrixÂ and the vector̂b (steps: 15-16).
After few samplesKθ obtained from the environment,
online-KBLSPI estimates the weight vector ˆwπt under
the current policyπt (step: 18) and approximates the
corresponding state-action value functionQ̂πt (step:
19), i.e.approximate policy evaluation. Then, online-
KBLSPI derives an improved new learned policyπt+1
which is a greedy one (step: 20), i.e.approximated
policy improvement. This procedure is repeated until
the end of playingL steps which is the horizon of an
experiment.

4 EXPERIMENTS

In this section, we describe the test domain, the ex-
perimental setup and the experiments where we com-
pare online-LSPI and online-KBLSPI using KG pol-
icy. All experiments are implemented in MATLAB.

4.1 Test Domain/Experimental Setup

Thetest domainconsists of 5 MDPs as shown in Fig-
ure 3, each with discount factorγ = 0.9. The first
three domains are the 4-, 20-, and 50- chain. The 4-,
and 20-domain are also used in (Lagoudakis and Parr,
2003; X. Xu and Lu, 2007) and the 50-chain is used
in (Lagoudakis and Parr, 2003). In general, the x-
open chain which is originally studied in (Koller and
Parr, 2000) consists of a sequence of x states, labeled
from s1 to sx. In each state, the agent has 2 actions,
either GoRight (R) or GoLeft (L). The actions suc-
ceed with probability 0.9 changing the state in the in-
tended direction and fail with probability 0.1 chang-
ing the state in the opposite direction. The reward
structure can vary such as the agent gets reward for
visiting the middle states or the end states. For the
4-chain problem, the agent is rewarded 1 in the mid-
dle states, i.e.s2 ands3, and 0 at the edge states, i.e.
s1 ands4. The optimal policy is R in statess1 and
s2 and L in statess3 ands4. (Koller and Parr, 2000)
used a policy iteration method to solve the 4-chain
and showed that the resulting suboptimal policies os-
cillate between R R R R and L L L L. The reason is
because of the limited approximation abilities of basis
functions in policy evaluation. For the 20-chain, the
agent is rewarded 1 in statess1 ands20, and 0 else-

Online�Knowledge�Gradient�Exploration�in�an�Unknown�Environment

9

1. Input: |S|;|A|;discount factor γ;accuracy v;
set of basis functions Φ = {φ1, · · ·,φn};initial
learned policy π0;length of trajectory L;
policy improvement interval Kθ;reward
r ∼ N(µa,σ2

a); initial state s1.

2. Intialize: Â← 0;b̂← 0;st;Dict = { };
K|SA|×|SA| =< ΦT ,Φ >;K−1

Dict
= [];Q̂|SA|← 0

3. For t = 1, · · · , L
4. at ← KG
5. st , at; observe: st+1;rt;at+1← πt(st+1)
6. zt ← (st)∗ |A|+at, zt+1← (st+1)∗ |A|+at+1

7. For zi ∈ {zt , zt+1}
8. kT (.,zi) = [k(1,zi), · · · ,k(j ,zi), · · · ,k(|Dict |,zi)],

c(zi) = K−1
Dict
∗ k(.,zi)

9. error(zi) = k(zi ,zi)−kT(.,zi)∗ c(zi)
10. If error(zi) > v
11. Dict+1← Dict ∪ zi;

K−1
Dict+1

← 1
error(zi)

(

error(zi)K
−1
Dict

−c(zi)
−c(zi)

T 1

)

;

Ât ←
(

Ât 0
0 0

)

;b̂t ←
(

b̂t

0

)

12. Else Dict+1← Dict;K−1
Dict+1

← K−1
Dict

13. End if
14. End for
15. Ât+1← Ât +k(.,zt)[k(.,zt)− γ k(.,zt+1)]

T

16. b̂t+1← b̂t +k(.,zt)rt,
k(.,zt) = [k(1,zt), · · · ,k(j ,zt), · · · ,k(|Dict+1|,zt)]

T

17. If t = (l +1)Kθ then
18. ŵπt

l ← Â−1
t+1b̂t+1

19. for z= z1, z2, · · · , z|SA|
k(.,z) = [k(1,z), · · · ,k(j ,z), · · · ,k(|Dict+1|,z)]T
Q̂πt

l (z) = ŵπt ,T
l ∗ k(.,z)

end
20. πt+1← argmaxa Q̂πt

l (s,a)∀s∈ S;πt ← πt+1;l ← l +1
21. End if
22. st ← st+1

23. End for

24. Output: At each time step t, note down:
the reward rt and the learned policy πt

Figure 2: Algorithm: (Online-KBLSPI).

where. The optimal policy is L from statess1 through
s10 and R from statess11 throughs20. And, for the
50-chain, The agent gets reward 1 in statess10 and
s41 and 0 elsewhere. The optimal policy is R from
states1 through states10 and from states26 through
states40, and L from states11 through states25 and
from states41 through states50 (Lagoudakis and Parr,
2003). The fourth and fifth MDPs, the grid1 and grid2
worlds, are used in (Sutton and Barto, 1998). The
agent has 4 actionsGo Up, Down, LeftandRightand
for each of them it transits to the intended state with
probability 0.7 and fails with probability 0.1 chang-
ing the state to the one of other directions. The agent
gets reward 1 if it reaches the goal state,−1 if it hits

(a) The chain domains

(b) The grid1 domain

(c) The grid2 domain

Figure 3: Subfigure (a) is the chain domains, in the red cells,
the agent gets rewards. Subfigure (b) is the grid1 with 280
states and 188 accessible states. Subfigure (c) is the grid2
with 400 states and 294 accessible states. The arrows show
the optimal actions in each state.

the wall, and 0 elsewhere.
Theexperimental setupis as follows: For each of

the 5 MDPs, we compared online-LSPI and online-
KBLSPI using knowledge gradient KG policy as an
exploration policy. For number of experimentsEXPs
equals 1000 for the chain domains, 100 for the grid1
domain and 50 for the grid2 domain, each one with
lengthL. The performance measures are: 1) the av-
erage frequency at each time step, i.e. at each time
stept for each experiment, we computed the proba-
bility that the learned policy (step: 19) in Algorithm 2
reached to the optimal policy, then we took the aver-
age ofEXPsexperiments to give us the average fre-
quency at each time step. 2) the average cumulative

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

10

frequency at each time step, i.e. the cumulative aver-
age frequency at each time stept. (Mahadevan, 2008)
used the 50-chain domain with length of trajectories
L equals 5000, therefore, we used the same horizon.
For other MDP domains we adapted the length of tra-
jectoriesL according to the number of states, i.e. as
the number of states is increased,L will be increased.
For instance,L is set to 18800 for the grid world.

KG policy, needs estimated standard deviation and
estimated mean for each state-action pair. Therefore,
we assume that the reward has a normal distribution.
For example, for the 50-chain problem, the agent is
rewarded 1 if it goes to state 10, therefore, we set the
reward ins10 to N(µ1,σ2

a), whereµ1 = 1. And, the
agent is rewarded 0 if it goes tos1, therefore, we set
the reward toN(µ2,σ2

a), whereµ2 = 0. σa is the stan-
dard deviation of the reward which is set fixed and
equal for each action, i.e.σa = 0.01,0.1,1. More-
over, KG exploration policy is a full optimistic pol-
icy, therefore, we set the policy improvement inter-
val Kθ to 1. For each run, the initial states1 was
selected uniformly, randomly from the state spaceS.
We used the pseudo-inverse when the matrixÂ is non-
invertible (Mahadevan, 2008).

For online KBLSPI, we define a kernel function
K on state-action pairs, i.e.K : |SA|× |SA| → R , we
composedK into a state kernelKs, i.e. Ks : |S|×|S|→
R and an action kernelKa, i.e. Ka : |A| × |A| → R

as (Y. Engel and Meir, 2005). Therefore, the ker-
nel functionK is K = Ks⊗Ka where⊗ is the Kro-
necker product.K is a kernel matrix becauseKs and
Ka are kernel matrices, we refer to (Scholkopf and
Smola, 2002) for more details. The kernel stateKs

is a Gaussian kernel, i.e.k(s,s′) = exp−||s−s′||2/(2σ2
ks)

whereσks is the standard deviation of the kernel state
function,s is the state at timet ands′ is the state at
timet+1. And, the action kernel is a Gaussian kernel,
i.e. k(a,a′) = exp−||a−a′ ||2/(2σ2

ka) whereσka is the standard
deviation of the kernel action function,a is the action
at timet anda′ is the action at timet +1. s ands′,
anda anda′ are normalized as (X. Xu and Lu, 2007),
e.g. for 50-chain with number of states|S| = 50 and
number of actions|A|= 2, s,s′ ∈ {1/|S|, · · · ,50/|S|} and
a,a′ ∈ {0.5,1}. σks andσka are tuned empirically and
set to 0.55 for the chain domains and 2.25 for the grid
world domains (grid1 and grid2) We set the accuracy
v in the approximated kernel basis to 0.0001.

For online-LSPI, we used Gaussian basis func-
tions φs = exp−||s−ci ||2/(2σ2

Φ) where φs is the basis
functions for states with center nodes(ci)

n
i=1 which

are set with equal distance between each other, and
σΦ is the standard deviation of the basis functions
which is set to 0.55. The number of basis functions
n equals 3 for 4-chain, 5 for 20-chain, and 10 for

(a) Performance on 4-chain domain

(b) Performance on 20-chain domain

(c) Performance on 50-chain domain

Figure 4: Performance of the average frequency by the KG
policy in online-LSPI in blue and KG in online-KBLSPI in
red. Subfigure (a) shows the performance on the 4-chain
using standard deviation of rewardσa = 0.01. Subfigure
(b) shows the performance on the 20-chain using standard
deviation of rewardσa = 1. Subfigure (c) shows the perfor-
mance on the 50-chain usingσa = 0.1.

50-chain as (Lagoudakis and Parr, 2003) and 40 for
the grid1 and grid2 domains as (M. Sugiyama and Vi-
jayakumar, 2008).

4.2 Experimental Results

The experimental results on the chain domains, i.e.
4-, 20-, and 50-chain show that the online-KBLSPI

Online�Knowledge�Gradient�Exploration�in�an�Unknown�Environment

11

(a) Performance on grid1 domain

(b) Performance on grid2 domain

Figure 5: Performance of the average frequency by the KG
policy in online-LSPI in blue and KG in online-KBLSPI
in red. Subfigure (a) shows the performance on the grid1
domain using standard deviation of rewardσa = 0.01. Sub-
figure (b) shows the performance on the grid2 domain using
standard deviation of rewardσa = 1.

outperforms the online-LSPI according to the average
frequency and cumulative average frequency of op-
timal policy performances for all values of the stan-
dard deviation of rewardσa i.e. σa = 0.01,0.1 and 1.
Figure 4 shows how the performance of the learned
policy is increased by using online-KBLSPI on the 4-
chain, 20-chain and 50-chain.

The experimental results on the grid1 domain
show that the online-KBLSPI outperforms the online-
LSPI according to the average frequency and cumu-
lative average frequency of optimal policy perfor-
mances for all values of the standard deviation of
rewardσa i.e. σa = 0.01,0.1 and 1. And, the ex-
perimental results on the grid2 domain show that the
online-KBLSPI performs better than the online-LSPI
for standard deviation of reward equals 1. Figure 5
shows how the performance of the learned policy is
increased by using online-KBLSPI on the grid1 and
grid2 domains.

The results clearly show that online-KBLSPI usu-
ally converges faster than online-LSPI to the (near)

optimal policies, i.e. the performance of the online
KBLSPI is increased. Although, the performance of
the online LSPI is better in the beginning and this is
because the online LSPI uses its all basis functions,
while online KBLSPI incrementally constructs its ba-
sis functions by the kernel sparsification method.

4.3 Statistical Methodology

We used a statistical hypothesis test, i.e. students t-
test with significance levelαst = 0.05 to compare the
performance of the average frequency of optimal pol-
icy that results from the online-LSPI and the online-
KBLSPI at each time step t. The null hypothesisH0
is the online-KBLSPI average frequency performance
(AFKBLSPI) larger than the online-LSPI average fre-
quency performance (AFLSPI) and the alternative hy-
pothesisHa is AFKBLSPI less or equalAFLSPI. We
wanted to calculate the confidence in the null hypoth-
esis, therefore, we computed the confidence probabil-
ity p-value at each time stept. The p-value is the
probability that the null hypothesis is correct. The
confidence probability converges to 1 for all standard
deviation of reward, i.e.σa = 0.01,0.1, and 1 and for
all domains, i.e. the 4-, 20-, and 50-chain domains
and the grid world domains. Figure 6 shows how
the p-value converges to 1 using the 50-chain, and
the grid1 domain with standard deviation of reward
σa = 0.1. Thex-axis gives the time steps (the length
of trajectories). They-axis gives the confidence prob-
ability, i.e. p-value. Figure 6 shows the confidence
in the online kernel-based LSPI performance is very
high, where thep-value converged quickly to 1.

5 CONCLUSIONS AND FUTURE
WORK

We presented Markov decision process which is a
mathematical model for the reinforcement learning.
We introduced online and offline least squares policy
iteration (LSPI) that find the optimal policy in an un-
known environment. We presented knowledge gradi-
ent KG policy to be used as an exploration policy in
the online learning algorithm. We introduced offline
kernel-based LSPI (KBLSPI). We also introduced ap-
proximate linear dependency (ALD) method to select
feature automatically and get rid of tuning empirically
the center nodes. We proposed online-KBLSPI which
uses KG exploration policy and ALD method. Fi-
nally, we compared online-KBLSPI and online-LSPI
and concluded that the average frequency of opti-
mal policy performance is improved by using online-
KBLSPI. Future work must compare the performance

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

12

(a) p-value of the 50-chain domain

(b) p-value of the grid domain

Figure 6: The confidence probabilityp-value that the av-
erage frequency of optimal policy performance of online-
KBLSPI performs better than online-LSPI. Subfigure (a)
shows thep-value of the 50-chain using standard deviation
of rewardσa = 0.1. Subfigure (b) shows thep-value of the
grid domain using standard deviation of rewardσa = 0.1.

of online-LSPI and online-KBLSPI using other types
of basis functions, e.g. the hybrid shortest path basis
functions (Yahyaa and Manderick, 2012), must com-
pare the performance using continuous MDP domain,
e.g. Interval pendulum and must prove a convergence
analysis of the online-KBLSPI.

REFERENCES

Engel, Y. and Meir, R. (2005). Algorithms and represen-
tations for reinforcement learning. Technical report,
Ph.D. thesis, Senate of the Hebrew.

I.O. Ryzhov, W. P. and Frazier, P. (2012). The knowledge-
gradient policy for a general class of online learning
problems.Operation Research, 60(1):180–195.

Koller, D. and Parr, R. (2000). Policy iteration for fac-
tored mdps. InProceedings of the 16th Conference
Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI).

L. Buşoniu, D. Ernst, B. D. S. and Babuška, R. (2010).
Online least-squares policy iteration for reinforcement

learning control. InProceedings of the 2010 American
Control Conference.

Lagoudakis, M. G. and Parr, R. (2003). Model-free least
squares policy iteration. Technical report, Ph.D. the-
sis, Duke University.

M. Sugiyama, H. Hachiya, C. T. and Vijayakumar, S.
(2008). Geodesic gaussian kernels for value func-
tion approximation.Journal of Autonomous Robots,
25(3):287–304.

Mahadevan, S. (2008).Representation Discovery Using
Harmonic Analysis. Morgan and Claypool Publish-
ers.

Powell, W. (2007). Approximate Dynamic Programming:
Solving the Curses of Dimensionality. John Wiley and
Sons, New York, USA.

Puterman, M. L. (1994).Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. John Wiley
and Sons, Inc., New York, USA.

Scholkopf, B. and Smola, A. (2002).Learning with Ker-
nels: Support Vector Machines, Regularization, Opti-
mization, and Beyond. MIT Press, Cambridge, MA,
USA.

Sutton, R. and Barto, A. (1998).Reinforcement Learning:
An Introduction (Adaptive Computation and Machine
Learning). The MIT Press, Cambridge, MA, 1st edi-
tion.

Vapnik, V. (1998). The Grid: Statistical Learning Theory.
Wiley Press, New York, United State of America.

X. Xu, D. H. and Lu, X. (2007). Kernel-based least squares
policy iteration for reinforcement learning.Journal
of IEEE Transactions on Neural Network, 18(4):973–
992.

Y. Engel, S. M. and Meir, R. (2004). The kernel recursive
least-squares algorithm.Journal of IEEE Transactions
on Signal Processing, 52(8):2275–2285.

Y. Engel, S. M. and Meir, R. (2005). Reinforcement learn-
ing with gaussian processes. InProceedings of the
22nd International Conference on Machine learning
(ICML), New York, NY, USA. ACM.

Yahyaa, S. Q. and Manderick, B. (2012). Shortest path
gaussian kernels for state action graphs: An empirical
study. InThe 24th Benelux Conference on Artificial
Intelligence (BNAIC), Maastricht, The Netherlands.

Yahyaa, S. Q. and Manderick, B. (2013). Knowledge gradi-
ent exploration in online least squares policy iteration.
In The 5th International Conference on Agents and
Artificial Intelligence (ICAART), Barcelona, Spain.

Online�Knowledge�Gradient�Exploration�in�an�Unknown�Environment

13

