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Abstract: This paper presents an image segmentation approach for obtaining a set of silhouettes along with the Visual
Hull of an object observed from multiple viewpoints. The proposed approach can deal with mostly any type
of appearance characteristics such as textured or textureless, shiny or lambertian surface reflectance, opaque
or transparent objects. Compared to more classical methods for silhouette extraction from multiple views, for
which certain assumptions are made on the object or scene, neither the background nor the object’s appearance
properties are modeled. The only assumption is the constancy of the unknown background at a given camera
viewpoint while the object is under motion. The principal idea of the method is the estimation of the temporal
evolution of each pixel over time which leads to the ability to estimate the background likelihood. Furthermore,
the object is captured under different lighting conditions in order to cope with shadows. All the information
from the space, time and lighting domains is merged based on a MRF framework and the constructed energy
function is minimized via graph cuts.

1 INTRODUCTION

Shape from silhouette (SFS) is a classic computer vi-
sion technique for 3D object reconstruction. Explor-
ing this technique in unknown environments when no
prior information is available on the object’s geometry
or surface properties is still a difficult problem. The
advantages of using the silhouette for reconstructing
the shape of an object is that it requires neither con-
stant object appearance nor the presence of textured
regions.In the current work we exploit this property
in order to reconstruct the Visual Hull (VH) of a wide
set of objects.

More precisely, the aim of our work is to extract
the silhouette of an object from a set of views with-
out prior knowledge of the scene content or the object
properties such as appearance and geometry and use
these silhouettes to build a VH. This task faces several
challenges. Firstly, the object interaction with light
includes many effects such as shadows, self-shadows,
color bleeding, light inter-reflection, transparency and
subsurface scattering. These phenomena have an im-
pact on the appearance of the object in the image and
make the separation of foreground from background
a complex task. Secondly, the camera can be posi-
tioned at any viewpoint on the hemisphere above the
object, which leads to the impossibility to model the
background at the pixel level (as done previously in
static (Snow et al., 2000) or active (Matusik et al.,

2002) cases) before positioning the camera even if
the viewpoints are calibrated. Finally, the scene be-
ing captured under unknown lighting conditions adds
extra complexity to the silhouette extraction problem.
To cope with these phenomena we propose a funda-
mental approach where the object moves in an un-
known but static environment while the camera re-
mains fixed for a given viewpoint. The only assump-
tion that is made about the scene is one on the back-
ground being static while the object moves. In com-
parison to other approaches which consider that the
scene’s background is known beforehand or which
assume object photometric consistency, the proposed
approach does not make any assumption about the ob-
ject and therefore allows the handling of a wide vari-
ety of objects with surface reflectance properties rang-
ing from textureless to completely transparent.

The experiment is performed as follows: the ob-
ject is placed on a turntable which is then rotated
in order to capture the object from different view-
points. The images captured with this procedure are
processed in a time sequential manner. Assuming a
constant background, the time sequence is analyzed
and the background likelihood is estimated. Then,
the object likelihood is iteratively updated in order
to estimate object boundaries precisely. Finally, sev-
eral time frames are processed simultaneously to en-
force boundary consistency between frames. All the
computations are based on a Markov Random Field
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(MRF) framework and the optimization is performed
through graph cuts. The silhouettes obtained for all
viewpoints are used to build the VH of the object.

The paper is organized as follows: in section 2
an overview of the related work is given. Section 3
introduces research hypotheses and the notation used
in the paper. In sections 4-6, the details of the esti-
mation of background and object likelihoods as well
as the segmentation framework are presented. Sec-
tion 7 presents the experiments and discusses the re-
sults. The last section provides some conclusions on
the proposed approach and identifies directions for fu-
ture work.

2 RELATED WORK

SFS was first introduced by Baumgart (Baumgart,
1974), this concept suggests to fuse silhouettes of an
object in 3D to obtain the VH. Since the object’s sil-
houette is the key element for VH construction, the
following review concentrates on silhouette extrac-
tion approaches.

The obvious and easy way to implement tech-
niques for silhouette extraction is chroma key-
ing (Smith and Blinn, 1996). This approach is based
on the knowledge of the scene background. An object
is imaged against a uniform or known background,
then the silhouette is extracted by thresholding the
background color or by background subtraction. Due
to implementation simplicity, this technique was used
in many SFS works (Matusik et al., 2002; Jagers et al.,
2008). Even though this method provides fairly good
results, there are some drawbacks. Firstly, it implies
preliminary scene background manipulations for each
camera viewpoint, which limits possible camera po-
sitions on a hemisphere since the background has to
be visible from all viewpoints. Secondly, the case
when part of the object has the same color as the back-
ground may lead to incorrect segmentation.

Chroma keying was extended in other works
where instead of a static background, an active back-
ground system was used (Zongker et al., 1999; Ma-
tusik et al., 2002). As an active background, a con-
trolled display was installed around an object. A
scene was captured with and without an object with
different background patterns for a fixed viewpoint.
Even though such an approach allows the extraction
of the alpha matte of the silhouette of an object made
from material with complex optical properties such
as glass, the hardware requirement seriously compli-
cates the acquisition process and limits the method’s
application area. The major drawback is the inability
to move the camera with respect to the background

screens, since images with and without an object have
to be aligned at the pixel level.

Another group of algorithms with explicit back-
ground modeling is based on background subtraction.
A good review can be found in (Piccardi, 2004; Radke
et al., 2005; Parks and Fels, 2008). A background
subtraction technique is based on the construction of
a background model of a scene at first, followed by
the classification of pixels that do not fit this model
as foreground pixels. The major drawback of these
methods is the requirement of an explicit estimation
of the background. This requirement imposes that an
update of the background model needs to be done ev-
ery time the position of the camera is changed which
can be difficult for non uniform backgrounds.

An original segmentation technique that is worth
mentioning was presented in (Sun et al., 2007). The
idea is to use two images: with flash and without flash.
It is assumed that the appearance of a foreground ob-
ject in a ”flash image” is different from that of a ”with-
out flash image”. However, the background remains
similar in both images. The main requirement in this
method is that the background has to be sufficiently
far from the object so that it is not affected by the
camera flash. Unfortunately, this condition is not met
in our experimental environment.

A more universal way to segment images is to rely
on user initialization (Boykov and Jolly, 2001). Here,
user input is used to obtain initial information about
object and background properties. This information
is used to construct a graph and the object segmen-
tation problem is considered as a graph energy min-
imization. A graph cuts is applied to find the global
minimum. In the approach presented in this paper, an
energy minimization via graph cuts is also performed
to obtain optimal segmentation. However, our goal is
to find the initial information required to construct an
MRF automatically.

Single image segmentation by graph cut was fur-
ther extended to automatic silhouette extraction in
multiple views in (Campbell et al., 2007; Lee et al.,
2007). Although these methods may work well, the
usage of explicit object and background color mod-
eling limits the type of objects that can be recon-
structed. Another drawback related to color model-
ing is when the same color belongs to the object and
background model. In this case, the result may lead
to over- or under-estimation of the silhouette. In our
work, we avoid explicit color modeling of an object
and background in order to overcome these limita-
tions.
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(a) Time-independent step
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(b) Time-dependent step
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(c) Background likelihood

Figure 1: Background likelihood estimation. (a) - Time-independent step. First the intensity profile is sorted, then S(xi) is
estimated, and finally estimated values are reordered. (b) - Time-dependent step. S(xi) is estimated on the original inten-
sity profile. (c) - Background likelihood computed as a combination of time-independent and time-dependent steps using
equation 5.

3 HYPOTHESIS AND NOTATION

The proposed method is based on the estimation of the
background likelihood assuming that the background
is unknown but constant and the iterative update of an
object likelihood. It is assumed that the camera view-
point is fixed, and the object changes its position NT
times. In case of multiple lighting conditions, an ob-
ject is captured NL times for each frame, one time per
source. Note that the proposed method is independent
from background modeling, therefore the acquisition
process can be repeated multiple times for different
camera viewpoints.

The captured image set is organized into a 4D vol-
ume. The dimensions of this volume are: U , V , T , and
L. U and V are spatial dimensions, T parameterizes
object displacement and L represents lighting condi-
tion. Thus I(u;v; t; l) is the intensity of a pixel (u;v) at
time t under lighting condition l. For notational con-
venience we define a few shortcuts. IL � I consists of
all the images captured under different lighting condi-
tions for a given object position. IT � I is comprised
of all the images captured from all the object positions
but under fixed lighting. It;l represents a single image
with an object at position t under light source l.

4 BACKGROUND LIKELIHOOD
ESTIMATION

In order to estimate background likelihood an ”ob-
ject” and ”background” must be defined. A pixel can
be called a background pixel if its intensity remains
stable for a number of observations among all obser-
vations while the object is in motion. This defini-
tion follows from the constant background assump-
tion. A pixel whose intensity deviates with respect
to its neighbors in time is more likely to represent an
object pixel. The definition of an object pixel follows
from the fact that during an object motion the orien-
tation of the surface normal of any point on an object
changes with respect to the light source or a camera
view or both, which is in fact the pixel intensity.

We consider a set of sequential frames as a
3D array and process all subsets of pixels along
the time axis. A single subset of pixels form an
intensity profile which is defined as: IT (u;v) = X =
fIT (u;v; t1); IT (u;v; t2); :::; IT (u;v; ti); :::IT (u;v; tNT )g=
fx1;x2; :::;xi; :::xNT g where xi is the intensity value of
a pixel at time i. This profile is depicted by a blue
curve in Figure 1.

The core idea of measuring background likelihood
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is an estimation of the time stability S(xi) in the in-
tensity profile X . It is measured by estimating the
minimum standard deviation around each point. The
smaller the deviation, the more stable the point is.
Thus, a point with low S(xi) is most likely to belong
to the background. In order to estimate the minimum
deviation for a given point xi 2 X a window of size w
is slid around it and each time the standard deviation
is measured. Among measured values, the minimum
has to be found. Formally, the measurement of S(xi)
is defined as follows:

S(xi) = min
j2[i�w+1;i]

sw(x j); (1)

where sw(x j) is the standard deviation calculated on
the subset fx j;x j+1; :::;x j+w�1g. S(xi) describes the
constancy of a point xi in a region with size w.

Since many factors (such as the object’s unique
geometry, shadows or light inter-reflection in a scene)
can affect the intensity of a given pixel, the simple
estimation of the stability for each point using equa-
tion 1 is not robust enough. Therefore, the estima-
tion of the background likelihood is performed in
two steps: ”time-dependent” and ”time-independent”.
The necessity of the time-independent step is dictated
by the possibility that an object may contain gaps be-
tween its parts. In such a case the points inside the
intensity profile are mixed between object and back-
ground.When the pixels’s intensity is analyzed inde-
pendently of its time order, then one can avoid mixing
background and object intensities, as shown in Fig-
ure 1(a). The idea of the time-dependent step is to
evaluate the property of a point in its original time se-
quence. It is possible that at some positions, an object
point may have the same color intensity as the back-
ground. Thus, considering this pixel in its original
time sequence order allows a correct estimation of the
point deviation as opposed to the time-independent
step, see Figure 1(b). The combination of these two
steps leads to a reliable estimation of the background
likelihood.

The whole algorithm for background likelihood
estimation can be summarized as follows:

1. Sort all the points from the intensity profile:

X 0 = sort(X): (2)

2. Time-independent step, see Figure 1(a):

S0g(x
0
i) = min

j2[i�wg+1;i]
swg(x

0
j): (3)

3. Based on the correspondence between X 0 and X ,
reorder S0g in order to obtain Sg

4. Time-dependent step, see Figure 1(b):

Sl(xi) = min
j2[i�wl+1;i]

swl (x j): (4)

5. Compute the background likelihood for each
point in xi 2 X as follows (Figure 1(c)):

PB(xi) =
1

exp(Sg(xi)+Sl(xi))
: (5)

Equation 5 is such that it tends to 0 when Sl +
Sg ! ¥, indicating that the point is inside a varying
region and most likely belongs to an object. It tends to
1 when Sl + Sg! 0, meaning that the point is inside
a stable region and most likely belongs to the back-
ground.

4.1 Space-time Light Volume Fusion

The estimation of background likelihood for space-
time volume was described above. If the scene is
illuminated uniformly by ambient lighting or only a
single light source is used during the acquisition pro-
cess, then it is enough to use equation 5 to compute
the final background likelihood. However, if several
directional light sources are exploited, then a fusion
process should be applied in order to incorporate in-
formation from different light sources. The difficulty
of the fusion is caused by contradictory estimations of
background likelihoods from different light sources.
For example with one light source, some parts of an
object can be in the shadow which results in a high
value for background likelihood, due to low intensity
deviation for such a region. Under another lighting
conditions the same part of an object can be well illu-
minated and thus have a lower background likelihood.

In order to choose an appropriate light source we
use a simple but effective rule (a similar approach was
used in (Wu et al., 2009) for normal initialization).
For a given view and pixel we consider all the images
under different lighting conditions, and for each pixel,
we find the one that corresponds to a maximum inten-
sity. These lighting condition are used to select the
background likelihood for a given pixel:

maxind = argl max(IL(u;v; l));
PB f inal = PB(u;v;maxind):

(6)

4.2 Background to Object Likelihood

Since an estimated background likelihood through
equation 6 is just an approximation, the object like-
lihood cannot rigorously be estimated as 1�PB. Thus
we follow the definition of an object pixel (stated in
section 4) defined as a high deviation of the intensity
profile. The higher the deviation, the closer PB is to
0. Therefore all the pixels whose background likeli-
hood are close enough to 0 (less than a threshold R)
are assigned a value f1 in order to indicate that there
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(a) (b) (c) (d)

Figure 2: Boundary terms comparison. (a) - g for diagonal pixel neighbors using raw images: a clear object trace can be seen.
(b) - g for diagonal pixel neighbors excluding object pixels: object influence on gamma disappears. (c) - Bp;q with g from (a),
an object trace that is present in g also affects the boundary term. Some object background boundaries are weakly separated
due to that trace. (d) - Bp;q with g from (b), object trace does not appear and a clearer separation between the object and the
background for some parts (compare to (c)) is obtained.

is a possibility for an object. The other pixels are as-
signed the value f2 � f1

10 , which indicates that these
points are less likely to represent an object. The ob-
ject likelihood is estimated as follows:

PO =

�
f1 : PB f inal < R
f2 : otherwise: (7)

5 SEGMENTATION AS AN
OPTIMIZATION PROCESS

In the previous section the estimation of prior back-
ground and object likelihoods was described. Now
the whole segmentation process can be defined. The
goal of segmentation is to assign to each pixel p in im-
age It;l a label mp which can be the object or the back-
ground. Segmentation is performed by minimization
of an energy function E through graph cuts (Boykov
and Jolly, 2001). Formally,

E(M) = l å
p2It;l

P(mp)+ å
p;q2N

B(p;q)[mp 6= mq]; (8)

where P(mp) is the prior knowledge that each pixel
belongs to the object and background; B(p;q) is a
boundary term that defines the connection strength
between neighboring pixels; M is the set of all labels,
each element mp;mq 2 M can be either background
or object with values f0;1g; l controls the impor-
tance of prior knowledge versus the boundary term
(l 2 [0;¥]); N is the neighborhood pixel connectivity
(in our experiment we use 8-neighbor connectivity).

The boundary term B(p;q) characterizes the rela-
tionship between neighboring pixels. If the difference
in intensity is small then it is likely that these pixels
belong to the same object, therefore they have to be
strongly connected. In the case of a large difference
in intensity, it is likely that there is an edge and there-
fore it is probable that these pixels belong to different
objects. In such a case B(p;q) should be close to 0 in

order to encourage a minimization algorithm to satu-
rate an edge between these points.

Since the object is captured under different light-
ing conditions, extra information is considered. For
example the same point may be in the shadow in one
image and may be bright under another light source
illumination. This extra data can be used to improve
the accuracy of B(p;q). For this purpose, we use the
boundary term from (Rother et al., 2004) and mod-
ify it in order to incorporate images captured under
different light sources (see Figure 2(c)):

B(p;q) =
NL

å
j

exp
�
�
jjIp;i; j� Iq;i; jjj2

2gp;q; jNL

�
� 1

D(p;q)
; (9)

where Ip;i; j = I(up;vp; ti; l j) and Iq;i; j = I(uq;vq; ti; l j)
are intensities for pixel p and q at time t under light-
ing li, D(p;q) is the Euclidean distance between two
pixel sites, and jj � jj is L2-norm. g is constructed as
an expected value over time for each connected pair
of pixels. In this way g is adapted for each viewpoint
and lighting condition (see Figure 2(a)):

gp;q; j =
NT

å
i

jjIp;i; j� Iq;i; jjj2

NT
: (10)

The prior knowledge term P(mp) in equation 8 de-
fines a preference for pixel p to be object and back-
ground:

P(mp)=

�
PB mp = 0 (background); equation 6
PO mp = 1 (ob ject); equation 7:

(11)
Finally, the energy in equation 8 is optimized

through graph cuts and the result of this optimization
is a silhouette of an object for each view which is then
integrated into the VH.
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(a) (b) (c) (d)

Figure 3: Iterations for updating object likelihood. (a) - boundary term with initial object boundary (white line) and a
boundary of the computed silhouette (red line). (b) - updated object likelihood based on equation 13 and the boundary of the
new silhouette. (c) - updated object likelihood based on equation 14 and the boundary of the new silhouette. (d) - boundary
term with final silhouette boundary (green line), intermediate boundaries (red lines) and initial object boundary (white line).

6 VISUAL HULL REFINEMENT

6.1 Boundary Term Refinement

Having a good approximation of an object shape and
its location in each frame allows us to estimate the
boundary term more precisely. One of the main pa-
rameters of the boundary term is g. It acts as a thresh-
old: if the difference in intensity between two neigh-
bors is less than g then the connection between these
pixels is strongly penalized. Therefore a clever selec-
tion of g is very crucial for weak edges (when the dif-
ference between neighbors is quite small). Thus, it is
important to estimate g as precisely as possible to ob-
tain pure connectivity of background neighboring pix-
els. Therefore the following procedure was adopted:
the VH is projected onto each frame and pixels that
belong to the silhouette are excluded from the the cal-
culation of g. This exclusion does not eliminate all the
shading effects such as shadows, inter-reflections and
color bleeding but their effect is almost negligible and
is even reduced by signal averaging over time.

The result is that g is computed almost only be-
tween non object pixels, which is in some way similar
to computing g on the background image (without an
object):

gp;q; j =
NT

å
i

jjIp;i; j� Iq;i; jjj2

NT
; p;q =2 Pr�1

i (H); (12)

where Pr�1
i (H) is a silhouette of the projected VH H

on frame i. The result of such an update is shown in
Figure 2(b): the influence of an object’s motion on
g almost disappears with the result that a pure back-
ground connectivity information between neighbor-
ing pixels is estimated.

Substituting g computed with equation 12 in the
boundary term in equation 9 produces more accurate

results, see Figure 2(d). In Figure 2(c) the boundary
term computed with the initial g formulation is shown.
As it can be seen, some boundary parts between the
cup handle and the background are weakly separated
due to the presence of the object’s motion trace in g,
see Figure 2(a). However when the object motion is
eliminated from g (Figure 2(b)) a clearer separation
is obtained. One of the issues with the new formu-
lation of g in equation 12 is that the resulting bound-
ary term becomes more sensitive to image changes.
It can be seen that much more neighboring weights
inside an object receive low penalty compared to the
initial formulation of g (see Figures 2(c) and 2(d)).
Nevertheless, it is not critical since edges between
object and background are detected more accurately
and non-zero object likelihood covers almost the en-
tire object. Therefore, only edges close to the ob-
ject boundary play an important role when maxflow is
computed. Note that by computing an adaptive g for
each neighboring pixel connection, most of the back-
ground edges are eliminated. In our scene a non uni-
form background with many edges can be observed,
nevertheless almost all the background edges do not
appear in boundary term (see Figure 2(d)). The for-
mulation of this term is one of the contributions of
this work.

6.2 Iterative Refinement of Object
Likelihood

One source of inaccuracy is the strong edge on the ob-
ject near the boundary. It is possible that the bound-
ary of the computed silhouette can pass through such
strong internal object edges. Therefore we try to find
such places and push the boundary out in order to by-
pass these internal edges. For that reason we apply the
following strategy: first we try to push the boundary
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of the obtained silhouette. If some parts of the bound-
ary move, then we adjust these parts by searching for
another strong edge nearby.

As an initial step, all the points that belong to the
silhouette are assigned weight w, points located no
further than T1 to the closest point of the silhouette
are assigned weight 2�w

PO1(xi) =

8<: w : xi 2 S
2�w : dist(xi;S)< T1;xi =2 S
0 : otherwise

(13)
Such an update of the object likelihood allows the

potential identification of internal object edges that
were accepted as the object boundary during the ini-
tial calculation of maxflow.

In the second step all the points of a computed
silhouette that coincide with the zero region of PO1 or
with its boundary form a set C. This set represents
points that are close to or belong to an internal object
edge. We want to push the silhouette boundary that
is inside C to overcome internal edges and move it
toward the real object boundary. Therefore the object
likelihood is updated as follows:

PO2(xi) =

�
3�w : dist(xi;C)< T2;
PO1(xi) : otherwise (14)

We continue to update the object likelihood using
equation 14 and maxflow calculation until set C 6= 0
or until the maximum number of iterations is reached.

All these steps are illustrated in Figure 3. In Fig-
ure 3(a) the boundary term with the initial object bor-
der (white line) and the resulting silhouette border
(red line) are depicted. As it can be seen, the bound-
ary of the silhouette goes through the edge inside the
object. A new object likelihood is constructed based
on equation 13, see Figure 3(b) and the boundary of
the resulting silhouette is depicted by the red line. It
can be seen that an internal object edge was crossed.
Since the resulting silhouette is not totally inside the
non-zero region of PO1 , set C is not empty. There-
fore, the object likelihood is updated again based on
equation 14 (see Figure 3(c)). Finally, the resulting
boundary (red line) is completely inside the non-zero
region of PO2 and therefore, C is empty. The final
silhouette boundary (thick red line) with the bound-
ary term is depicted in Figure 3(d). The part of the
initial boundary that was inside an object was pushed
towards the object boundary and the rest of the bound-
ary that was close to the true object-background edge
was just slightly adjusted.

Note that when two object parts are separated by
the background and the distance between the closest
object points is less or equal to T2, such regions are
joined together in the resulting silhouette. This prob-
lem is addressed by the final step of the algorithm.

Figure 4: Acquisition system. It consist of a turntable, a
lighting system and a camera system.

6.3 Visual Hull Completion

Finally, in order to enforce silhouette boundary
smoothness and coherency between frames, a graph
cuts on a set of sequential frames is performed. Sev-
eral consecutive frames are considered together and
treated as a 3D array. A new graph is constructed in
a way similar to what was done previously for each
individual frame except for two differences.

As a first difference, the object likelihood is taken
from the last step of the iterative algorithm described
in section 6.2. All the values that belong to the silhou-
ette of the projected VH are taken from PO2 , the rest
are set to zero.

PO3(xi) =

�
0 : xi =2 Pr�1

i (H);
PO2(xi) : otherwise:

(15)

In using this construction of the object likelihood
one can overcome the problem of merging nearby ob-
ject areas mentioned in section 6.2. Since points lo-
cated outside of the projected VH are set to 0, a strong
object enforcement is eliminated for inter-object ar-
eas while the rest of the object likelihood remains the
same.

A second difference is that sequential frames have
to be connected together by inter-frame arcs in the
graph. Based on the object motion between two
frames, we can identify which graph nodes must be
connected between frames. Using the VH and calibra-
tion information for each frame allows the most com-
mon object motion directions to be found between
two frames. VH voxels are first projected in each
frame and then all the projected voxels falling into
the boundary of the silhouette at least in one frame
are used to form a set of directions:

D = Pr�1
i (H(vi))�Pr�1

i+1(H(vi));8vi 2 H: (16)
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(a) (b) (c) (d) (e)

Figure 5: VH of a cup. (a) - an image of cup. (b)-(e) - the VH of the cup from different viewpoints. In (b) a small region
near the cup handle goes beyond since the cup handle hides this part from direct observation in several views. In (c) - a small
bump can be observed due to target merging with the cup silhouette in some views.

(a) (b) (c) (d) (e)

Figure 6: VH of a plastic bottle. (a) - an image of a plastic bottle. (b)-(e) - the VH of the the bottle from different viewpoints.

The set of directions D may contain a large num-
ber of different directions. Therefore, only the most
common directions are selected (typically between 8
and 15) to connect nodes between frames. The weight
for each inter-frame arc is computed using equation 9.
The background likelihood term and the boundary
term are constructed the same way as explained pre-
viously.

7 EXPERIMENTAL RESULTS

The experiments for validating the approach are per-
formed with a roboticized system of our design,
which allows the position of a turntable, the cam-
era position on a hemisphere above the turntable and
the lighting condition to be controlled by a computer,
the setup is shown in figure 4.The background behind
an object is not uniform, it consists of: a wall, dif-
ferent parts of the setup and a turntable with white
calibration discs. The camera viewpoint is not con-
stant and can be easily changed which leads to a com-
plete change of the observed background. The pro-
posed approach was tested on several objects with
complex surface properties. In a typical experiment,
an object is rotated 360 times by 1 degree increments
and a grayscale image is captured under 30 different

lighting conditions. In cases when the object surface
shows specular properties it may reflect light to an
area near its base and thereby violate the assumption
of the constant background area near this location. By
resting the object on a small pedestal on a turntable,
this effect is reduced significantly and therefore can
be neglected.

Figure 5 shows the VH of a cup. The cup has
a smooth conical shape, is made from ceramic and
its surface is covered by uniform glossy paint which
causes specular reflections and non constant appear-
ance to be observed during image acquisition. An-
other complication is the difficulty of finding distinc-
tive features on the object for multi-view matching.
Such object properties highly complicate the recon-
struction of the geometry for feature-based methods.
A few traces (enclosed in red ellipses) near the cup
handle can be seen (Figure 5(c)). They appear due
to the fact that this area is hidden by the cup handle
from direct camera observation in several consecutive
views. Also a small bump can be observed near the
bottom of the cup base (Figure 5(d)). It is caused by
some circular targets on the turntable treated as part of
the silhouette since they match the definition of an ob-
ject. Despite these small errors, the proposed method
was able to reconstruct the cup correctly.

In Figure 6 the results of the segmentation of a

Shape�from�Silhouette�in�Space,�Time�and�Light�Domains

375



(a) (b) (c) (d) (e)

Figure 7: VH of a light bulb. (a) - an image of a light bulb. (b)-(e) - the VH of a light bulb from different viewpoints.

(a) (b) (c) (d) (e)

Figure 8: VH of a wine glass. (a) - an image of a wine glass. (b)-(e) - the VH of a wine glass from different viewpoints.

plastic juice bottle are presented. Geometry recon-
struction for such an object is a challenging task for
several reasons. An area close to the boundary edges
of the bottle is transparent, therefore the intensity of
this part coincides often with the intensity of the back-
ground. The intensity of the bottle lid is similar to the
surrounding background in some frames, which also
complicates object-background separation. Notwith-
standing these conditions, the VH of the bottle is re-
constructed accurately.

Finally the algorithm was tested with fully trans-
parent objects: a light bulb and a wine glass. Due
to the transparency, it is practically useless to try to
estimate distribution of object colors or to search for
distinctive object features, as only the properties of
the scene located behind the object will be observed.
Another complication with a transparent object is that
during its motion, a different background is observed,
which makes it difficult to estimate a consistent fea-
ture and color model between several views. As it
can be seen in Figures 7 and 8, the body of the light
bulb and the wine glass are transparent and the back-
ground is visible through them. Since our approach
is not based on object color features modeling, it is
possible to obtain a reliable reconstruction of the ge-
ometry of both the bulb and the wine glass.

8 CONCLUSIONS

In this paper an approach for the reconstruction of the
Visual Hull of an object with complex photometric
properties was described. The proposed approach is
based on two principles: modeling scene background
based on signal stability which is independent of cam-
era viewpoint and then iterative updating the object
likelihood to refine the estimated silhouette boundary
accurately.

The advantage of the proposed approach is that in-
stead of attempting to model the object color space or
matching object features, the evolution of pixel inten-
sity over time is analyzed. Such an analysis avoids
the use of standard objects property, such as color and
edges and allows the VH to be reconstructed for a
wide range of objects with different shapes and re-
flective properties without any prior knowledge. We
show that the proposed method is capable of deal-
ing with objects with complex reflectance properties
such as textureless objects or completely transparent
ones. The requirement for handling a wide variety ob-
jects with completely different photometric properties
is that a dense set of images is required for the con-
struction of the Visual Hull. As a future work, we plan
to use photometric information for estimating object
reflectance properties and fuse this information with
the VH to obtain complete object description.
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