
Resilient Supervision System over WSAN
A Distributed Multi-Agent Architecture

Fábio Januário1;3, Amâncio Santos2;3, Catarina Lucena1, Luı́s Palma1,
Alberto Cardoso3 and Paulo Gil1;3

1Departmento de Engenharia Electrotécnica, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Lisboa, Portugal

2Instituto Superior de Engenharia de Coimbra (ISEC), Coimbra, Portugal
3Centre for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal

Keywords: Wireless Sensor and Actuator Networks, Supervision Systems, Outliers Detection, Resilient Systems,
Multi-Agent Systems, Distributed Computing.

Abstract: Wireless Sensor and Actuator Networks enable flexibility, low operational and maintenance costs, as well as
scalability in a variety of scenarios. However, in the context of remote control and monitoring applications the
use of Wireless Sensor and Actuator Networks can impact the system’s performance due to several factors,
such as outliers in sampled raw data, communication breakdown or owing to security issues. In order to
improve the overall system’s resilience, this paper proposes a distributed hierarchical multi-agent architecture
where each agent is responsible for a specific task. Experimental results collected from a laboratory test-bed
show the relevance of incorporating the proposed methodology in the context of monitoring and networked
control systems over Wireless Sensor and Actuator Networks.

1 INTRODUCTION

Wireless Sensor and Actuator Networks (WSANs)
have attracted considerable attention in the last few
years. They are distributed networks of sensors and
actuators nodes, which act together in order to moni-
tor and/or control a diversity of physical environments
or systems (Mendes et al., 2009). Each node is a small
electronic device with wireless communication capa-
bilities, including data storage and processing power.
In addition, they can still be programmed to interact
with the physical environment by means of built in
sensors and actuators (Opina et al., 2009).

In industrial environments WSANs can be used in
supervision applications, which contribute to reduc-
ing installation and operation costs (Cerrada et al.,
2007). However, constraints on resources, in par-
ticular limited processing power, small data storage,
narrow bandwidth and autonomy may lead to inaccu-
rate data being sent to the sink (Tirkawi and Fischer,
2009). Moreover, these systems suffer from two main
types of vulnerabilities. The first one refers to the
problem of monitoring the system for faults and fail-
ures, and responding in such a way to prevent and/or
mitigate the problem. A second issue involves the

vulnerability to cyber-intrusion, in which malignant
actors can mask the system’s degradation or provide
“fake” data to higher management levels, concern-
ing the current system’s status (Rieger et al., 2012).
This kind of vulnerabilities can, to some extent be
mitigated by implementing dedicated “coadjutants”,
which contribute to make the overall system more ro-
bust and resilient.

In this work a resilient system is regarded as a con-
trol system that maintains state awareness and an ac-
ceptable level of operational normalcy in response to
disturbances, including threats of an unexpected and
malicious nature (Garcia et al., 2012). In the case of
nodes’ deployment in harsh environments, they may
exhibit malfunction behaviours, which ultimately re-
sult in corrupted raw data that are subsequently sent to
the sink (Zang et al., 2010). These errors in the read-
ings are, as a whole denoted as outliers, and should
be cancelled out or accommodated for the sake of the
supervision systems’ performance.

The implementation of resilient enforcement
mechanisms can be carried out through the implemen-
tation of dedicated algorithms and heuristics, within
an framework based on agents (Cardoso et al., 2012;
Rieger and Villez, 2012). The incorporation of these

119Januário F., Santos A., Lucena C., Palma L., Cardoso A. and Gil P..
Resilient Supervision System over WSAN - A Distributed Multi-Agent Architecture.
DOI: 10.5220/0004725501190126
In Proceedings of the 3rd International Conference on Sensor Networks (SENSORNETS-2014), pages 119-126
ISBN: 978-989-758-001-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

“coadjutants” in the context of faults and failure diag-
nosis, or to make the system less vulnerable, is very
attractive as it makes possible to implement a coop-
erative and decentralized agent-based framework for
such purposes, by making use of agents’ inherent fea-
tures, namely autonomy, reactivity, pro-activity, co-
operation and intelligence.

Several agent-based methodologies and architec-
tures have been proposed to support the design of re-
silient control systems (see e.g. (Rieger and Villez,
2012)). Generally, these methodologies are based on
a combination of intelligent techniques, such as fuzzy
systems, encryption algorithms, Bayesian networks
or neural networks, just to name a few. Given the
limited memory and computation power constraints
of nodes, however, these schemes can hardly be im-
plemented on WSAN based applications.

In the context of WSANs environments, the preva-
lent line of research has been focussed on the use
of mobile agents to tackle particular problems, such
as routing, clustering and localization (Chen et al.,
2007). Jamont and Occelo (Jamont and Occello,
2007) propose an original method for designing em-
bedded multi-agent system, while in Xiong and Bai
(Xiong and Bai, 2010) several generalized frame-
works are proposed to address some critical issues
in Wireless Sensor Networks (WSNs) applications,
namely interoperability, time synchronization, power
management and distributed computation. Worth to
mention is the work of Freitas et al. (Freitas et al.,
2009), which focusses on an agent-based framework,
acting as an integral part of a middleware, to support
autonomous setup and adaptation of sensor networks.

Although these architectures may solve a num-
ber of known problems associated with WSANs, they
do not allow the network to adapt to physical envi-
ronment changes. Regarding monitoring and control
applications, apart from addressing security and dis-
tributed computation issues, it is also crucial to ensure
the integrity of the collected data, and to guarantee the
system is operating safely in case of network commu-
nication faults.

With these premises in mind, the present work
proposes a new resilient enforcement architecture.
It is based on a hierarchical multi-agents paradigm,
where each agent is tailored for executing specific and
coordinated tasks, namely to outliers detection and
accommodation, as well as to maintain the system in
a safe state operation, in case of communication link
breakdown, and to account for security issues under
the form of manipulation of nodes’ configuration by
a malicious actor. The effectiveness of the proposed
framework and its impact on the supervision system
performance is empirically assessed through experi-

ments conducted on a test-bed.

2 MULTI-AGENT SUPERVISION
SYSTEM

Agents can be regarded as computing entities in a
given environment, presenting a certain degree of au-
tonomy, and possessing the ability to feel and act in
order to accomplish a given mission. Some of their
inherent features include the following (Paolucci and
Sacile, 2005):

� Autonomy. agents are independent entities, able
to accomplish a given task, without any program-
ming or direct intervention;

� Reactivity. capability of perceiving their envi-
ronment and respond quickly and effectively to
changes;

� Pro-activity. ability to take initiative goals and
behave in order to meet them;

� Cooperation. agents have the ability to interact
and communicate with one another for the sake of
their own teleonomy;

� Intelligence. in order to evaluate and take over a
task, in an autonomous way, an agent should in-
corporate intelligent techniques;

� Mobility. agents have the ability to move its code
from a node to another one in a system, offering
mobility properties in distributed computational
devices.

Taking into account these features, it is possible to
devise a cooperative and decentralized multi-agent
framework with a number of advantages for WSANs
applications, namely, for systems’ monitoring and
control, while keeping the system running in a safe
mode, in case of communication loss between the
server and nodes, or in the presence of cyber attacks.

2.1 Architecture Overview

The proposed architecture concerns the implementa-
tion of a resilient supervision system over WSANs,
for which the issues of communication, network
topology and routing protocols have already been
tackled.

The supervision system is composed of three main
components (Fig. 1): a multiple inputs and multi-
ple outputs (MIMO) system being monitored or con-
trolled, a computer (server) running the middleware,
the dispatcher software, which feeds data from the

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

120

WSAN into the middleware and other top-level appli-
cations, such as the monitoring application and the re-
mote controller, along with the communication infras-
tructure, based on a WSAN. Each node is a process-
ing device that collects information from the environ-
ment through attached sensors or transmitters, sends
sensor reading and reports to the sink, and delivers re-
ceived control actions or actuation signals, stemming
from the remote controller through the WSAN, to the
plant.

 Server

WSAN

 DispatcherMiddleware

Monitoring Configuration Control

Sink

TCP/IP

Plant (MIMO)

Input

Output

Figure 1: System Architecture.

2.2 Local Multi-Agent System

The architecture is based on the multi-agent
paradigm, where each agent is responsible for a spe-
cific task. As shown in Fig. 2, each local node in-
cludes a set of agents for monitoring, safety control,
as well as for management and supervision purposes.
The following sections describe each local agents’
main features.

2.2.1 Master Agent

The main goal for this agent is to carry out exten-
sive management routines related to other subordinate
local agents, and to coordinate the communications
between the node and the sink. When this agent is
activated, it automatically launches dependent lower-
level agents (actuator node or sensor node agents, see
Fig. 2). This agent is also responsible for monitoring
the status of all local dependent agents and, in case
of an agent crash, the master will relaunch the corre-
sponding “thread”.

Master
Agent

#1

#2 #3 #4
Monitoring

Agent

Emergent
Control
Agent

Security
Agent

#5
Control
Agent

Sensor Node
Actuator Node

Figure 2: Local Multi-Agent System Architecture.

2.2.2 Monitoring Agent

This agent is responsible for collecting data from the
environment and for accommodating possible outliers
in raw data. The detection and accommodation of out-
liers is based on the approach proposed in (Cardoso
et al., 2012).

2.2.3 Security Agent

This agent is responsible for periodically check all
important variables in the system, as well as messages
structure. If any anomaly is detected, an alarm is trig-
gered and sent by the master agent to the user inter-
face. In addition, the system is switched to safe mode
operation.

2.2.4 Control Agent

The purpose of this agent is to send to the digital-to-
analog converter (DAC) control actions received from
the sink. This agent is also responsible for testing the
periodicity of control actions, through which a com-
munication breakdown is detected.

2.2.5 Safety Agent

The function of this agent is to maintain the system in
a safe operation mode, in case of communication link
breakdown, and controller’s malfunction or user er-
rors. This goal is achieved by defining a threshold for
normal operation in terms of system’s outputs. When
the safety agent detects that collected data are outside
the pre-specified bounds or no control actions have
been received from the sink in the corresponding sam-
pling interval, the system is switch to safe mode op-
eration, and a local control action computed based on
an on-off heuristic, while considering the most recent
reference signal received from the middleware.

Resilient�Supervision�System�over�WSAN�-�A�Distributed�Multi-Agent�Architecture

121

2.3 Multi-Agent Framework

The multi-agent framework relies on a collaborative
and sharing profile/approach, which is a necessary
condition to any distributed system. Each node incor-
porates a set of agents (see Fig. 2), including a mas-
ter agent responsible for communicating with the user
interface and with local agents, or even with other
WSAN nodes.

Each message comprises a header and a payload.
The header is composed of the sender and destination
addresses in the WSAN, message sequence number,
hops, and a control identifier. The message payload
(see Table 1) contains the Message Type: the mes-
sage can stem from the system’s application or from
a local agent; Node ID: denoting the node address;
Control ID: the command flag for local agents; Data
ID: data collected in the node ID; Agent ID: agent’s
identifier that will be launched, stopped or resumed;
Agent MSG: data provided by an agent.

Table 1: Messages Payload.

Type Node
ID

Control
ID

Data
ID

Agent
ID

Agent
MSG

2.3.1 Master Agent Framework

Table 2 shows the messages’ parameters received by
the master agent and sent by sink. When launching a
master agent, it is required the sampling time Ts and
the sigma factor for outliers detection in monitoring
agents (s f). In order to start an actuator agent, it
is necessary to send the sampling time Ts, the max-
imum level ¡u and minimum level ¡o to be used by
the safety agent. These values, excluding the sample
time, can be changed later on by sending new “Upload
Limits” and “Upload Sigma Factor”, through dedi-
cated messages.

The security agent parameters are defined inter-
nally in the master agent during the programming
node, and are not accessible by the user, for the sake
of the system’s security.

Table 2: Messages received by the Master Agent.

Sensor
Start Agent Ts s f

Upload Sigma Factor s f -
Actuator

Start Agent Ts ¡u ¡o
Upload Limits ¡u ¡o -
Control Action k u(k) r(k)

In order to implement the control action on the
plant, the sink sends a message to each actuator nodes,
comprising the input voltage, along with the current
reference for each of the tanks under control, namely
T1 and T2. These references will be used by the safety
control agent in case of communication breakdown.

When the master agent receives a “Start Agent”
#ID message, the corresponding local agent is
launched, which sends periodically messages to the
master agent reporting its operation state. If the mas-
ter agent does not receive periodically reports from a
running agent this agent is assumed to be “off” and
launched once again.

The messages sent by the master agent to the user
application interface via the sink node are presented
in Table 3. They include the security state y(k) of the
node and the accommodated reading y(k) in the case
of a sensor node, or the safe control action ue(k) in
case of an actuator node.

Table 3: Messages sent by the Master Agent.

Sensor
Send State k y(k) y(k)

Actuator
Send State k ue(k) y(k)

2.3.2 Monitoring Agent Framework

Monitoring agents collect the level of each tank
through the analog-to-digital converter (ADC) port to
which the level sensor is connected, and based on an
outlier detection and accommodation algorithm, pro-
posed in (Cardoso et al., 2012) each sample is accord-
ingly tested (see Algorithm 1). If a sample is tested
positive, it is replaced by the mean value of the over-
sampled time series, excluding those samples that are
outside the threshold limits (s f providing a way to
control threshold size).

2.3.3 Security Agent Framework

The security agent is responsible for checking the val-
ues of Ts, s f , ¡u, ¡o, y(k), u(k) and ue(k). This agent
has internally defined maximum and minimum val-
ues that these variables can take. Whenever they are
outside the admissible threshold an alarm message is
triggered and sent to the user interface. In addition,
the variable is adjusted to be within the pre-defined
limits. The structure of the messages sent and re-
ceived by the node and between agents is quite strin-
gent. If the security agent detects a different structure
a message error is triggered and sent to the user inter-
face, while the current message will be ignored (see
Table 4).

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

122

Algorithm 1: Monitoring Agent.

Input: f s � Sampling Frequency
f os � Oversampling Frequency
s f � Sigma Factor

1 T s 1 / f s; // sampling period
2 Tos 1 / f os; // oversampling period
3 while true do
4 ti GetTime; // initial time
5 i 0; // initial iteration
6 repeat // oversampling until next sample time
7 i i+1; // iteration
8 z[i] GetSample; // oversample
9 Sleep(Tos) // node sleep for Tos seconds

until GetTime� ti+Tos;
10 y GetSample; // sample
11 z[i+1] Mean(z); // expected value
12 Du z[i+1]+s f �STD(z); // upper

threshold
13 Dl z[i+1]�s f �STD(z); // lower

threshold
14 if y =2 [Dl;Du] then SendToMaster(y);

// the sample is not an outlier
15 else SendToMaster(z[i+1]); // outlier:

accommodated
end

Table 4: Security Agent Send Messages.

Variable Error code (y(k))
Ts 1
s f 2
¡u 3
¡o 4

y(k) 5
u(k) 6
ue(k) 7

Message structure 8

2.3.4 Control Agent Framework

The control agent is started by the master agent, from
which receives as configuration parameters the sam-
pling time and the initial control action. This agent
uses the sampling time to test the network for commu-
nication breakdown. If in a given sampling interval
the agent does not receive any control action the mas-
ter agent is “warned” and the safety agent will take
over the control of the system (see Algorithm 2).

Algorithm 2: Control Agent.

Input: T s � Timeout
u � Initial Control Action

1 SetADC (u) ; // dispatch to ADC the initial control
action

2 Time:timeout T s; // define timeout
3 Time:init 0; // define initial time
4 Time.start; // launch the Time counter
5 while true do
6 ev Event; // wait for new event
7 if ev = Timeout then // timeout event
8 Enabled Safety Agent;

end
9 if ev = NewControlAction then // control

action received event
10 u GetControlAction;
11 SetADC (u); // dispatch to ADC the control

action
12 Time:reset; // reset the counter

end
Sleep(T s)

end

2.3.5 Safety Agent Framework

This agent receives the level of the tank provided by
the corresponding sensor node and implements a re-
lay controller (on/off). Furthermore, if the liquid level
in the controlled tanks exceeds the prescribed bounds
this agent also takes over the control system (see Al-
gorithm 3).

3 CASE STUDY

3.1 Test-bed Description

The test-bed consists of a three-tank system (Fig. 3),
a remote desktop computer, where the user interface
and controller is running, six Crossbow TelosB nodes
(five for tanks and one sink). The main goal is to mon-
itor and control the liquid level in the tanks T1 and T2,
while maintaining the system under safety operation
mode, in case of faults events.

The AMIRA c DTS 200 benchmark three-tank
system (Fig. 3) comprises three plexiglas cylindrical
tanks with identical cross-section supplied with dis-
tilled water. Liquid levels, namely h1, h2 and h3 are
measured by piezoresistive transducers. The middle
tank T3 is connected to the other two tanks by means
of circular cross section pipes provided with manu-

Resilient�Supervision�System�over�WSAN�-�A�Distributed�Multi-Agent�Architecture

123

Algorithm 3: Safety Agent.
Input: ¡u �Maximum Level

¡o �Minimum Level
T s �Waiting time
f lag � Flag that indicates

communication breakdown
1 Dt ; // level threshold
2 Du ; // control action increment
3 while true do
4 y GetLevel; // get level

u GetControlAction; // get last control
action
r GetRefrence; // get last reference

5 if y > ¡u�Dt then SetADC (u�Du);
// decrease pump

6 else if y < ¡o +Dt then SetADC (u+Du);
// increase pump

7 else if f lag = 1 then // communication
breakdown

if y > r+Dt then SetADC (u�Du);
// decrease pump
if y < r�Dt then SetADC (u+Du);
// increase pump

end
8 else disable emergent control; // normal state

end

Figure 3: Three-tank system.

ally adjustable ball valves. In the tank T2 it is located
the main outlet of the system, which is directly con-
nected to the collecting reservoir by means of a cir-
cular cross-section pipe provided with an outflow ball
valve. This system has two pumps to circulate water
from the bottom reservoir to tanks T1 and T2.

In what the WSAN is concerned, it is built in with
Crossbow TelosB (TPR2400) sensor nodes, which are
ultra-low power wireless devices. These nodes lever-
age industry standards like USB and IEEE 802.15.4
to interoperate seamlessly with other devices. Each
TelosB node has available analogue and digital ports,
to which sensors and actuators are attached. The op-
erating system used in WSAN programming is based
on de Contiki OS. This operating system has been

written in C language with support for dynamic load-
ing and replacement of individual programs and ser-
vices. Additionally, it was built around an event-
driven kernel, but provides optional preemptive multi-
threading, which can be applied to individual pro-
cesses (Dunkels et al., 2004).

In the case of the present setup, three nodes are
configured as sensors, in order to collect tanks’ lev-
els (h1 h2 and h3), while two other nodes are used as
actuators, associated with pumps P1 and P2. In ad-
dition a sixth node is used as a sink/gateway. This
node is attached via USB port to the remote desktop
computer, thus allowing its communication with the
WSAN nodes. As can be seen in Fig. 4 these nodes
are hierarchically arranged in a N-5 topology, but al-
lowing peer-to-peer communication between sensor
and actuator nodes associated with tank T1 and T2.

Actator
u1

Sensor
h1

Sensor
h3

Sensor
h2

Actuator
u2

Sink

Figure 4: Logical topology.

Finally, the remote controllers were implemented
based on a PID-Fuzzy controller (see (Januário et al.,
2013)), being the control actions and readings deliv-
ered through the WSAN.

3.2 Experimental Results

This section is devoted to assess the proposed
methodology in dealing with vulnerabilities on the su-
pervision systems over WSANs, as mentioned in Sec-
tion 1.

3.2.1 Outliers Accommodation

The first experiment was designed to assess the ben-
efits of outliers accommodation for the supervision
system resilience. In this context, readings have been
taken from sensor nodes’ ADCs, at the frequency of
1 Hz, and using also a USB data acquisition board
in parallel, namely a NI6008, from National Instru-
ments, through which samples have been taken at
the same discrete times. A root mean square of er-
ror (RMSE) metric (1) was subsequently compute to
compare three different s f against the raw data. Ta-

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

124

ble 5 shows the corresponding results.

RMSE =

s
å

N
k=1 [yn(k)� yb(k)]

T [yn(k)� yb(k)]

å
N
k=1 yb(k)

T yb(k)
(1)

with yn the sensor reading sent through the WSAN
and yb the reading sampled via the USB data acquisi-
tion board.

As can be observed in Table 5, the RMSE mea-
sure drops with the decrease of the underlying sigma
factor, which is in line with what was expected as the
thresholds depends on the sigma factors.

Table 5: Performance metric for the tree-tank system.

s f - null s f �2 s f �1:5 s f �1
Tank 1 0.0241 0.0237 0.0223 0.0182
Tank 2 0.0398 0.0396 0.0386 0.0379
Tank 3 0.0321 0.0310 0.0302 0.0297

3.2.2 Safety Agent Operation

Figure 5 and Figure 6 show the liquid levels in tanks
T1 and T2 when a safety control agent is in operation.
In this case it was configured to a minimum level of
0.15 % and a maximum level of 0.45 %. As can be ob-
served, the local safety agent does not allow the liquid
level outside the [0:15; 0:45] % even if the reference
signal for the control system is set outside. Inside the
admissible system’s outputs the safety agent is in idle
operation mode.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

Time [s]

W
at

er
 le

ve
l [

%
]

Output WSN
Reference

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

Time [s]

W
at

er
 f

lo
w

 [
%

]

Emergent Control Signal
Control Signal

Figure 5: MIMO system working out of limits Tank 1.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

Time [s]

W
at

er
 le

ve
l [

%
]

Output WSN
Reference

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

Time [s]

W
at

er
 f

lo
w

 [
%

]

Emergent Control Signal
Control Signal

Figure 6: MIMO system working out of limits Tank 2.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

Time [s]

W
at

er
 le

ve
l [

%
]

Fail Zone

Fail Zone

Output WSN
Reference

0 100 200 300 400 500 600

0

0.5

1

1.5

Time [s]

W
at

er
 f

lo
w

 [
%

]

Emergent Control Signal
Control Signal

Figure 7: Communication faults: Tank 1.

In the event of a communication link breakdown,
from the sink to the actuator node, the safety agent is
able to deal transparently with this situation, by main-
taining the tank level in the vicinity of the last refer-
ence received. Figure 7 refers to the case of commu-
nication loss (fail zone) between 150 and 250 second
and from 350 to 450 second. As can be observed, the
safety agent maintains the tank level around the last
reference signal received from the sink node by means
of an on/off control approach, and without exceeding
the prescribed admissible level limits.

Resilient�Supervision�System�over�WSAN�-�A�Distributed�Multi-Agent�Architecture

125

4 CONCLUSIONS

This paper addressed the problem of supervision over
Wireless Sensor and Actuator Networks from the re-
silience point of view, namely, focusing on outliers
detection and accommodation, safety operation and
breakdown communication links. The proposed ap-
proach was based on a hierarchical multi-agent sys-
tem framework deployed in wireless nodes. Out-
liers are detected using statistical based techniques,
along with an oversampling technique prior to peri-
odic sensor reading, while the Wireless Sensor and
Actuator Networks security is achieved by periodi-
cally “scanning” the control variables and messages
structure. Breakdown communication faults and con-
troller malfunction have also been considered. Re-
sults from experiments on a test-bed comprising a
benchmark three-tank system and a WSAN built with
Crossbow TelosB nodes reveal the feasibility and rel-
evance of the proposed framework. Finally, it should
be mentioned that this work is still under progress.
Further developments will include security policies
against malicious attacks and other features, such as
self awareness in heterogeneous environments.

ACKNOWLEDGEMENTS

Januário, F. acknowledge Fundação para a Ciência
e Tecnologia (FCT), Portugal for the Ph.D. Grant
SFRH/BD/85586/2012. This work has been partially
supported by iCIS-Intelligent Computing in the Inter-
net of Services, Project CENTRO-07-ST24-FEDER-
002003.

REFERENCES

Cardoso, A., Santos, A., Nunes, G. B., and Gil, P. (2012).
A multi-agent approach for outlier accommodation in
wireless sensor and actuator networks. Controlo2012
- 10th Portuguese Conference on Automatic Control.

Cerrada, M., Cardilho, J., Aguilar, J., and Faneite, R.
(2007). Agents-based design for fault management
systems in industrial processes. In Computers in In-
dustry.

Chen, M., Gonzalez, S., and Leung, V. C. M. (2007). Appli-
cations and design issues for mobile agents in wireless
sensor networks. Wireless Communications, 14:20–
26.

Dunkels, A., Grönvall, B., and Voigt, T. (2004). Contiki
- a lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors, Tampa,
Florida, USA.

Freitas, E. P., Heimfarth, T., Ferreira, A. M., Wagner, F. R.,
Pereira, C. E., and Larsson, T. (2009). An agent
framework to support sensor networks setup and ad-
aptation. Computer Science and Information Technol-
ogy, pages 619–626.

Garcia, H. E., Lin, W., and Meerkov, S. M. (2012). A re-
silient condition assessment monitoring system. In
5th International Symposium on Resilient Control Sys-
tems (ISRCS).

Jamont, J. P. and Occello, M. (2007). Designing embedded
collective systems: The diamond multiagent method.
Proceedings of the 19th IEEE International Confer-
ence on Tools with Artificial Intelligence, 2:91–94.

Januário, F., Santos, A., Lucena, C., Palma, L., Cardoso,
A., and Gil, P. (June 2013). Outliers accommodation
in fuzzy control systems over wsan. In 5th Interna-
tional Conference on Intelligent Decision Technolo-
gies (KES-IDT), Portugal.

Mendes, M. J. G. C., Santos, B. M. S., and Costa, J. S.
(2009). Multi-agent platform and toolbox for fault tol-
erant networked control systems. Journal of Comput-
ers, pages 303–310.

Opina, A. P., Canola, A. M., and Carranza, D. O. (2009).
Integration model of mobile intelligent agents within
wireless sensor networks. In IEEE Latin-American
Conference on Communications.

Paolucci, M. and Sacile, R. (2005). Agent-based Manufac-
turing and Control System: New Agile Manufactur-
ing Solutions for Achieving Peak Performance. CRC
Press.

Rieger, C., Zhu, Q., and Basar, T. (2012). Agent-based cy-
ber control strategy design for resilient control sys-
tems: Concepts, architecture and methodologies. In
5th International Symposium on Resilient Control Sys-
tems (ISRCS), pages 40–47.

Rieger, C. G. and Villez, K. (2012). Resilient control sys-
tem execution agent (recosea). In 5th International
Symposium on Resilient Control Systems (ISRCS).

Tirkawi, F. and Fischer, S. (2009). Generality challenges
and approaches in wsns. In I. J. Communications, Net-
works and System Sciences.

Xiong, F. Y. and Bai, L. (2010). Interoperable wireless sen-
sor network model using multi-agent-based middle-
ware. International Symposium on Intelligent Signal
Processing and Communication Systems,, pages 1–4.

Zang, Y., Meratnia, N., and Havinga, P. (2010). Outlier
detection techniques for wireless sensor networks: A
survey. IEEE Communnications Surveys & Tutorials,
pages 159–170.

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

126

