
Homogeneous Wireless Sensor Network Programming
using MuFFIN

Rui Pires, Francisco Martins and Dulce Domingos
Universidade de Lisboa, Faculdade Ciências & Lasige, Lisbon, Portugal

Keywords: Sensor Networks, Middleware, Virtual Machines, Remote Sensor Reprogramming.

Abstract: Web services have been used as an homogeneous interface between client applications and sensor networks.
The MuFFIN middleware makes possible for a client application to remotely (re)program sensor networks.
However, this (re)programming is dependent on the characteristics of the hardware or of the programming
languages provided by manufacturers. To generalize this feature, we propose a middleware extension to
include the execution of code on behalf of sensor devices in case they are not (re)programmable. As a proof of
concept, we use the MuFFIN middleware and the Callas sensor programming language together with its virtual
machine. Additionally, we extend the MuFFIN with a component that supports the communication between
two wireless sensor networks. This way, messages can flow from one network to another one without the
intervention of the client application, reducing the number of messages exchanged between sensor networks
and client applications.

1 INTRODUCTION

Sensor networks consist of a set of interconnected de-
vices that can gather information about the environ-
ment that surrounds them. Due to its sensing capa-
bilities, these networks are widely used in various ar-
eas such as security, defense, traffic management, and
process automation.

Given the wide heterogeneity of sensors available
in the market, Web services have been used to provide
a uniform interface to interact with sensors. These
Web services may be available in the sensors them-
selves or through middleware systems (Zeng et al.,
2011). MuFFIN is an example of this kind of mid-
dleware, which also provides a Web service for re-
mote sensor (re)programming, when this functional-
ity is supported either by the sensor’s hardware or via
a software layer added to the sensor devices (Valente,
2011).

In order to make available the reprogramming ca-
pability for all kinds of sensor devices, we propose to
extend the middleware system to include the ability to
execute code in place of the sensors that are not repro-
grammable. Additionally, to address the communica-
tion between sensor networks, we developed a new
middleware component that handles the routing and
the conversion of messages. This way, it is possible
to reduce the number of exchanged messages between

sensor networks and high-level applications, decen-
tralizing the decision-making process to the middle-
ware or to sensor networks (Haller et al., 2008).

The paper is organised as follows. Section 2 de-
scribes a use case scenario and we present related
work in section 3. Section 4 describes the approach
for extending MuFFIN, whereas Section 5 reports on
the solution we propose to establish communication
between sensor networks at the middleware system.
Finally, sections 6 and 7 discuss an assessment we
made to the middleware and draw our conclusions,
respectively.

2 MOTIVATION SCENARIO

We present a use case scenario that is used along the
paper: a temperature and humidity control system of
an historical documents archive. To this end, there
exists a sensor network that monitors both the tem-
perature and the humidity of the rooms and another
network of actuators that controls the air conditioning
equipment. The monitoring application defines the
behavior of the sensors in order to be notified when
the temperature values are outside the range of 16oC
to 20oC or the humidity is outside the range of 45%
to 60%. Due to an infiltration, there is the need to
change the behavior of the sensors in order to moni-

127Pires R., Martins F. and Domingos D..
Homogeneous Wireless Sensor Network Programming using MuFFIN.
DOI: 10.5220/0004730501270132
In Proceedings of the 3rd International Conference on Sensor Networks (SENSORNETS-2014), pages 127-132
ISBN: 978-989-758-001-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



tor the humidity in regular time intervals and to detect
in advance if the dehumidification system is powerful
enough to handle this exceptional situation. For that,
sensors need to be reprogrammed. With the extension
of the MuFFIN middleware proposed in this paper,
this reprogramming can be performed regardless of
the capabilities of the sensors.

3 RELATED WORK

We group the related literature on middleware tech-
nologies and on virtual machines. On what concerns
middleware, the Sensor Web Enablement standards
(SWE) from the Open Geospatial Consortium (OGC)
define a set of interfaces and metadata aimed at hiding
the details of communication and the heterogeneity
of sensors. The Sensor Event Service standard (SES)
manages subscriptions and filters; the Sensor Obser-
vation Service standard (SOS) provides a standard-
ized way to access data from observations of the de-
vices; the Observation and Mesurement standard (O&
M) provides a schematic representation of the mea-
surements and observations received from sensors;
and SensorML specifies models and XML schemas
to describe sensor networks.1

Existing middleware systems provide sensor in-
formation through web services and interact with
sensor networks through gateways, which encapsu-
late sensor specificities (Valente, 2011; Kansal et al.,
2007; Bröring et al., 2011). In particular, the Mid-
dleware Framework For the Internet of Things (MuF-
FIN) (Valente, 2011; Valente and Martins, 2011) fol-
lows the SWE standard, including SOS for making
available sensor data to applications, the O&M for
storing the data from sensor networks, and the Web
Service Notification (WS-N) (Huang and Gannon,
2006) for notifying applications via web services.
MuFFIN is implemented on top of FuseESB2 and its
modules follow the publish/subscribe paradigm. Fig-
ure 1 depicts the MuFFIN architecture.

As for virtual machines, Squawk (Simon and Ci-
fuentes, 2005) is a Java Virtual Machine (JVM) de-
signed to run on devices without an operating system
installed, having been tested on SunSPOT devices.
This virtual machine has the abilities to run multiple
applications simultaneously and to migrate applica-
tions to other devices as long as they run the same
virtual machine. Maté (Levis and Culler, 2002) is
a communication system based on a virtual machine

1Open Geospatial Consortium —
http://www.opengeospatial.org/

2Fuse ESB — http://fusesource.com/products/enterprise-
servicemix/

Figure 1: MuFFIN architecture.

for sensor networks, breaking complex programs into
small programs in order to reduce energy costs asso-
ciated with the transmission of programs. This vir-
tual machine runs on TinyOS and only requires 1kb
of RAM and 16KB of memory for instructions.

At last, the Callas Virtual Machine (CVM) runs
applications developed in the Callas programming
language (Martins et al., 2010), abstracting the hard-
ware and the software installed on the devices.
This virtual machine is available for Arduino and
SunSPOT devices. The Callas programming lan-
guage is strongly typed, avoiding certain kind of run-
time errors and enabling the reprogramming of sen-
sors remotely. This allows the remote updates to the
system without the need to physically access the de-
vices. We have implemented a proof of concept for
our proposal in MuFFIN, running the Callas Virtual
Machine.

4 MuFFIN WITH THE CALLAS
VIRTUAL MACHINE

This section presentes an extension to MuFFIN that
makes it possible to reprogram sensor devices homo-
geneously. We start by describing how MuFFIN ex-
ecutes code on behalf of real sensor devices and then
present how it simulates the communication between
simulated sensors.

MuFFIN allows for remote reprogramming of
sensor networks via web services, in case sensor de-
vices support this functionality. In order to make such
a functionality available for non-reprogrammable net-
works, we have integrated the CVM into MuFFIN
(MuFFIN-CVM component) to be able to run code on
behalf of sensor devices that are not reprogrammable.
Figure 2 presents the architecture of the MuFFIN-
CVM component.

When the reprogramming web service is invoked,
MuFFIN sends the code to the sensor network via its
gateway. If the network is not reprogrammable, the
gateway sends the code to the MuFFIN-CVM com-

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

128



Figure 2: MuFFIN extended with the CVM module.

ponent, which executes it. Additionally, it is neces-
sary to inform the MuFFIN-CVM about the number
of sensors that constitute the network. To do this, we
changed the installation process of the gateway to in-
clude a SensorML file with the description of the net-
work to run virtually. This information is sent to the
MuFFIN-CVM together with the code.

Instead of creating an instance of the CVM to run
each virtual sensor, MuFFIN executes a single CVM
instance and creates an object per virtual sensor to
hold its execution state. Once the MuFFIN-CVM ex-
ecutes code on behalf of real sensor devices, it is nec-
essary to simulate system calls, such as the observa-
tions real sensors make and the receiving and sending
of messages to the network. To obtain the observation
values, each CVM state instance has a unique identi-
fier that refers to a single real sensor device. Then,
with this key we fetch the corresponding observations
from the database, which is stored when the actual
readings from the real sensor devices are sent to the
middleware.

During the execution of each virtual sensor, the
data it produces (the result of internal sensor compu-
tation) is sent via the gateway of the virtual network
like any other real network does. This allows MuF-
FIN to treat all networks homogeneously. This way,
for instance, features for processing information (such
as data filters or topic subscriptions) are also available
for virtual networks.

For simulating the sending and receiving of mes-
sages we use a circular buffer, wherein each message
contains (1) the information sent by sensors (the pay-
load); (2) an identifier of the sensor emitting the mes-
sage that ensures that the message is not delivered to
itself; (3) a message identifier that prevents each sen-
sor from reading repeated messages; and (4) the tar-
get port the message is addressed to, in order to model
various communication channels. The use of a circu-

lar buffer also simulates message loss, since if there
is a large number of messages in the “network”, a
message in the buffer can be overwritten before be-
ing read.

5 COMMUNICATION BETWEEN
SENSOR NETWORKS: THE
THINGSGATEWAY -
COMMUNICATION
COMPONENT

The motivation scenario presented in Section 1 men-
tions two sensor network: one to monitor the temper-
ature and humidity of the rooms, and another that ac-
tuates on an equipment that has the ability to control
these variables. Considering that these networks can-
not communicate directly with each other (e.g., they
use different communication equipments), their coor-
dination would have to be performed at the applica-
tion level. In this section we present a MuFFIN exten-
sion that supports the communication between sensor
networks. The main challenge of this new feature is
the conversion of sensor networks protocols.

5.1 Message Protocol Converters

In order to support communication between networks
at the middleware level, we developed a system for
converting messages from one protocol to another, in
case network protocols do not match. The conver-
sion takes the message received from the source net-
work gateway, respecting the protocol of the source
network, and directs the message though a sequence
of converters that cast it to match the protocol of the
destination network. Then, the final step routes the
message to the destination network gateway to be de-
livered to the devices of that network. Notice that the
conversion process may generate new messages to, or
prevent some messages from reaching, the destination
network in order to follow its protocol.

To solve the problem of protocol conversion be-
tween networks, we initially considered two ap-
proaches: (1) to use a generic protocol as an inter-
mediary between source and destination protocols,
(2) use of specific protocol converters for each pair
of networks. The first approach poses the problem
of finding such a generic protocol, while the second
requires a converter for each pair of distinct proto-
cols. Thus we choose to extend MuFFIN to allow the
installation and composition of converters in such a
way that converters can be used in adapting differ-
ent protocols and, if desired, can be used to convert

Homogeneous�Wireless�Sensor�Network�Programming�using�MuFFIN

129



<?xml version="1.0" encoding="UTF -8" ?>

<deploy>

<description>Example of a converter</description>

<instanceSource id="1"/>

<instanceDest id="2"/>

<converters>

<converter serviceId="3"/>

<converter serviceId="1"/>

</converters>

<externalService>

http://www.lasige.fc.ul.pt/externService

</externalService>

</deploy>

Figure 3: XML example of the association between net-
works.

to a generic protocol as well. This way, we benefit
from the advantages of both approaches, while avoid-
ing their limitations. For examples, we can create
a converter from network A to network C by com-
posing converters from network A to network B and
from network B to the network C. These elementary
converters are coded as Java classes that implement a
common interface.

5.2 Interconnecting Converters

The association between converters and gateways is
defined by an XML file. This file includes the source
and destination gateway identifiers and the converters
to be used. Additionally, we can set a Uniform Re-
source Identifier (URI) of an external entity, whose
explanation is delayed until section 5.3. The middle-
ware creates an instance of each converter specified
in the XML file, which are interconnected in the se-
quence described by the file. Figure 3 presents an ex-
ample of an XML file that associates gateways 1 and 2
to converters 3 and 1.

The communication between the source gateway,
converters and the destination gateways is established
using the ActiveMQ tool, that follows a publish/sub-
scribe paradigm. Thus, converters subscribe the infor-
mation sent by the source network and, after process-
ing each message, publish them so that another con-
verter will pick it. At the end of the conversion path,
the destination gateway subscribes the last converter
and gets the message ready to be sent to its network.

Figure 4 illustrates the motivation scenario pre-
sented in section 1, in which it is necessary to es-
tablish communication between the sensor network
(represented by Gateway origin 1) and the actuators
network (represented by Gateway destination 2). For
such, converters C1 and C3 are installed and instanti-
ated in MuFFIN, which can adapt the protocols used
by the networks. Each message sensor network send

Figure 4: ThingsGateway-Communication component.

arises at Gateway origin 1 and then follows through
convertes C1 and C3, reaching Destination gateway
2—the actuator network.

The communication established between gate-
ways is richer than just a point to point commu-
nication, i.e., there can be a communication from
one source gateway to more than one destination
gateways, even in the presence of different destina-
tion protocols. Figure 4 illustrates the scenario just
described (one to many communication) in which
Source gateway 1 sends information to Destination
gateway 2 and to Destination gateway 3.

5.3 External Entity

There is also a mechanism that allows the use of exter-
nal entities, so that when it is not possible to convert
the data received from a network using the installed
converters, the middleware can use an external ser-
vice that can perform the conversion (e.g., converting
a Java object to a Callas module). This conversion
requires a JVM (to interpret the Java bytecode) and
the backend of the Callas compiler (to synthesise the
Callas module), which are definitely not to be part of
a middleware system. This entity is specified by an
URI upon the instantiation of an external converter.
The user needs to guarantee that the external entity
will perform the conversion according to what is re-
quired.

6 EVALUATION

The middleware is installed in the Fuse ESB applica-
tion server. We use several services from Fuse ESB,
in particular, ActiveMQ is used in the communication
between MuFFIN components and gateways. MuF-
FIN is deployed on a virtual machine inside Virtual
Box that virtualizes an Intel(R) Core(TM) Duo E8400
@ 3.00GHz (1 CORE) CPU, 1000 Mb of RAM, us-
ing the Linux Ubuntu 12.04 Server. This section fo-
cuses on the performance test results of the new com-
ponents, thus not taking into account the time mes-
sages take from the a sensor network to its gateway

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

130



Table 1: Results for the performed tests.

Num. sensors 10 50 100 200 500 1000 1500 2000
Boot time
Average (ms) 11.08 33.22 64 130.73 351.38 795.66 1167.1 1625.01
Std. dev. 1.107 1.685 2.471 3.703 19.972 44.405 64.757 67.251
Boot and processing times
Average (ms) 20.69 46.22 78.69 160.56 450.96 955.37 1448.15 2025.14
Std. dev. 3.78 3.196 4.417 5.761 13.685 24.534 37.038 58.736

and vice versa.

Our tests to the CVM-muffin component comprise
the time to boot a virtual sensor network, accounting
for the period of time that mediates from the arrival
of the Callas code to the beginning of code execution
by some device on the virtual network, and the time
to boot the network plus the reading of a sensed value
(stored in the database). In both cases, to determine
how the number of devices influence the processing
time, we simulated sensor networks with different di-
mensions (10, 50, 100, 200, 500, 1000, 1500, and
2000 nodes).

To evaluate the ThingsGateway-Communication
component we performed two types of tests: (1) net-
works use the same language/protocol, without need-
ing message conversion and (2) networks need to con-
vert messages from a string to an integer value. Since
we only want to evaluate new MuFFIN extensions,
we did not perform tests with external conversion en-
tities.

Figure 5 shows the performance of the MuFFIN-
CVM component, considering the simulation of the
startup of a network with several nodes and the startup
of a network with several nodes where each sensor
also performs an observation, i.e., a read operation to
the database. For each type of network, we repeated
the tests 100 times. The figure shows that the boot
time and start-up of networks up to 200 nodes are
almost identical. However, for networks with more
than 500 nodes, processing begins to take longer, but
in both cases the growth is linear. Table 1 has their
average values and standard deviations.

Figure 6 shows the results of measuring the time
taken for routing messages from one gateway to an-
other. We performed 100 measurements that resulted
in an average value of 11.8 ms (with a standard de-
viation of 1.13) for messages sent without adaptation
(left bar). When using an adapter for adjusting mes-
sages, we get an average value of 12.2 ms (with a
standard deviation of 1.17) (right bar). The obtained
values show that, for this particular case, the cost of
adapting a message is minimal (3.27%) when com-
pared to the routing cost.

Figure 5: Sensor startup performance.

Figure 6: Message routing time.

7 CONCLUSIONS

Providing the sensor remote reprogramming function-
ality depends on the hardware characteristics or on the
programming languages. In this paper, we present an
extension to the MuFFIN middleware for generalizing
this feature, making it available through web services.
To meet this goal, we incorporated the Callas virtual

Homogeneous�Wireless�Sensor�Network�Programming�using�MuFFIN

131



machine into MuFFIN. Additionally, we also devel-
oped a middleware component that supports the com-
munication between different sensor networks, avoid-
ing messages to be routed to client applications.

With these two middleware extensions, MuFFIN
can support the decomposition and distribution of
business processes through sensor networks. Indeed,
by converting to Callas code the business logic sensor
networks will execute, we can use MuFFIN to send
it to sensors. When sensors do not have the CVM,
MuFFIN executes it on their behalf. If business pro-
cesses foresee direct communication between sensor
networks, MuFFIN also ensures that communication,
in case they are not directly connected.

As future work, we plan to adapt MuFFIN to run
on devices with limited computing capabilities, such
as the Raspberry Pi, so it can be used in on-board ve-
hicle technology, providing an interface to intelligent
transportation system.

ACKNOWLEDGEMENTS

This project is supported by portuguese Founda-
tion for Science and Technology (FCT) through the
Macaw project (PTDC/EIA-EIA/115730/2009) and
the LaSIGE multi-year funding programs (UI 408 -
2011-2013, ref PEst-OE/EEI/UI0408/2011)

REFERENCES

Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding,
T., Stasch, C., Liang, S., and Lemmens, R. (2011).
New generation sensor web enablement. Sensors,
11(3):2652–2699.

Haller, S., Karnouskos, S., and Schroth, C. (2008). The
Internet of Things in an Enterprise Context. In Pro-
ceedings of FIS 2008, volume 5468 of LNCS, pages
14–28. Springer.

Huang, Y. and Gannon, D. (2006). A comparative study of
web services-based event notification specifications.
In ICPP Workshops, pages 7–14. IEEE Computer So-
ciety.

Kansal, A., Nath, S., Liu, J., and Zhao, F. (2007).
SenseWeb: an infrastructure for shared sensing. IEEE
MultiMedia, 14(4):8–13.

Levis, P. and Culler, D. (2002). Maté: a tiny virtual ma-
chine for sensor networks. SIGOPS Oper. Syst. Rev.,
36(5):85–95.

Martins, F., Lopes, L., and Barros, J. (2010). Towards the
Safe Programming of Wireless Sensor Networks. In
Proceedings of PLACES’09, volume 17 of EPTCS.

Simon, D. and Cifuentes, C. (2005). The squawk virtual
machine: Java on the bare metal. In Proceedings of
OOPSLA’05. ACM Press.

Valente, B. and Martins, F. (2011). A middleware frame-
work for the internet of things. In Proceedings of
AFIN 2011, volume 57, page 139 to 144.

Valente, B. A. L. (2011). Um middleware para a Internet
das coisas. Master’s thesis, Universidade de Lisboa,
Faculdade de Ciências.

Zeng, D., Guo, S., and Cheng, Z. (2011). The web of things:
A survey (invited paper). JCM, 6(6):424–438.

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

132


