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Abstract: Linear discriminant analysis (LDA) is widely used for classification of myoelectric signals and it has been 
shown to outperform simple classifiers such as k-Nearest Neighbour (kNN). However the normality 
assumption of the LDA may cause its performance to decrease when the distribution of the feature space is 
far from Gaussian. In this study we investigate whether nonparametric discriminant (NDA) projections in 
combination with kNN classifiers can significantly decrease the classification error. Data sets based on both 
surface and intramuscular electromyography (EMG) were used in order to solve classification problems of 
up to 9 classes, including simultaneous movements. Results showed that in all data sets, the classification 
error was significantly lower when using NDA projections compared with LDA. 

1 INTRODUCTION 

Linear Discriminant Analysis (LDA) is widely used 
in classification of myoelectric signals for prosthetic 
control. This is due to the fact that it is 
computationally efficient and has been proven to 
perform similarly to more advanced techniques 
especially when the feature set is optimized 
(Hargrove et al. 2007, Scheme et al. 2011). LDA 
assumes that all classes of a training set have a 
Gaussian distribution with a single shared 
covariance, thus parameterizing it using the mean 
and standard deviation only. When this assumption 
is fulfilled and in case of simple classification 
problems (limited number of classes), LDA provides 
great performance even during real-time control 
(Scheme et al. 2013). However in the case of more 
complex classification problems, the performance of 
LDA decays (Kamavuako et al. 2013). Several 
extensions to the classical LDA have been proposed 
in the literature such as Direct LDA (Yu and Yang, 
2001), null space LDA (NLDA) (Chen et al. 2000), 
orthogonal LDA (OLDA) (Ye 2005), uncorrelated 
LDA (ULDA) (Ye et al. 2004), confidence base 
LDA (Scheme et al. 2013), and so on. 

Furthermore because LDA uses Fisher 
projection, the actual number of features used is 

bounded by the number of classes minus one. 
Nonparametric discriminant (NDA) analysis 
excludes the Gaussianity assumption; however it 
requires a free parameter to be specified by the user, 
which is the number of k- nearest neighbors (kNN). 
NDA also removes the constraint on the number of 
retained features. The determination of the kNN 
makes it useful to be used in combination with k-
Nearest Neighbour classifier as previously shown 
for face recognition (Li et al. 2009). This study 
investigates whether the use of NDA can improve 
the classification accuracy of myoelectric signals.  

2 BACKGROUND 

Nonparametric discriminant analysis (Fukunaga and 
Mantock, 1983) is an extension of LDA originally 
proposed by Fisher (Fisher, 1936). We will refer to 
feature projection using LDA as Fisher discriminant 
analysis (FDA). In this section FDA and two 
versions of NDA are described. From a feature 
extraction perspective, discriminant analysis is a tool 
based on a criterion J and two square matrices ܵ 
and	ܵ௪. These matrices generally represent the 
scatter of sample vectors between different classes 
for	ܵ, and within a class for ܵ௪.  
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2.1 Fisher Discriminant Analysis 

FDA uses the parametric form of the scatter matrix 
based on the Gaussian distribution assumption. The 
within-class and between-class scatter matrices are 
used to measure the class separability. If 
equiprobable priors are assumed for classes, then 

ܵ௪ ൌ  ሺݔ െ ሻߤ ∙ ሺݔ െ ሻ்ߤ
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where ߤ denotes the mean of the class ܥ, and ߤ 
denotes the global sample mean.   

The FDA is defined as the linear function ்ܹݔ 
that maximizes the ratio of the determinant of 
between-class matrix to that of the within-class 
matrix as given in Eq. (3), which is mathematically 
equivalent to the leading eigenvectors of ܵ௪ିଵܵ. 
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்ܹܹܵ
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The number of extracted features is c – 1, because 
the rank of Sb is at most c – 1. The solution provided 
by FDA is blind beyond second-order statistics. So 
we cannot expect it to accurately indicate which 
features should be extracted to preserve any complex 
classification structure, especially for non-Gaussian 
distributions. Furthermore because it assumes a 
homogeneous variance and only the centers of 
classes are taken into account for computing 
between-class scatter matrix, it fails to capture the 
boundary structure of classes effectively, which has 
been shown to be essential in classification 
(Fukunaga, 1990). 

2.2 Nonparametric Discriminant 
Analysis 

Fukunaga and Mantock (1983) proposed a 
nonparametric method for discriminant analysis in 
an attempt to overcome the limitations of FDA for a 
two-class problem. In NDA the between-class 
scatter Sb is of a nonparametric nature. This scatter 
matrix is generally full rank, thus loosening the 
bound on extracted feature dimensionality. For 
myoelectric control purposes, discrimination 
between many classes is usually desired. Li et al. 
(2009) proposed an extension of the NDA to a 
multiclass problem for face recognition as given in 
Eq. (4). We will refer to this as NDA because only 

the Sb is of nonparametric nature.  
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where ߱ሺ݅, ݆, ݈ሻ is the value of the weighting 
function defined as  
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and ݔ
 denotes the ݈௧ feature vector of class ݅,α is a 

parameter ranging from zero to infinity which 
controls the changing speed of the weight with 
respect to the distance ratio. ݀ሺݒଵ,  ଶሻ is theݒ
Euclidean distance between two vectors. The local 
kNN mean ݉൫ݔ

൯ is defined by  
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where ܰ ܰሺݔ
, ݆ሻ is the ௧ nearest neighbor from 

class ݆ to the feature vector ݔ
.  

The weighting function ߱ሺ݅, ݆, ݈ሻ approaches 0.5 for 
samples near the classification boundary and zero 
for samples far away from the classification 
boundary. 

For NDA, the within-class matrix still has the 
same form as FDA. Furthermore the NDA uses a 
simple local mean instead of all the selected kNN 
samples to compute the between-class scatter matrix 
without considering the fact that different kNN 
points contribute differently to the construction of 
between-class scatter matrix (Li et al., 2009). Li et 
al. (2009) proposed another extension of the NDA, 
referred to as nonparametric feature analysis (NFA). 
In NFA, the new nonparametric within-class scatter 
matrix and between-class scatter matrix are given as  
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where the weighting function in (5) is redefined as  
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In both cases (NDA and NFA), after computing the 
ܵ௪ and ܵ௪ே or ܵ௪ேி and ܵ

ேி the final NDA or 
NFA features are eigenvectors of the matrix 
ܵ௪ିଵ ∙ ܵ௪ே or ሺܵ௪ேிሻିଵ ∙ ܵ௪ே for NDA and NFA 
respectively. Contrary to FDA, which can only 
extract at most c – 1 discriminant features, the NDA 
and NFA inherently overcome the limitation by 
making use of all samples in the construction of 
between-class scatter matrix instead of using only 
the class centers. Thus, for myoelectric 
classification, optimal feature projections can be 
found by tuning the following three parameters: the 
number of local samples (kNN), the weighting 
function parameter (α) and the numbers of retained 
features (NRF) after projection as a means of 
dimensionality reduction. 

2.3 K-Nearest Neighbour Classifier 

The NDA and NFA utilize information from the k-
nearest neighbors (kNN) in the construction of the 
scatter matrices. A nonparametric classifier such as 
the kNN classifier should be well suited for 
classification of nonparametric projected features.  
The kNN rule, first introduced by Fix and Hodges 
(1951), is one of the most straightforward 
nonparametric techniques. The basic principle 
behind the kNN rule is that the most likely 
assignment for a queried pattern is the class most 
often represented by its bordering exemplars. In 
addition to the standard kNN rule, we also tested an 
extension to the kNN classifier referred to as the 
local mean-based k-nearest neighbor algorithm 
(LMKNN), which employs the local mean vector of 
each class to classify query patterns (Mitani and 
Hamamoto, 2006). 

2.4 LMKNN Classifier   

The LMKNN, as a successful extension of the kNN 
rule, is a simple and robust classifier in cases where 
the sample size is small. The goal of the LMKNN is 
to overcome the negative effect of the existing 
outliers in the training set (Gou et al., 2012). The 
algorithm is summarized as follows: 

1. Search the k nearest neighbors from set ܶ of 
each class ܿ for the query pattern x. Let 
ܰ ܰሺݔ, ݅ሻ be the set of kNNs for x in the class ܿ 

using the Euclidean distance metric.  

2. Calculate the local mean from the class ܿ as 	
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3. Assign x to the class c if the distance between the 
local mean vector for c and the query pattern in 
Euclidean space is minimum.  

ܿ ൌ argmin

൫ݔ െ ሻ൯ݔሺߤ

்
ሺݔ െ  ሻሻݔሺߤ

3 METHODOLOGY 

3.1 Subjects  

Experiments were conducted with nine able-bodied 
subjects (6 male/3 female, age range:  19 - 26 yrs). 
The procedures were in accordance with the 
Declaration of Helsinki and approved by the 
University of New Brunswick’s research ethics 
board. Subjects provided their written informed 
consent prior to the experimental procedures. The 
subjects had no history of any musculoskeletal 
disorders. 

3.2 Data Collection  

Surface and intramuscular EMG were recorded 
concurrently from the following muscles: flexor 
carpi radialis (FCR), flexor digitorum superficialis 
(FDS), extensor carpi radialis (ECR) and extensor 
digitorum communis (EDC). Intramuscular wire 
electrodes were made of Teflon-coated stainless 
steel (A-M Systems, Carlsborg WA, diameter 50 
µm) and were inserted into each muscle with a 
sterile 25-gauge hypodermic needle. The insulated 
wires were cut to expose 3 mm of the wire, in order 
to capture more (less specific) EMG. The needle was 
inserted, inclined approximately 45o, to a depth of 
10 to 15 mm below the muscle fascia and then 
removed to leave the wire electrodes inside the 
muscle. Muscle identification and electrode position 
were confirmed using an ultrasound scanner.  
Intramuscular signals were analog bandpass filtered 
between 0.1 and 4.4 KHz. Surface EMG was 
recorded using four bipolar electrodes (Duo-trode 
Ag-Ag/Cl, Myotronics, Inc.) placed no more than a 
few millimeters proximal to the wire insertion points 
so that they ostensibly recorded from the same 
muscles as the wire electrodes. Surface EMG signals 
were analog bandpass filtered between 10 – 500 Hz.  
All signals were amplified (AnEMG12, 

Nonparametric�Discriminant�Projections�for�Improved�Myoelectric�Classification

129



OTbioelletronica, Torino, Italy), A/D converted 
using 16 bits (NI-DAQ USB-6259), and sampled at 
10 kHz. A reference electrode was placed at the 
wrist. 

3.3 Experimental Procedures  

EMG signals were collected in two parts, during 
unconstrained contractions corresponding to nine 
classes of motion: Hand Open (HO), Hand Close 
(HC), Wrist Flexion (WF), Wrist Extension (WE), 
simultaneous HO+WF, HO+WE, HC+WF, HC+WE 
and no motion. In the first part, four repetitions of 3s 
were collected for each motion, during which the 
unconstrained subjects dynamically ramped from a 
low level contraction to a moderately hard level 
(ramp data). In the second part, four repetitions of 3s 
were collected for each motion, during which the 
unconstrained subjects held a medium level 
contraction to capture signals at a steady state (static 
data). The experiment provided the following four 
data sets processed separately: intramuscular ramp 
data, surface ramp data, intramuscular static data, 
and surface static data. Additionally, a previously 
recorded data set from three transradial amputee 
subjects, ranging in age from 25 to 45 (one acquired 
and two congenital deficiencies) with six equally 
spaced pairs of stainless steel surface electrodes was 
used. Amputee subjects were prompted to elicit 
contractions corresponding to the following five 
classes of motion: WF, WE, WP, WS and no 
motion. Four repetitions of 2 s were collected for 
each motion during a ramp contraction. See (Scheme 
et al., 2013) for more details. 

3.4 Signal Processing 

EMG signals were digitally high-pass filtered (3rd 
order Butterworth filter) with a cutoff frequency at 
20 Hz to attenuate movement artifacts. Four time-
domain features were extracted from overlapping 
(by 32 ms) signal intervals of 160 ms in duration. 
The following four time domain (TD) features were 
computed on a per window basis: waveform length 
(WL), mean absolute value (MAV), zero crossing 
(ZC), slope-sign change (SSC). The feature space 
was projected using FDA, NDA and NFA and 
classified using KNN and LMKNN. Furthermore the 
results were compared to the commonly used linear 
discriminant analysis (LDA) classifier. For all cases, 
data were processed using a four-fold validation 
procedure. 

Each fold consisted of assigning one repetition as 
testing data and the remaining three repetitions as 

training data; the mean of the four classification 
errors was reported. To find the optimal projections, 
the following range was used. The number of kNN 
was varied from 2 to 50. Parameter α was limited to 
0, 0.5, 1 and 2, 3. Higher α values were found to 
decrease the performance during pilot analysis. NRF 
was investigated from 20 to 100% of all the features. 

For each case (KNNraw, KNNfisher, KNNnda, 
KNNnfa, LMKNNraw, LMKNNfisher, LMKNNnda, 
LMKNNnfa, LDA, SVM) a paired t-test was used to 
compare that case with the case resulting in the 
lowest classification error computed as the number 
of misclassification divided by total number of 
decisisons. P-values less than 0.05 were considered 
significant. 

4 RESULTS 

Tables 1 and 2 summarize the results when using 
kNN and LMKNN respectively. For every data set, 
nonparametric projections performed significantly 
better than when using raw features or Fisher 
projections. Using kNN and LMKNN after 
nonparametric projection performed significantly 
better than LDA. Results obtained with LDA are 
replicated in both Tables for clarity.  

Figure 1 shows the performance of both NDA 
and NFA with respect to α when kNN and the 
number NRF are optimized, averaged over all 
datasets. In most cases, the error associated with 
varying α of is minimal; around 2. 

 

Figure 1: Performance of NFA and NDA with respect to 
alpha, which is the weighting function parameter. The 
error is normalized with the maximum error for 
visualization purposes. 

For the range used in this study, the value of this 
parameter seems not to affect the performance very  

BIOSIGNALS�2014�-�International�Conference�on�Bio-inspired�Systems�and�Signal�Processing

130



 

Figure 2: Performance of NDA and NFA with respect to 
the kNN when alpha is fixed to 2. 

much. Thus Figure 2 and 3 present the dependency 
of error to kNN and NRF when α is fixed to 2. 

Lower values of kNN are required for optimal 
performance. NFA was found to need fewer features 
than NDA. Thus when α is fixed and all the features 
are used, kNN is the only remaining parameter to be 
optimized. 

5 DISCUSSIONS 

The aim of this study was to investigate whether 
nonparametric feature projections may improve 
classification accuracy of myoelectric signals for 
control purposes. Results showed that projecting the  

 

Figure 3: Performance of NFA and NDA with respect to 
the number of retained features (NRF) with fixed alpha. 

features based on NFA and NDA did reduce 
classification errors compared to the case when raw 
features based on NFA and NDA did reduce 
classification errors compared to the case when raw 
features or Fisher projections are used with KNN 
with KNN or LMKNN performed significantly 
better than LDA classification alone.  One drawback 
with the use of nonparametric projections is that 
three parameters must be optimized. Fortunately, 
these results imply that only the number of KNN 
samples  is  of   major  importance.  In  case   of  low 
dimensionality of the feature space, all features can 
be used and alpha parameters should be kept as low 
and LMKNN classifiers. Furthermore, for every data 
set used in this study, NFA and NDA in combination 

Table 1: Classification errors obtained with KNN classifier. 

Data set KNN 
 Fisher NDA NFA LDA 

intramuscular ramp data 14.7 ± 2.0* 14.1 ± 2.2* 13.0 ± 1.8 17.8 ± 2.5* 
intramuscular static data 9.0 ± 1.6* 7.8 ± 1.5 7.1 ± 1.5 12.6 ± 2.0* 

surface ramp data 16.4 ± 2.5 15.4 ± 2.4 14.6 ± 1.9 19.1 ± 2.6* 
surface static data 10.0 ± 1.9 9.5 ± 1.7 9.0 ± 1.6 12.2 ± 1.7* 

amputee data 9.0 ± 2.4 9.4 ± 2.7 7.1 ± 2.0 9.6 ± 2.6 

Table 2: Classification errors obtained with LMKNN classifier. 

Data set LMKNN 
 Fisher NDA NFA LDA 

intramuscular ramp data 14.5 ± 1.9* 13.2 ± 2.0 12.5 ± 1.9 17.8 ± 2.5* 
intramuscular static data 8.7 ± 1.5* 7.3 ± 1.5 6.7 ± 1.5 12.6 ± 2.0* 

surface ramp data 15.6 ± 2.5* 13.9 ± 2.3 13.5 ± 1.9 19.1 ± 2.6* 
surface static data 9.4 ± 1.8 8.7 ± 1.5 8.6 ± 1.6 12.2 ± 1.7* 

amputee data 9.4 ± 2.6 8.3 ± 2.3 6.2 ± 1.6 9.6 ± 2.6 
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as possible (2 in this case). The shape of kNN-error 
curve in the case of LMKNN motivates the use of an 
optimization algorithm such as Deepest gradient that 
will allow fast convergence to the minimum point. 
Finding the number of k for kNN then becomes an 
optimization problem that reduces computation time. 
Another advantage of the NFA is the number of 
features needed to achieve optimal minimal error. 
From Figure 3, it can be considered that 40 % of the 
features was sufficient in the case of NFA. Thus 
with four channels times four features, the reduced 
dimension is 6 – 7 for NFA compared to 8 for LDA. 
The application of techniques presented here may be 
useful for movement classification and realtime 
control. However without optimization of the 
parameters the techniques will be limited as training 
time will be extremely long. For prosthetic control, 
shortest training is desirable to improve user 
satisfaction. Nevertheless although used extensively 
for image processing, these techniques, their 
performance for prosthetic control is limited. Most 
the work are concentrated on parametric classifiers 
that imposed normal distribution to the data.s In 
conclusion, we have shown that nonparametric 
projections in combination with kNN based 
classifiers can significantly decrease myoelectric 
classification error compared to the commonly used 
LDA classification scheme. 
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