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Abstract: In this paper, we present a scene recognition framework, which could process the images and recognize the
scene in the images. We demonstrate and evaluate the performance of our system on a dataset of Oxford
typical landmarks. In this paper, we put forward a novel method of local k-meriod for building a vocabulary
and introduce a novel quantization method of soft-assignment based on the Gaussian mixture model. Then
we also introduced the Gaussian model in order to classify the images into different scenes by calculating
the probability of whether an image belongs to the scene , and we further improve the model by drawing out
the consistent features and filtering out the noise features. Our experiment proves that these methods actually
improve the classifying performance.

1 INTRODUCTION

In recent years, the automatic scene and place recog-
nition has became a hot topic, because of the insta-
bility of viewpoint, scale, illumination and some dy-
namic object and background,which have been shown
in Figure.1 . Place identification should be considered
as a challenging task, especially in the outside envi-
ronment where the conditions of image would change
more dramatically.

Some previous methods for recognizing the in-
stance of a place or a scene (Li and Kosecka, 2006)

(a) (b) (c) (d)

Figure 1: The dynamic elements across scene images.The
figure demonstrate that even the images of same scene
would face a challenge for the instability of the view-
point(a), background(b),illumination condition(c), pedestri-
ans(d).

were based on feature-to-feature matching (Mikola-
jczyk et al., 2005; Mikolajczyk and Schmid, 2005)it is
obvious that this is unfeasible for the unstable images
across different viewpoints and dynamic background.
Whats more, when the set of labeled images for cov-
ering several conditions like viewpoints, scale, illu-
mination, and dynamic objects in a picture or back-
ground changing.

For the reason mentioned above, the research on
scene recognition now gradually inclined to adopt
the part-based methods (Felzenszwalb et al., 2010),
which has became one of the most popular method
in the object recognition community. The part-based
model combines the local invariant features of the
parts with the spatial relation between parts. Al-
though the part-based model could provide an effec-
tive method to describe the objects in the real world,
but the learning and inference for spatial latent infor-
mation are very complex and computation costing ,
especially on the weakly supervised training image in
which only the location of object has been marked
without the location mark of the parts of the object.
On the other hand, the bag-of-features method (Narzt
et al., 2006) could obviously simplify the recogni-
tion process and boost the computational efficiency,
though they fail to describe the spatial relation of the
object and its parts between foreground and back-
ground content of the image.

For scene recognition , methods now typically
adopt the bag of feature (BOF) model (Sivic and Zis-
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serman, 2003) to simplify the feature matching. First,
local invariant features in the images are extracted
and images are described as a bag-of-features, which
means that an image will be represented as a his-
togram of the features’ occurrence frequency. This
method could allow a more efficient means of com-
puting image similarities. Then the similar images
may be categorized into the same category of the
scene. However, this typical method still requires
the computation of similarity to an individual image,
which may lead to false positive feature matches for
unstable image key points, for the changing of view-
point, scale, illumination, background and so on.

This paper will mainly focus on how to train a
practical scene classifier based on a set of representa-
tive images. Substantial engineering effort has been
devoted in recent years to the study of feature de-
tection, summarizing image regions using invariant
descriptors, and clustering these descriptors; and we
adopt state of the art methods for these tasks.

The main contribution of our work in this pa-
per is : (1)We proposed a novel clustering method
called local approximate k-meriod, which could re-
duce the computation and accelerate the cluster-
ing process;(2)We put forward the soft-assignment
based on Gaussian Mixture Model, which could re-
duce the error generated by the feature quantization
stage;(3)We modeling the images of the same place
into a Gaussian scene model, which would not just
represent the stable features of a scene, but also take
the uncertainty into account;(4)In addition, we also
introduced a filtering stage to improve the typical vi-
sual vocabulary scene model by drawing out the con-
sistent features across the images of one scene by con-
sider the diffuse words as the noise or background
words and filter them out, by which we could improve
the classifier’s performance.

We illustrate the framework in this paper based on
a dataset of some typical scenes, buildings or struc-
tures in Oxford , including 576 images, which was
prepared for robot vision experiment. Then in the pa-
per we will review the two stages of scene recognition
in further detail and their relation to our work.

2 RELATED WORK

Recent work in object recognition (Chum et al.,
2007; Philbin et al., 2007a) has adopted simple text-
matching technology using the model called ” bag
of visual words”. In this model, images would
be scanned for extracting invariant key-points and
a high-dimensional descriptor of each keypoint; the
key-point and its descriptors form the invariant fea-

tures of the images. After the feature extraction stage,
these descriptors are quantized or clustered into a vo-
cabulary of visual words, and each keypoint and its
descriptors are mapped into the visual words, which
are closest to it in the descriptor space. An image is
then represented as a bag of visual words; to be spe-
cific, the images are described as a histogram vector
of words’ occurrence rate. Typically, no geometric
information about the the visual words will be used
in the classifying and recognition stage. In this pa-
per we focus on two dimensions for improving visual
place and scene recognition system performance.

2.1 Improving the Vocabulary of Visual
Words

As mentioned above, image-based scene recognition
systems extract high-dimensional local invariant fea-
tures from images, then cluster the descriptors of the
features to build a vocabulary of visual words. Some
previous systems (Sivic and Zisserman, 2003) used
a typical k-means clustering method which is effec-
tive, but computation costing; it means that k-means
algorithm is difficult to scale to large size of descrip-
tors set. And the AP clustering also was adopted
to clustering the vocabulary for its high-precision in
some papers; however, AP clustering is much more
memory-costing than k-means, so it is also difficult
to scale to large vocabulary. Some recent work have
adopted cluster hierarchies (Mikolajczyk et al., 2006)
and remarkably increased the size of visual words vo-
cabulary . In fact, k-means also could be scaled to
large vocabulary sizes by the using of approximate
nearest neighbour methods. To implement the ap-
proximate nearest neighbours some papers employ
the random forest method (Amit and Geman, 1997;
Lepetit et al., 2005), which has recently been adopted
for supervised learning (Moosmann et al., 2006) and
unsupervised learning.

2.2 Improving the Scene Model

After establishing the vocabulary of visual words, the
images will be represented by the visual words. When
quantizing the features of images into words, the hard
weighted assignment would lead to the loss in quan-
tization, so here we could consider the feature distri-
bution in the descriptor space as a Gaussian mixture
model; each word is the center of a Gaussian distribu-
tion. Then we can calculate the assignment weight of
the features for the words.

Following the stage of establishing the BOF
model for each image, the data will be passed into the
next stage to identify the scenes. Some papers adopt
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the TF-IDF model (Philbin et al., 2008) to retrieve the
similar images in the dataset; however, this method
could not work if the image viewpoint changes dra-
matically in one scene. To improve the recognition
ability for scene models, some papers adopt the ge-
ometric feature matching to establish the landmark
based Bayesian model. This method actually im-
proves the recall performance; however, it is also lim-
ited to a narrow range of viewpoints.

2.3 Framework Overview

In this paper we will introduce the Gaussian model
to fit the distribution of a scene. For this model, the
change across all the dimensions of an image visual
words histogram represents the change of viewpoint,
scale, illumination, background and so on. When im-
ages of scene are representative enough to describe
the scene in different conditions, the Gaussian model
would fit the scene model flexibly. And then, we
introduce a stage of filtering to optimize the Gauss
model.

3 SCENE MODEL

3.1 Visual Words

The system proposed in this paper is initialized with
the model training stage to form the models of dataset
scenes. In order to describe each single image, the lo-
cal 128 dimensional SIFT features (Lowe, 1999) were
extracted across all the images in the dataset. Then we
have to cluster these feature vectors into the vocabu-
lary of visual words.

Clustering a large quantity of vectors would
present challenges to traditionally used algorithms
such as flat k-means. The size of the data would rule
out methods such as mean-shift, spectral and agglom-
erative clustering. Even some simpler clustering al-
gorithms like the exact k-means will fail to scale to
a large size of data. Some papers have introduced the
kd-tree accelerate the k-means (Elkan, 2003) by using
the spatial information in the feature space, but this
method requires O(K2) extra storage space, where K
is the number of cluster centers. Some papers intro-
duced the Affine Propagation Clustering algorithm,
which is more accurate and able to determine the
number of clusters by itself; however, it also fails to
scale to a large size of data because it requires the
memory space of O(N2),where N is the number of
data to be clustered.And recently, some paper also
adopted the random forest to estimate the approxi-
mate clustering of the data (Philbin et al., 2007b).

The method introduced in this paper is an alter-
ation to the original k-means algorithm. In a typical
k-means algorithm under such data size as nearly one
million data-points, the vast majority of computation
time is spent on the iteration of calculating the near-
est center for each data point and calculating the new
center of each cluster. We simplify this exact compu-
tation by an approximate nearest neighbour method
in order to introduce the spatial information in the de-
scriptor space to reduce the number of iterations.

At first, we implemented the 10% sub-sampling
for all the data, and clustered the sampled data into
K cent points. If the sampling points were distributed
evenly enough, the sampling data could fit the distri-
bution of all the training data, so that the cent points
of sampled data would locate near to the centroids of
all the training data. Then, we searched the nearest M
neighbour cent points of sampled data for each data
point in the origin training data set, where M is the
number of neighbour cent points. By these steps, we
introduced the spatial information about the distribu-
tion of clusters in the descriptor space.

Following that, we introduced the local k-means
based on the assumption that, after some rounds of
iterations, the location of cent-points became stable
and would just move within a relative greatly lim-
ited range, so it is unnecessary to carry out the global
search to find out the nearest cent-points for each
data-point. We initialized the local k-means by setting
the K sampled cent-points as the initial cent-points.
Due to the spatial information carried by the initial
cent-points, we then calculated the M nearest neigh-
bour initial cent-points for all the N data points. After
these steps, we could search the nearest cent-points
for each data-point within the neighbour during each
iteration. This step would remarkably slash the com-
putation time by accelerating the convergence and re-
ducing the time of each iteration.

To improve the convergence ability and robust-
ness, we also alternated the k-means by the k-
meriods, which is the improved version of the k-
means. Compared with the k- means, the k-meriods
replace the geometric center by the nearest data point
of the geometric center. This method could accelerate
the convergence and endure the isolated points.

3.2 Soft Assignment

Following the forming of vocabulary of visual words,
we have to quantize the features into the visual words
of vocabulary. In the BOF model, two features would
be considered identical if they are assigned to the
same visual word in the vocabulary. On the other
hand, if the two features were assigned to different

Dynamic�Scene�Recognition�based�on�Improved�Visual�Vocabulary�Model

559



word clusters, they would be considered as totally dif-
ferent things, even if the two features were located
very closely. The hard assignment provides a simple
approximation to the distance between the two fea-
tures: zero if they were assigned to the same visual
word, or infinite if they were assigned to different
words. Its clear that the course assignment may result
in some errors. This error arises from many sources
such as image noise, varying scene illumination, in-
stability in the feature detection process and so on.

In this paper we adopt the descriptor-space soft-
assignment (Philbin et al., 2008) to weight the energy
assignment of each feature, we extract a single de-
scriptor from each image patch and assign it to sev-
eral visual words nearby in the descriptor space. Soft
assignment could identify a continuous value with a
weighted combination of nearby bins, or smooth a
histogram so that the count in one bin is spread to
neighbour bins.

In this section we introduce a descriptor-space
soft- assignment, where the weight assigned to neigh-
bour words depends on the distance between the de-
scriptor and the word.In soft-assignment, the weight
assigned to a cell is an exponential function of the
distance between the data point and the cluster center.
We assign weights to each word proportional to

weightnk = exp(�0:5� dnk
2

sn2 )
(1)

where dnk is the distance from the cluster center k to
the descriptor point n, and sn is the standard devi-
ation of the energy distribution. The parameter sn
determines the variance of the weights; here we as-
sume that the different features have similar energy
distribution, so the sn of each feature was desig-
nated the same value. In practice, sn is set by opera-
tor, so that a substantial weight is only assigned to a
small number of words. The essential parameters are
the spatial scale and the number of nearest neighbor
words, J. Note that after computing the weights to
the Jnearest neighbors, the descriptor is represented
by an J-vector, which is then normalized.The impact
of each parameters would be evaluated in the section
of experiment.

For all the features in an image, we consider the
weight assignment problem as an energy distribution
problem; the energy distribution of the feature was as-
sumed to distribute according to the Gaussian Model.
So the distribution of all the features could be seen as
a Gaussian Mixture Model. The sum weight of a bin
in the histogram would be

weightk =
J

å
j=1

exp(�0:5�
dk j

2

s j2
) (2)

Where J is the number of features assigned to the
word k , and j is the index of the features assigned
to the word. Then the image could be represented by
a K vector, which is then normalized again.

4 SCENE CLASSIFICATION

4.1 Gaussian Model based Classifier

As was mentioned above, following the modeling
step for each image, all the images have been repre-
sented as a K vector where K is the size of vocabu-
lary. Then the data will be passed into next stage to
identify the scenes. Some papers adopt the TF-IDF
model (Philbin et al., 2008) to filter the key words for
comparing the similarity between the images in the
dataset; however, this TF-IDF model was designed for
the comparing of single documents, without consid-
ering the problem of comparing between groups, so it
may fail to work if the image viewpoint and other con-
ditions change dramatically in one scene group. In or-
der to distinguish different scene models, some papers
extract the geometric information (Johns and Yang,
2011a) to improve the recognition performance; how-
ever, this method may be limited to a narrow range of
viewpoints of a scene.

In order to deal with noisy, unstable viewpoints
and dynamic environments, and to consequently im-
prove the recognition of scenes, we adopt the Gaus-
sian model classifier here. This stage involves two
key points in the process, with the recognition prob-
lem first performing a scene modeling, and then using
this model to carry out the image to scene match.

In the gauss model, we consider a scene as Gaus-
sian distribution in the descriptor space; it means that
images belonging to one scene should vary according
to a multi-dimensional Gaussian process, where each
dimension correspond to a word in the vocabulary.

The Gaussian process estimates the variety images
distributions of the scene over training data . One
essential idea underlying the Gaussian model here
is that we consider the image matching problem as
something similar to document matching where we
adopt the Bayesian Assumption that the probability of
the words appearing in the document should be con-
ditionally independent. So the probability for whether
an image belongs to a scene is:

p(Sijw1;w2; ::::wk) =
p(w1;w2; ::::wkjSi)p(Si)

p(w1;w2; ::::wk)

=
p(Si)Õ p(wkjSi)

p(w1;w2; ::::wk)

(3)
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Where the S represent the scene, w represent the
words, i and k are the index of the scenes and
the words separately. For the same image, the
p(w1;w2; ::::wk) is constant, and p(Si) also should be
assumed evenly, so the Equation (1) could be trans-
formed to:

p(Sijw1;w2; ::::wk) = Õ p(wkjSi)

= ÕN(wk�µik;s
2
ik)

(4)

The µik is the mean in each dimension of the scene im-
ages, and the s2

ik is the variance and the distribution
scale that determines the varying extent in each di-
mension of the scene images. So it could be observed
that the values at different dimensions are unrelated,
so the covariance between two function dimensions
would be the constant zero. Both parameters control
the smoothness of the scene models estimated by a
Gaussian model.

To generate the Gauss model for each scene, we
estimate the parameters of µik and s2

ik by the cluster
means and the variances within the image cluster:

µ̂ik =
åwnk

Ni
(5)

ŝik =
å(wnk� µ̂ik)

2

Ni
(6)

Here,n is the index of image in the scene group.
We predict the distribution based on this assump-
tion: each word in the vocabulary represents a ba-
sic element in the real world, which constitutes the
different images under different associations,just like
words compose the text. So, the variety of images
about the same scene cause the change of word fre-
quency, which will be reflected by the distribution on
each word dimensions.So, finally the probability of
one image belonging to the scene i could be repre-
sented as:

p(Sijw1;w2; ::::wk) =
K

Õ
k=1

N(wk� µ̂ik; ŝik
2)

=
K

Õ
k=1

exp(�0:5� wk� µ̂ik
2

ŝik
2 )

(7)

And this equation could be normalized to:

p(Sijw1;w2; ::::wk) =
K

s
K

Õ
k=1

exp(�0:5� wk� µ̂ik
2

ŝik
2 )

=
K

Õ
k=1

exp(�0:5� wk� µ̂ik
2

ŝik
2 )

1=K

(8)

This estimated distribution demonstrates the key ad-
vantages of the Gaussian model in the context of

scene models. In addition to generating a scene model
based on training images, the Gaussian also repre-
sents the uncertainty of the image, taking both the
data noise and the model uncertainness into account.

4.2 Improve the Visual Vocabulary
Model

Ideally, we would hope to recognize the objects which
were generated by the scene in similar view point and
other conditions, however the instability of the scene
would cause diversity among the images. And when
it comes to the recognition problem on the scenes of
the same kind, like buildings, it will be a challeng-
ing problem because of the near ambiguities that arise
from appearance repetitions of architectural building
blocks: windows, doors and so on.

These problems mentioned above, in terms of the
statistic meaning, would perform as the distribution
overlapping in the visual word dimension where one
scene may have the similar feature occurrence rate
with others or have an occurrence rate distributed
scattered enough to overlap other scenes feature oc-
currence rate distributions. Its obvious that the gen-
eral Gaussian model may face a distinguishing ability
loss over some scenes, because of the similarity be-
tween the scene with other ones, and the noise and
background words which have a scattered distribu-
tion and will make the contribution to unsimilarity
between the images of the same scene. The former
reason may cause the false positiveness, and the latter
may lead to false negativeness.

For the error brought about by the similarity visual
words corresponding to the similar feature points in
the images, when the vocabulary is big enough, the di-
versity between different scenes would cover the sim-
ilarity. Because in the framework proposed in this pa-
per, because the vocabulary size is large, so the main
source of error would not be the similarity of visual
words distribution, but the diffuse distribution over
some words in one scene images group, which rep-
resents the in-stable elements across the images in the
scene group, like the noise, pedestrian, background
features, etc. Obviously, while computing the clas-
sifying probability of one image, comparing these ir-
relative features would contribute to the overfitting to
some extent.

In order to optimize the visual vocabulary model
and improve the classifier performance, here we pro-
pose a method of filtering out the noise words which
are irrelative to the main topic of the scene im-
age. As was argued above, the distribution of the
noise words would be diffuse, in the statistic mean-
ing which would be reflected as a large s2

ik , the vari-
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ance of the distribution of the word occurrence rate
in the images of a scene. By analyzing it, we insert
a variance filtering stage before the classifying stage.
In the variance filtering stage, we filter out the pos-
sible noise words according to the s2

ik of the word in
the scene, and select out the first T word to be used
while comparing the images. Here T is the number
of selected words with smaller s2

ik, which means that
these words occurrence consistently across different
images. After the filtering stage, the Gauss Model for
the belonging probability could be transformed to:

p(Sijw1;w2; ::::wk f ) =
K f

Õ
k f =1

exp(�0:5�
wk f � ˆµik f

2

ˆsik f
2 )

1=K f

(9)

This is the normalized equantion,where K f is the
number of drawn words,and k f is the index of it.

5 EXPERIMENTS

5.1 Experiments Settings

In this paper, we use the Oxford Buildings dataset to
evaluate our place recognition system, which would
be available in (c1, ). This is a set of 5K images with
an extensive associated ground truth of some Oxford
landmarks building. This dataset of 5,062 images is a
standard robot vision object recognition test set . As
the matter of fact, most of the images in the dataset are
not suitable for scene recognition testing for the topic
of the junk images has nothing to do with the land-
mark in the Oxford. So, here we extract the available
images and labeled them as the training set for super-
vised learning.

To evaluate the performance we introduce the
classifying Precision computed for all the scene cat-
egories. Precision is the number of categorized posi-
tive images relative to the total number of images cat-
egorized. The ideal precision could reach 1.An Preci-
sion score is computed for all the 11 image cluster of
a landmark specified in the Oxford Buildings dataset,
by which we could obtain the total Precision for all
the landmarks.

Besides the precision, we also adopt the ROC
curve to evaluate the overall multi-classifier perfor-
mance for all the scene category. The Receiver Oper-
ation Characteristic(ROC) curve is a plot representing
the trade-off between the false positive rate and false
negative rate for all the possible cut off. Typically, the
curve shows the false positive rate(specificity) on the
X axis and the true positive rate(sensitivity)on the Y
axis. The performance of a classifier is measured by

the area under the ROC curve, of which the area of 1
is the perfect result.

5.2 Evaluation

5.2.1 Comparison on Vocabulary Size and Soft
Assignment

In this subsection, we will evaluate the system classi-
fying ability under different soft-assignment window
size and different vocabulary size. So, we could eval-
uate the effect to the system, exerted by these ele-
ments. In the experiment, we will compare the classi-
fying Precision rate, which equals to overall true pos-
itive rate. And we will fix the classifier to common
Gaussian model, without any filtering stage.

We tested the system under 3 vocabulary sizes of
10000 words, 15000 words and 20000 words, and it
is obvious that the larger vocabulary will have a pos-
itive influence on the experiment’s result. As what is
shown in Table.1 ,the precision under 15000 words is
obviously better than the precision under 1000 words,
and the size of 20000 words also make an improve-
ment on precision comparing with the size of 15000
words. It means that, under the BOF framework if the
computation resource is enough, we should choose
the size of vocabulary as large as possible.

We also evaluate the efficacy of soft-assignment
for different vocabulary size from 10000 to 20000
words. The results are shown in Table.1 .Here, the as-
signment size of 1 equals the hard assignment. It can
be seen clearly that soft-assignment could produces a
benefit on classifying precision. We attribute this per-
formance boosting to the ability of soft-assignment
that overcome the over-quantization of in the descrip-
tor space when large vocabularies are used. And when
the vocabulary size is not large enough, the boosting
from soft assignment would be limited.The result of
evaluation has been shown in fig.2.

Because the weights of soft assignment are deter-
mined by the equation exp(�0:5 � d2

s2 ), here we also
evaluate the influence of the s by simply compar-
ing the result precision score under s2 = 5000 and
s2 = 50000 . In Table.1 and Table.2 , it is obvious that
the larger s caused a substantial precision loss under
larger size of vocabulary.Because when the the s is
too large, the soft assignment method is inclined to
assign the feature to the words in the soft-assignment
window evenly, so when the bag of feature vectors
of each scene are not discriminate enough, the wide
soft assignment window may cause the whole image
to be laid on the histogram evenly and the difference
between each image would be eliminated.
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Figure 2: Comparison of the classification precision under
different sizes of assignment window and sizes of visual vo-
cabulary.The red line represent the assignment window of 5
words, the green one shows the assignment of 3 words, and
the blue one represent the hard assignment.

Table 1: Comparison of the classification precision under
different sizes of assignment window(1,3,5) and sizes of vi-
sual vocabulary(10000,15000,20000), in this table the s2 of
the assigned features is set as 5000.

Assignment Vocabulary Size
10000 15000 20000

1 0.8142 0.8646 0.8688
3 0.8408 0.8884 0.8989
5 0.8496 0.9007 0.9184

Table 2: Comparison of the classification precision under
different sizes of assignment window(1,3,5) and sizes of vi-
sual vocabulary(10000,15000,20000), in this table the s2 of
the assigned features is set as 50000.

Assignment Vocabulary Size
10000 15000 20000

1 0.8142 0.8646 0.8688
3 0.6241 0.8391 0.8461
5 0.3169 0.4074 0.5405

5.2.2 ROC Curve

In this section, we will pass the images into the Gaus-
sian model classifier under different experiment con-
straint. All of the testing images were selected from
the Oxford buildings dataset, representing some typ-
ical buildings in Oxford campus. Before the exper-
iment, we filtered out the junk images, in which the
main buildings are hidden by other things or the con-
tent has nothing to do with the scenes. Here we adopt
the ROC curve to evaluate the performance of classi-
fier.

As what has been shown in Figure.4, there are
some ROC curves under different scenes being listed.
In the left part, left column of the Figure.4 shows

Figure 3: Comparison of classification precision under dif-
ferent sizes of words filtering window and the visual vocab-
ulary.The blue line represent the filtering window impact on
precision under vocabulary of 20000 words, and the green
one represent the size of 15000.

the ROC curve generated by the common Gaussian
model; its obvious that the common Gaussian model
may face a distinguishing ability loss on some scenes,
because of the similarity between the scene with other
ones and the insufficient size of vocabulary .

And the right column of the Figure.4 shows the
ROC curve after we introduced the inconsistent fea-
ture filtering stage; its clear that the AUC (Bradley,
1997) of the classifier on each scene was improved.
Then we compared the precision under a different fil-
ter window, in order to evaluate the impact on the
precision exerted by the inconsistent feature filtering
stage. In Figure.3, we could witness that the suit-
able filter window could improve the recognition pre-
cision.But if the window was too fine, it will cause
over-fitting. A part of classification result was shown
in Figure.5

6 CONCLUSIONS AND FUTURE
WORK

6.1 Conclusions

In this paper, we improved the typical k-means by in-
troduce the local approximation and the replace the
geometric center by the center data points, which
could reduce the computation , accelerate the clus-
tering process, and improve the robustness. Then We
put forward the soft-assignment that calculate the as-
signment weight on Gaussian Mixture Model, which
could reduce the error generated by the feature quanti-
zation stage. In order to model the scene, we adopt the
Gaussian scene model, which would not just represent
the stable features of a scene,but also take the uncer-
tainty into account.In addition to the above work, we

Dynamic�Scene�Recognition�based�on�Improved�Visual�Vocabulary�Model

563



(a) scene of All Souls

(b) scene of Cornmarket

(c) scene of Radcliffe Camera

Figure 4: The ROC curve before and after the the filtering
stage.By comparing the ROC curve before and after the fil-
tering, it is obvious that the filtering stage have improve the
performance by extend the area of AUC.This fugure shows
the ROC curve while the classifier working on scenes of
All-souls, cornmarket and Radcliffe-camera.

also introduced a filtering stage before the classifica-
tion to improve the typical visual vocabulary scene
model by filtering out the nosie features across the

Figure 5: The recognition result on some scene cate-
gories.The bounding boxes indicate the scene objects in the
images.

images of one scene, which would improve the clas-
sification performance substantially.

6.2 Future Works

For establishing a flexible scene recognition system
for robot vision, we still have a lot of work to do, the
current framework relies on the statistical information
in the descriptor space but ignores the geometric in-
formation in the image. We view the method of ex-
tracting the geometric information as a necessary step
to locating the object and abstracting the high-level
features of a scene image, such as the landmarks in an
image document. In the next stage, we will concen-
trate on how to extract the local geometric informa-
tion (Johns and Yang, 2011b) and statistic informa-
tion to form the local high-level features, and how to
establish a powerful place and object recognition sys-
tem for mobile devices, which need to know not only
what is in the image but where it is.

REFERENCES

Amit, Y. and Geman, D. (1997). Shape quantization and
recognition with randomized trees. Neural computa-
tion, 9(7):1545–1588.

Bradley, A. P. (1997). The use of the area under the

VISAPP�2014�-�International�Conference�on�Computer�Vision�Theory�and�Applications

564



roc curve in the evaluation of machine learning algo-
rithms. Pattern recognition, 30(7):1145–1159.

Chum, O., Philbin, J., Sivic, J., Isard, M., and Zisserman,
A. (2007). Total recall: Automatic query expansion
with a generative feature model for object retrieval. In
Computer Vision, 2007. ICCV 2007. IEEE 11th Inter-
national Conference on, pages 1–8. IEEE.

Elkan, C. (2003). Using the triangle inequality to accelerate
k-means. In ICML, volume 3, pages 147–153.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and
Ramanan, D. (2010). Object detection with discrim-
inatively trained part-based models. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
32(9):1627–1645.

Johns, E. and Yang, G.-Z. (2011a). From images to
scenes: Compressing an image cluster into a single
scene model for place recognition. In Computer Vi-
sion (ICCV), 2011 IEEE International Conference on,
pages 874–881. IEEE.

Johns, E. and Yang, G.-Z. (2011b). Place recognition
and online learning in dynamic scenes with spatio-
temporal landmarks. In BMVC, pages 1–12.

Lepetit, V., Lagger, P., and Fua, P. (2005). Randomized
trees for real-time keypoint recognition. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 2,
pages 775–781. IEEE.

Li, F. and Kosecka, J. (2006). Probabilistic location
recognition using reduced feature set. In Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on, pages 3405–3410.
IEEE.

Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee.

Mikolajczyk, K., Leibe, B., and Schiele, B. (2006). Multi-
ple object class detection with a generative model. In
Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 1, pages
26–36. IEEE.

Mikolajczyk, K. and Schmid, C. (2005). A perfor-
mance evaluation of local descriptors. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
27(10):1615–1630.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Van Gool,
L. (2005). A comparison of affine region detectors.
International journal of computer vision, 65(1-2):43–
72.

Moosmann, F., Triggs, W., and Jurie, F. (2006). Random-
ized clustering forests for building fast and discrimi-
native visual vocabularies.

Narzt, W., Pomberger, G., Ferscha, A., Kolb, D., Müller, R.,
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