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Hölderlinstr. 3, 57076 Siegen, Germany

Keywords: Calibration, Fish Tank, Refraction, 3D-model, Tracking, Vision, Segmentation.

Abstract: In this paper we present a novel approach to generate precise 3D ground-truth data considering the refraction
of the fish tank. We used an accurate and easy-to-handle calibration method to calibrate two orthogonally
aligned high-resolution cameras in real-time. For precise fish shape segmentation we combined two different
background subtraction algorithms, which can also be trained while fish are swimming inside the aquarium.
The presented approach takes also shadow segmentation removal and mirroring into account. For refraction
compensation at the air-water border we developed an algorithm which calculates the ray-deflection of every
shape-pixel and compute the 3D-model in real-time.

1 INTRODUCTION

In fish behaviour studies computer vision is a well
known tool to observe fish’s position and movements.
One of the main research areas in this scope is the
study of mate-choice. The classical approach for mate
choice studies is laborious and time-consuming, due
to the fact, that real mate’s behaviour is undefined and
hardly repeatable.

The presented work is part of an interdisciplinary
project between computer science and biology. The
aim of the project is to create a virtual fish which in-
teracts with real fish for conducting strictly-controlled
behavioural mate-choice-studies. At first fish’s move-
ments and behaviour have to be analysed with the help
of a computer vision system. In the sequel the gath-
ered information is used to create a photo-realistic
simulation of fish and their behaviour. The used fish
species is sailfin molly (see Figure 1), which has a size
of 4 to 10 cm and is able to move quite quickly and
rather abruptly. Especially, its quick movements place
special demands on the computer vision system.

In a future step, a fish model will be created with

Figure 1: Sailfin mollies.

the help of the gathered shape, movement and be-
haviour information of the species. This steerable
virtual fish may be used by the behaviour scientists
to conduct fish-behaviour experiments under strictly
controlled conditions. With the help of the track-
ing information of the real fish the virtual fish pro-
jected onto a screen can react to and also interact
with the real fish. Furthermore the model will be
utilised to build a tracking system based on a model-
based approach using an appearance model of the fish
(analysis-by-synthesis). The analysis-by-synthesis
method allows to track the fish’s 3D-position and 3D-
deformation by using only one camera. Due to the
model’s information about the fish’s movements the
algorithm renders the most probable image of the vir-
tual fish and compares this to the captured image of
the real fish. This step is repeated until the rendered
image becomes undistinguishable from the captured
image. As a result the algorithm provides the best fit
model parameters and consequently a complete fish
description in 3D.

In this paper we describe the first period of this
project. Besides the setup of the computer vision sys-
tem, we also developed a segmentation and recon-
struction system to get precise ground truth data of
the fish’s position, pose and movement under consid-
eration of refraction at the air-water-boarder. On the
one hand this is the precondition for creating a virtual
fish, on the other hand this allows to quantitatively
evaluate the results stemming from the new analysis-
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by-synthesis approach later on.
The future system will be able to handle multiple

fish. Due to the fact that the main focus of this pa-
per lies on calibration, segmentation and refraction-
compensation, we conduct our tests with a single fish
and do not take occlusion (fish-fish) into account.

2 BACKGROUND AND
METHODS

For the following experiments we use a fish tank with
the size of 600 mm x 300 mm x 300 mm.

2.1 Computer Vision Setup

Due to the fact that computer vision systems be-
came more powerful and easier to use their num-
ber in animal behaviour studies has increased during
the last years (Delcourt et al., 2012). Especially in
fish-behaviour projects it is a very important tool to
observe fish’s movement, position and consequently
its behaviour. During the last years besides two-
dimensional tracking systems (e.g. (Fontaine et al.,
2008)) also three-dimensional tracking systems have
been established ((Zhu and Weng, 2007); (Butail and
Paley, 2012)). For the latter one different types of vi-
sion systems are used in fish behaviour studies.

2.1.1 Camera Setup and Illumination

The method described in Laurel et al. (Laurel et al.,
2005) is based on fish shadows. They installed two
lamps above the aquarium and recorded the fish and
their shadows with one camera. With the help of
trigonometric computations they calculated the fish’s
positions. For increasing numbers of fish this kind
of tracking system is not suitable caused by the oc-
clusions of multiple shadows. Zhu and Weng (Zhu
and Weng, 2007) extended their fish tank with mir-
rors above and on the left side of the aquarium. Be-
sides the front view the camera placed in front of
the aquarium also recorded the mirrored top and left
view. By doing so this system is also suitable for big-
ger fish groups. Butail and Paley (Butail and Paley,
2012) used three orthogonal cameras, placed above,
in front and on the left side of the fish tank. They
reconstructed fish bodies by extracting ellipses from
fish images of two cameras and combining them to an
ellipsoid in a post processing step. The left camera
was used for validation of the tracking result.
For our future analysis-by-synthesis tracking-
approach we need high resolution coloured pictures
of the fish. Additionally initial tests showed that the

Figure 2: Camera system with illumination. The fish tank
is equipped with red marker balls.

fish can turn their body within 100 ms around 180�

what places special demands on the camera. For that
reasons we chose two gigabit ethernet color cameras
(Allied Vision Technologies, Prosilia GT1910c)
with a resolution of 1920 x 1080 and with a frame
rate of 57 frames per second. The cameras were
synchronised by a hardware trigger and connected
over gigabit ethernet to a stationary PC (quad core
CPU Intel i5-2320 3 Ghz, two Gigabit Ethernet cards,
RAID0 system). The cameras produce 220 MB of
raw data per second. For 3D calculation we chose
a camera setup similar to (Butail and Paley, 2012).
We mounted the cameras on a fixed frame. The first
one was placed above and the second one in front of
the fish tank. For illumination we chose LED stripes
placed on both sides at an angle of 45� above the
tank (see Figure 2). In contrast to other systems in
this scope (Fontaine et al., 2008; Butail and Paley,
2012; Yamashita et al., 2011) our system is real-time
capable.

2.1.2 System Infrastructure

Given that the final system will be used for interactive
fish behaviour studies in future it will consist of sev-
eral subsystems placed on different computers. Based
on this assumption every part of the system (track-
ing system, observer control system and 3D-fish en-
gine) has to communicate with each other in real time.
Owing to this fact a suitable communication system
is necessary. Due to our former positive experience
with the robot operating system ROS (Quigley et al.,
2009) in context of distributed systems and multi sen-
sor networks (Kuhnert et al., 2012) we decided to use
this system in this project, too. Besides, the easy
communication over Ethernet between all sensors and
software modules, ROS includes a huge toolbox for
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recording and manipulating sensor data.

2.2 Camera Calibration

For three-dimensional object-tracking with two cam-
eras accurate camera calibration is very essential.
Especially in field of fish-tracking in aquariums re-
fraction places special demands on the calibration
method. Butail and Paley (Butail and Paley, 2012)
used in their paper the camera calibration toolbox of
Matlab (Bouguet, 2004). For calibration they filmed
a planar checkerboard underwater at different orienta-
tions. Their method does not take the air-water refrac-
tion into account and they assumed that this caused in-
accuracies. Yamashita et al. (Yamashita et al., 2011)
used omni-directional stereo cameras for underwa-
ter sensing. These were placed above each other in
an acrylic cylindrical waterproof case. For refrac-
tion compensation Yamashita et al. used an optical
ray tracing technique. For our purpose it is very im-
portant that the calibration system is easy and fast to
handle hence the experiment conductors can calibrate
it themselves after an accidental camera displace-
ment during the experiments. For the intrinsic camera
calibration and radial lens distortion we applied the
widely-used OpenCV calibration tools (opencv.org,
2013). Given that the internal camera parameter does
not get changed during the experiments, these were
calculated once in our institute. For extrinsic calibra-
tion we chose external, easy to mount markers on the
fish tank. These can be used to calculate the cam-
era position according to the fish tank’s coordinate
system. For markers we used red golf balls. With
a CNC-milling machine we cut edges in the balls to
fit it accurately to the fish tank corners. We fixed six
balls on two sides of the fish tank, so that four balls
are visible in every camera view (see Figure 2).

2.2.1 Extrinsic Camera Calibration

Extrinsic camera calibration is a well studied prob-
lem in computer vision and several tools are available
on the market. The most calibration methods esti-
mate the homography between a model plane, which
has distinctive known feature points (like a checker-
board), and its image [e.g. (ZHANG, 2000)]. These
methods are based on a pinhole camera model and
do not take any kind of refraction into account. For
that reason these methods cause inaccuracies in ap-
plications with cameras outside of a water filled fish
tanks. For reducing these inaccuracies it is possible
to put the model plane inside the water filled aquar-
ium and calibrate the cameras [e.g. (Butail and Paley,
2012)]. In this case the algorithm balances the refrac-
tion by shifting the estimated camera position behind

Figure 3: Extrinsic Camera calibration without consider-
ing refraction. The estimated camera position VirtualCam-
era[H,F,A,N] depends on the referred object point inside the
water-filled aquarium (A, F, H and N) and is not unique.

the real camera position what compensates the refrac-
tion locally. This also reduces the error globally but
does not deliver a distinct camera position. As shown
in Figure 3 the estimated camera position depends on
the location of the referred point.

For that reason we split the calibration in two
parts. In the first part we calibrate our cameras re-
ferring to the fixed balls outside of the aquarium. In
the second part we calculate the refraction of every
single camera ray using the refraction law.

Predefinition

For the following calculations we assume that:

� The vector~x has the components (xx;xy;xz)
T .

� A normalized vector is defined as x̂ = ~x
j~xj .

� ~x1;2 is a short form of~x1 and~x2.

� In the following the indices 1 and 2 refer to Cam-
era 1 and Camera 2.

Camera Calibration with Marker Balls

Based on shapes of the balls and their centre positions
fixed to the tank corners we assume that the centre
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Figure 4: Coordinate system of the fish tank.

of the balls image plain projection also describes the
camera ray through the tank corners. We also know
the physical dimensions of the fish tank and assume
that the xy-plane of our coordinate system lies on
the front window with z-axis heading to the back of
the tank (see Figure 4). As the balls are painted red
we use a colour-based blob detection algorithm for
marker identification. By calculating the moment of
the segmented balls we get the centre of them. In our
tests the standard deviation of the ball centres with
100 samples was below 0.05 pixels.

With the help of four 3D-2D point correspon-
dences obtained from the former step, we calculate
positions and poses of the cameras. We solve this
problem by using the analytic method presented in
(Gao et al., 2003). Gao et al. used an algebraic ap-
proach to solve the perspective-three-point problem.
The algorithm delivers the camera calibration matri-
ces C1 and C2 according to the coordinate system
shown in Figure 4. The camera calibration matrices
are defined as

C1;2 = (R1;2jt1;2) (1)

with rotation matrix R1;2 and translation vector t1;2.

Ray Refraction Calculation

In the following calculation we disregard the refrac-
tion of the aquarium-glass given that the caused shift-
ing error is less than 0.12 mm in the worst case and is
negligible.

For calculating the refraction we trace the ray
starting at the projection center of the camera, passing
the air-water border through~i1;2 and finally ending up
at the object. The starting point (projection center)
~s1;2 of the ray is defined as follows:

~s1;2 =�R1;2
�1~t1;2 (2)

We get the ray~x1;2, which starts at the camera project
center, by multiplying the inverse of the projection
matrix with the according 2D point x0. Given that the
projection matrix is singular, we invert it using singu-
lar value decomposition.

x̂1;2 =C�1
1;2x0 =

~i1;2�~s1;2

j~i1;2�~s1;2j
(3)

For getting the ray piercing point at the air-water bor-
der we compute the length of the ray between~sn and
~in. Due to the fact that the hit plane for the first camera
is identical to the x-y plane and for the second camera
parallel to the x-z plane, we simplify the calculation.
c1;2 describes the length factor:

c1 =
s1z

s1z� x1z
: (4)

For the second camera we have to consider the water
level w, which is measured manually:

c2 =
s2y�w

s2y� x2y
: (5)

Finnally we use c1;2 to compute the intersection point
~i1;2:

~i1;2 = c1;2( ~x1;2�~s1;2)+~s1;2: (6)

The refraction of rays passing from one medium to
another is defined by

sina

sinb
=

n2

n1
(7)

with the indices of refraction n1 and n2.
For getting a we calculate the angle between the cam-
era ray~x1 and the front side of the tank and the camera
ray~x2 and the water plane. Since these planes are par-
allel to the coordinate system planes we simplify the
calculation.

a1 = sin�1(
x1z

j~x1j
)� p

2
(8)

a2 = sin�1(
x2y

j~x2j
)� p

2
(9)

Based on (7) we get

bn = sin�1(sina1;2
n1

n2
): (10)

The ray is turned in~i1;2 around the axis ~a1;2. ~a1;2 is
perpendicular to the plane between~x1;2 and the center
ray of the cameras ~c1;2. c0 describes the center pixel
of the cameras.

~a1;2 = (C1;2
�1c0)�~x1;2 (11)
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Figure 5: Ray refraction. g is the angle of refraction.

We calculate a rotation matrix Ra1;2 with the help of
the normalized vector â1;2. As shown in Figure 5 the
final turning angle g is defined

g = b�a: (12)

Ra1;2 =

0@d1 d2 d3
e1 e2 e3
f1 f2 f3

1A with

d1 = â2
x(1� cosg)+ cosg

d2 = âyâx(1� cosg)+ âz sing

d3 = âzâx(1� cosg)� ây sing

e1 = âxây(1� cosg)� âz sing

e2 = â2
y(1� cosg)+ cosg

e3 = âzây(1� cosg)+ âx sing

f1 = âxâz(1� cosg)+ ây sing

f2 = âyâz(1� cosg)� âx sing

f3 = â2
z (1� cosg)+ cosg

(13)

Finally we get the refracted ray~xr1;2 . It starts at~i1;2.

~xr1;2 = Ra1;2 x̂1;2 (14)

2.3 Segmentation

Fish segmentation is an important part of our work,
because the 3D model generation is based on the fish
shape information. Therefore, we use a very precise
segmentation method which is also robust against fish
shadows. Additionally it is simple and fast to ini-
tialise. In the future behaviour studies the fish need
a period of acclimation in the fish tank. With our ap-
proach we can generate the background during the ac-
climation time automatically.

As the environment of the fish and also the
cameras are static the most projects in this scope
used background subtraction methods for fish-
segmentation (Delcourt et al., 2012). Fontaine et al.

(Fontaine et al., 2008) used a semi-automated routine
for an initial detection of fish. They took the first
video frame and marked the region around the fish.
With the help of a Matlab function they erased the
fish and estimated the background model for segmen-
tation.

In our approach we also use background subtrac-
tion methods for fish segmentation. We combine two
different background subtraction methods and bene-
fit from the advantages of each. On the one hand we
use the Gaussian Mixture-based subtraction method
(GMS) (Zivkovic, 2004). The GMS method is an
adaptive method which adapts the background over
time. Especially in scenes with moving foreground
objects it is well suited. But if the objects stay at
the same place the method starts to add the object
to the background. In our project that caused errors
especially if fish stay for a longer time at the same
place. The detected foreground objects starts to shrink
as seen in Figure 6. On the other hand we use a
codebook based subtraction method (CB) (Kim et al.,
2005). The background of this method is static after
initialization and also staying objects get segmented.
Normally the background generation of CB is done
with background images without foreground objects.

Since we initialize the background during fish
swimming inside the tank we split the process into
two steps. In the first step we initialize the CB back-
ground by using the GMS method. In the second step,
the CB method creates a precise foreground.

In the first step the GMS method normally finds at
least a small part of the fish like a fin as it is constantly
moving and cannot be confused with background.
With this information we create a mask around the
GMS found foreground objects. Based on center cn
of the contour n, we build a rectangle Rn around cn
with fixed width w and height h values, so that the
supposed fish body is covered completely. This mask
is applied during computation of the CB background.
Background areas which are covered by the mask do
not get updated.To ensure that every background pixel
is updated sufficiently we count the updates on ev-
ery pixel. Once every pixel is updated n times, the
background generation is finished and the segmenta-
tion starts.

Finally we apply a contour-searching algorithm to
the CB foreground image and store the contour areas
of camera 1 A1n and camera 2 A2n.

2.3.1 Contour Referencing and Mirroring
Avoidance

For the 3D ground truth model generation we need
pairs of contours (A1n;A2n) from both cameras, which
describe the same object. Owing to the fact, that we
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Figure 6: Shrunken foreground contour. The fish stayed at
the same place for a longer time - as a result the foreground
created by GMS shrinks.

Figure 7: Mirrored fish. The fish on the left is mirrored in
the right window.

know the path of every camera ray (see section 2.2)
we calculate the distance between the camera rays~xr1
and ~xr2 ) of two potential referring contours A1n and
A2n.

In order to measure the distance between referring
pixel rays (facing the same three dimensional point),
we choose the pixel x01 and x02 with the lowest x-value
of the contour. With equation (14) we get the ray of
x01 and x02 and calculate the distance between the two
lines. The calculation sequence is described in the
following:

for (i = 0; i < foundContours_cam1; i++)
{
pixMinX_Cam1 =
search pixel with min x of
foundContours_cam1(i);

rayCam1 = calculate ray of pixMinX_Cam1;
for(j = 0; j <foundContours_cam2; j++)
{
pixMinX_Cam2 =
search pixel with min x of
foundContours_cam2(j);

rayCam2 = calculate ray of pixMinX_Cam2;

if(distance(rayCam1, rayCam2) < epsilon)
store pair(foundContours_cam1(i),

foundContours_cam2(j));
}

}

The stored pair of contours describes the same three-
dimensional object.

As shown in Figure 7 the fish is mirrored when it
comes up to the aquarium glass. In consequence the
segmentation system also segments the mirrored fish.
With the help of the described technique these mir-
rored contours get ignored. By matching the contours
of both cameras, no suitable contour is found for the
mirrored one and it gets deleted.

2.3.2 Shadows

As seen in Figure 8 another problem which occurs
during segmentation is shadow segmentation. We
solve that problem by adjusting the CB subtraction
method. For every pixel the CB background stores
one or more ranges of values for every color channel.
Only if a tested pixel fits in all of this ranges, it will
be accepted as background. Because of this we can
expend the luminance channel range of CB, without
assessing a pixel as background by mistake. As an
effect luminance based changes have only slight in-
fluence on the final foreground image.

2.4 3D Ground Truth Model
Generation

For our future work, we need a precise 3D model in
which we can fit our own created fish model. Partic-
ular attention has to be turned to the bending along
the roll-axis of the fish, so that we are able to re-
construct the movement of the fish precisely. This is
given by the orthogonal camera setup with a camera
above the tank. On the other side with this setup, it
is not possible to find texture based reference points
like in stereo-vision setups. Consequently our method
creates a box type fish model that sharply reconstructs
the bending along the roll axis and the position.

At first we create a set of triangles along the fish’s
contour rays ~xr1n from camera 1. n describes the ray
number. ~xr1n and ~xr1n+1 are neighbouring rays. ~i1n
is the starting point of ray ~xr1n . Given that we want
to create a model inside the fish tank we defined an
ending point of ray~xr1n .

~en = x̂r1n l +~i1n (15)

l is the maximal ray length inside the tank. The tri-
angles along the contour are defined as follows. For
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Figure 8: Fish shadow. Segmentation with (upper image)
and without (lower image) shadow avoidance.

Figure 9: 3D calculation. The contour rays of camera 1 in-
tersect with the front window (green points) pass through
the tank and end up at the back window of the tank (blue
points). The red points represent the intersection point of
contour rays of camera 2 and the spanned triangles of cam-
era 1.

each ray we construct two triangles:

41n =4(~i1n ;~en;~i1n+1)

42n =4(~en;~i1n+1 ;~en+1)
(16)

The triangles border the fish contour along the op-
tical axis of camera 1 so that we have a tube in shape
of a fish starting at the front side and ending up at the

back side of the tank.
For getting the final 3D ground truth model of

the fish we use the fish contour information from the
second camera. We calculate the intersection points
of the refracted rays ~xr2n (camera 2) and the trian-
gle mesh created in the former step (see Figure 9).
The calculation sequence is described in the follow-
ing pseudo code:
for (i = 0; i < n_ray2; i++)
{
for(j = 0; j < n_ray1; j++)
{
if ray2_i intersect triangle1_j
calculate intersectionPoint;
store intersectionPoint;

if ray2_i intersect triangle2_j
calculate intersectionPoint;
store intersectionPoint;

}
}

For testing of intersection and calculating the in-
tersection point we use the ray-triangle method of
Möller and Trumbore which is explained in (Moeller
and Trumbore, 1997).

Finally the detected set of 3D points represents an
abstract model of the fish. This model combines be-
sides the absolute position all important moving and
bending parameters of the fish.

3 RESULTS

In the following we present the results of calibration,
segmentation and 3D ground truth data generation.

3.1 Calibration

In order to test the calibration a reference objects
(cuboid of aluminium) was manufactured with a pre-
cision of 0.01 mm. We placed it in different locations
and orientations in the fish tank and recorded images
of it. Afterwards we manually selected the corners of
the cuboid in both camera images. Based on the pixel
values of the corners we calculated the world coordi-
nates using the extrinsic camera calibration. Finally,
we measured the distance between the corners using
the method described in Section 2.4. In our tests we
got a mean distance (relative) error of 0,31 mm with
a standard deviation of 0,22 mm.

For measuring the absolute position error we
placed the cuboid in the defined corners of the aquar-
ium and measured the position of the cuboid inner
corners as described above. We got a maximal (abso-
lute) error of 2.1 mm. By deactivating the refraction
compensation the error increased to 12.6 mm.
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3.2 Segmentation

We tested the previously shown segmentation method
under various illumination conditions, with fish
of different size and with different ground sub-
strates(sand,grit). The initialization of the CB back-
ground subtraction with the help of the GMS yielded
in reasonable results. Depending on the number of
fish the time of initialization varied. In our tests
we stopped the initial process after every background
pixel was updated at least 50 times. In the worst case
the initialisation took up to 60 s. The implemented
shadow removal also worked well. During our tests
we adjusted the illumination threshold of our back-
ground subtraction regarding to the used illumination.
We figured out that a high threshold value (very dark
shadows) also influences the segmentation negatively.
Especially transparent tail fins of female fish were not
segmented completely under the described circum-
stances.

Figure 10 shows some results of the segmentation.
As seen in the images the fish was segmented in the
images of both cameras. Since the background of the
front camera image was more homogeneous than the
background of the upper camera, the segmented con-
tour is smoother. The lateral fins of the fish are trans-
parent and were not detected by the algorithm.

3.3 3D Ground Truth Model

For visualisation and validation of the 3D ground
truth data we developed a 3D viewer, which visual-
izes the camera rays in real time (see Figure 11). The
two camera projection centers are placed in front and
above the fish tank. From there the rays are refracted
at the air-water border and run through the aquarium.
The skew rays of the two cameras approximately in-
tersect inside the aquarium. To get the approximated
intersection point, we computed the shortest line be-
tween the two skew rays and calculated the center
point of the line. This represents the observed 3D
object point. As unit of error measurement we de-
fined the distance between the most left rays of first
and second cameras’ pixel contours. In case of a fish
we measured the distance between the pixel rays of
the snout. In our test a fish was swimming from one
side of the tank to the other side. The measured mean
distance between the two rays was 0.64 mm with a
standard deviation of 0.72 mm.

4 CONCLUSIONS

In this paper we presented a novel approach for gen-

Figure 10: Segmented fish in different pose from the upper
camera (left) and the front camera (right).

Figure 11: Visualisation tool. On the left it shows the vir-
tual 3D fish tank with the contour rays of the upper camera
(red) and the front camera (white). The referring images are
shown on the right side.

erating 3D ground truth data of fish in an aquarium
considering refraction in real time. With regards to
the utilization in fish behavioural studies a well op-
erating and easy to handle application was requested.
Taking the water-refraction into account, we achieve
a very precise extrinsic camera calibration. As indi-
cated in the results, the relative exactness of the pre-
sented method is about +/- 0.3 mm. The absolute po-
sition error of 2.1 mm is based on the precision of
the aquarium manufacturing. It can be decreased by
increasing the precision of the aquarium manufactur-
ing.

Furthermore, we established a segmentation
method by combining two background subtraction
methods – one based on codebook and one adapted
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from the Gaussian Mixture-based background sub-
traction method. By doing so, we are able to initialize
the background with fish in the tank. In addition, it
is possible to exclude mirror images and shadows of
the fish easily. The advantages of this approach lie in
the high precision combined with an easy utilization
in real time. In the future, based on these ground truth
data we can adopt fish’s behaviour and movements for
virtual fish; furthermore the data can serve as a con-
trol for the final analysis-by-synthesis system.
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