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Abstract: In this paper an efficient method for image retargeting is proposed. It relies on a monte-carlo model that
makes use of image saliency. Each random sample is extracted from deformation probability mass function
defined properly, and shrinks or enlarges the image by a fixed size. The shape of the function, determining
which regions of the image are affected by the deformations, depends on the image saliency. High informative
regions are less likely to be chosen, while low saliency regions are more probable. Such a model does not
require any optimization, since its solution is obtained by extracting repeatedly random samples, and allows
real-time application even for large images. Computation time can be additionally improved using a parallel
implementation.
The approach is fully automatic, though it can be improved by providing interactively cues such as geometric
constraints and/or automatic or manual labeling of relevant objects.
The results prove that the presented method achieves results comparable or superior to reference methods,
while improving efficiency.

1 INTRODUCTION

The diffusion of display devices coming with dif-
ferent aspect ratios and resolutions, entails using
content-aware resizing techniques. Simple cropping
is not sufficient due to severe information loss. On
the other hand, homogeneous scaling with aspect ratio
variation, introduces unwanted distortions in the im-
ages. A proper non-homogeneous resizing operator is
required in order to preserve image content, introduc-
ing deformations just in the low-importance regions
of the image.

In this paper, we present a novel image retarget-
ing technique, which is both efficient and effective.
Differently from many literature approaches, such a
method does not require neither energy minimization
nor functional optimization, and relies just on Monte
Carlo sampling. Our model estimates the deforma-
tion likelihood of each image region, according to the
image saliency. Then, by extracting random samples
over this probability distribution, less important re-
gions get more deformed, while high-saliency ones
are preserved. Another advantage of using a sample-
based approach is that it can be implemented easily
using a parallel scheme, thus improving efficiency.

Salient regions can be extracted using several
content relevance estimators, such as visual saliency

maps (Itti et al., 1998; Hou et al., 2012), corner detec-
tors (Harris and Stephens, 1988), eye-gaze measure-
ment (Santella et al., 2006), etc. Additionally, both
automatic or interactive cues can be given to improve
the results: people detectors (Dalal and Triggs, 2005)
or face detectors (Viola and Jones, 2001) can help in
preserving people and faces in the images. Finally,
other geometric constraints can be provided by the
user to preserve structures explicitly.

2 RELATED WORK

In general, the resizing operators used by image pro-
cessing applications work by resizing images to a tar-
get size by means of homogeneous shrinking or en-
larging operators. After early works based on crop-
ping, like (Suh et al., 2003), more recent approaches
use adaptive image resizing. The idea is to preserve
important image features by applying a non-linear
content driven resize operator. Remarkable works
were done using seam carving, (Avidan and Shamir,
2007; Rubinstein et al., 2008) where 1D seams are re-
moved/added to reduce/increase the image size. Such
seams are chosen from low energy regions of the
image. However, due to the discrete nature of this
method, notches in the objects may appear. In ad-
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Figure 1: Block diagram of the retargeting system. The inputimageI is the input of the system. The saliency estimator
generates a saliency map, which is then used to build a deformation probability mass functiondpm f; in turn thedpm f is
sampled to move the lines of the image non-homogeneously. Finally, the image is reconstructed, and the final retargeted
image is produced as output.

dition, when no more discardable information exists,
important details get removed and severe distortions
may appear. Warping methods (Wolf et al., 2007)
overcome this limitation by squeezing or stretching
homogeneous regions, while minimizing the distor-
tion in relevant regions. In (Yu-Shuen Wang and Lee,
2008) regions are scaled by different factors in or-
der to preserve aspect ratio too. Multi-operator ap-
proach (Rubinstein et al., 2009), uses a combination
of seam carving, scaling and cropping. Seam carv-
ing is very efficient but limited in its use, warping
methods are more effective but computationally ex-
pensive, almost prohibiting their use in real-time ap-
plications with high resolution images or embedded
devices with low power profiles. A comprehensive
evaluation of several reference literature methods is
provided in (Rubinstein et al., 2010).

3 IMAGE RESIZING APPROACH

In our model an input imageI is considered as a set of
n lines (the columns or the rows)I = {l0, l1, ..., ls−1},
where l i are the initial lines positions ands is the
initial image size along the considered dimension.
Thus, l i = i ∀ i ∈ {0,s−1}. To resize the im-
age to the new dimensions′ we look for the new
setI′ =

{

l ′0, l
′
1, ..., l

′
s−1

}

where distances between two
consequent lines should be preserved in most infor-
mative image regions in order not to introduce distor-
tions as in Equation (1),

(l i − l i−1) =
(

l ′i − l ′i−1

)

. (1)

Obviously, some distances have to be necessarily
changed due to resizing, and some deformation must
be introduced. The model is built in order to spread
the required deformations across the whole image in
a non uniform way that obeys to a probability distri-
bution. This is done applying multiple atomic resize
operators that are sampled from a proper probability
mass function. Such a function is built according to
lines significance. The idea is to apply less atomic de-
formations in salient regions of the image, while the
most deformation affects the unimportant zones.

The whole system is realized by means of a chain,
which is schematized in the block diagram in Figure

1. The input imageI is given as input to the sys-
tem. The saliency estimator generates a saliency map,
which is used in turn to build a deformation probabil-
ity mass functiondpm f. Such a function is sampled
to move the lines of the image non-homogeneously.
Finally, the image is reconstructed and the final retar-
geted image is produced as output.

3.1 Model Formulation

The proposed method is based on two concepts:

• a resizing operator

• a deformation strategy

Resizing operator. The resizing operator we in-
troduce is considered as the multiple application of
atomic resizing operations. Each atomic resizing op-
erates on a single linel i , moving it by a given quantity
klod, which is expressed in (fractions of) pixels, and
defines the level of detail of the transformation. Rela-
tive movement between two consequent lines has the
effect of deforming the underlying image. Changing
the quantityklod affects:

• the size of each atomic resizing, which is equal to
klod, and defines the movement of the the single
line l i

• the number of atomic resizingnr (see Equation 2)
to produce the required image final size.

These two quantities define the resolution of the
global resizing operator. Of course, as the level of
detail gets finer, the computational burden gets heav-
ier, due to an increasing number of atomic resizing
operations. In the following paragraphs, the selection
of theklod parameter will be discussed in detail.

nr = s′/klod. (2)

Deformation strategy. In order to apply the de-
scribed resizing operator, a line selection strategy
needs to be designed to determine which line should
be moved at each resizing step. The required proce-
dure has to exhibit a dual behavior: firstly, it should
select less important lines from a visual content im-
portance perspective, as the candidates for resizing
since distortions should be preferentially introduced
in low-importance or homogeneous regions. On the
other hand, deformations should be distributed across
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the whole image in order not to remove whole image
regions, thus introducing severe artifacts. In order to
attain such behaviors, we define adeformation prob-
ability mass function - dpmf pd(x) over the imageI.
Such adpm f indicates the likelihood that a single re-
sizing operation would affect the image linelx.

Intuitively, such a probability should be related to
the image visual content importance. In particular,
line relevanceR(i) is extracted from the dual form
of visual saliency, i.e. visual inconspicuousness. Vi-
sual saliencyS(i, j) of each pixel is extracted using
either Itti’s saliency detector (Itti et al., 1998) or sig-
nature saliency (Hou et al., 2012). Such values are
then projected along the considered resizing axis us-
ing the maximum operator, and are complemented as
in Equation (3).

R(i) = 1−maxjS(i, j). (3)

Finally, the values are normalized w.r.t. their summa-
tion, as in Equation (4) to recoverpd(i); an example
is reported in Figure 2.

pd(i) = R(i)/
s−1

∑
j=0

R( j). (4)

Here high-value points correspond to image regions
with high-probability of being deformed, while low-
value points correspond to image regions that should
be preferentially preserved. Note that visual saliency
can also be improved either interactively by adding
constraints, or automatically using people (Dalal and
Triggs, 2005) or face detectors (Viola and Jones,
2001), and modifyingR(i) to have low values in pres-
ence of constraints or people/faces. Note that this op-
eration must be performed prior to normalization re-
ported in Equation (4) to preserve thepd(i) integral to
sum to 1, thus being a validdpm f.

Figure 2: Plot of thedeformation probability mass function
pd(i) related to the example image. The function repre-
sents the probability that a given linel i will be subject to an
atomic resizing step during the retargeting operation.

In order to obtain the actual retargeting, we run
a Monte Carlo process. As defined in Equation (2),
nr samples are drawn from thepd(x) distribution and

each extracted corresponding line is moved by a quan-
tity klod. The result is that a line positionl i i the image
gets a chance to be moved, proportionally to its in-
cospicuousness value. Statistically, the deformations
are spread across the whole image, limiting the pres-
ence of artifacts, while still preserving important re-
gions.

After recovering new lines positionl ′i , the result-
ing image needs to be reconstructed. This process re-
quires an interpolation procedure, sincel ′i values are
generally real values. Any interpolation scheme could
be used for this purpose. Choosing the best interpo-
lating function is out of the scope of this paper, so
no further investigations were done in this direction.
However simple linear interpolation gives satisfying
results, so it has been used for generating all of the
results in this work. For illustrating the whole pro-
cess, Figure 4 reports the sampling ofpd(i) for the
image of Figure 2 for a width scaling ratiosw = 0.5
andklod = 0.1. In the picturey values correspond to
how many times the linel i was drawn from thedpm f.
In the plot is evident how lines belonging to salient re-
gions are drawn rarely or not drawn at all, leaving the
underlying content undeformed.

3.2 klod Parameter Selection

The whole procedure is automatic, just the parame-
ter klod requires to be tuned. Since it influences the
quality of the result, it should be as smaller as pos-
sible. However, the computation time is in inverse
proportion to the parameter value, so it should be de-
termined as the best trade-off between quality and ef-
ficiency. For a visual evaluation purpose, we report
the results using different values forklod (1, 0.5, 0.1,
0.05 and 0.01), see Figure 3. The results show that us-
ing a coarse level of detail causes artifacts. However,
using too fine level of detail is not useful, since the
resulting image quality does not get remarkable im-
provements. However, visual inspection is not suffi-
cient to determine how to chooseklod. More objective
cues are derived by measuring the variations of two
image difference indexes: Root Mean Squared Error -
RMSEand Structural Similarity -SSIM(Wang et al.,
2004). Measures have been computed between the
image produced using the highest level of detail (ap-
proximated using a very low value ofklod = 0.001)
and the one resulting using aklod value varying in
the interval[0.001,1]. The results of this experimen-
tation are shown in Figure 5. In Figure 5(a) the re-
sults are better for lower values ofRMSE. In Figure
5(b) the results are better for higher values ofSSIM.
The plots exhibit jumps which are due to interpola-
tion artifacts that arise during image reconstruction.

VISAPP�2014�-�International�Conference�on�Computer�Vision�Theory�and�Applications

404



(a) (a) original (b) (b) klod = 1 (c) (c) klod = 0.5 (d) (d) klod = 0.1 (e) (e)klod = 0.05 (f) (f) klod = 0.01

Figure 3: Detail of an output image using different values for klod and scaling ratiosw = 0.5. From left to right: (a) original
image, (b)klod = 1, (c)klod = 0.5, (d)klod = 0.1, (e)klod = 0.05, (f) klod = 0.01. Even though the effect is more noticeable
when the images are larger, as it can be seen in this image portion, the finest results are provided using a high level of detail.
However, values ofklod smaller than 0.1 do not provide remarkable improvements.

Figure 4: Plot of the sampling of thedpm f for the picture
shown in Figure 2. Each column corresponds to the number
of times each column was drawn from thedpm f.

Such artifacts get smaller asklod decreases. Whenklod
approaches values around 0.1, jumps disappear, the
trend becomes asymptotic and the quality of the result
has very low variations. As a consequenceklod = 0.1
is assumed to be used for the referred results in the
next sections.

4 EXPERIMENTAL RESULTS
AND DISCUSSION

The described method was implemented on a PC with
Quad CPU 2.30 GHz. The system can benefit from
parallel computation by leveraging gpGPU capabili-
ties being implemented using Nvidia CUDA API ex-
tensions (CUD, 2007).

Comparison. To evaluate the results of our system,
we compared it with other literature retargeting sys-
tems. For space reasons, this paper references four
methods: Multi-operator (Rubinstein et al., 2009),
non-homogeneous warping (Wolf et al., 2007), seam
carving (Rubinstein et al., 2008) and scale-and-stretch
(Yu-Shuen Wang and Lee, 2008). However, several
other methods were compared and the reader is re-
ferred to the supplemental material provided with this
paper. The evaluation was assessed using the datasets
and measures provided by theRetargetMecompara-
tive study (Rubinstein et al., 2010). Examples of com-

(a) (b)

Figure 5: Plot ofRMSE(a) andSSIM(b) againstklod value
with scaling ratiosw = 0.5. In (a) the results are better
for lower values ofRMSE. In (b) the results are better for
higher values ofSSIM. Image quality plots exhibit jumps
due to interpolation artifacts that arise during image recon-
struction. However, such artifacts get smaller asklod de-
creases. Whenklod approaches values around 0.1, jumps
disappear, the trend becomes asymptotic and the quality of
the result has very low variations.

parisons are shown in Figure 6.
Additionally to qualitative images inspection, an

objective evaluation was also taken. Two comparative
measures were used for this purpose: Earth Mover’s
Distance (EMD) (Pele and Werman, 2009) and SIFT-
flow (Liu et al., 2008). These are two commonly
used similarity metrics, which do not require the two
datasets to be the same size, a binding property for
image retargeting. Both measures use a dense SIFT
descriptor (Lowe, 2004), which captures structural
properties of the image robustly, while EMD also uses
a state of the art color descriptor (ciede2000). The
two measures both endorse their solutions to small
and smooth local displacements, reflecting the way
human vision system tolerates deformations and the
operations applied by retargeting operators.

Results, summarized in Table 1, show that the
images produced with the proposed method provide
measures comparable to literature methods, or even
better. Most of the existing literature methods, tend
to warp the whole image and make them fit it into the
new frame size. However, often the periphery of the
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(a) original (b) monte-carlo (c) multi-op (d) nonhom.warp (e) seam-carving (f) sns

(a) original (b) monte-carlo (c) multi-op (d) nonhom.warp (e) seam-carving (f) sns

Figure 6: Comparison results for some (a) test images: methods reported are (b) our Monte Carlo method, (c) Multi-operator
(Rubinstein et al., 2009), (d) non-homogeneous warping (Wolf et al., 2007), (e) seam-carving (Rubinstein et al., 2008)and
(f) scale-and-stretch (Yu-Shuen Wang and Lee, 2008). The first two rows are compressed usingsw = 0.75, while the last
four rows are compressed withsw = 0.5. Note how in thebutterflyanddeckimages, low-saliency periphery content has been
cropped by extreme line compression, allowing more space for important image data.

image is not required to be kept. Our method allows
intrinsically to discard the whole periphery data, if it
is not salient, by strongly compressing it, thus achiev-
ing a certain extent of cropping. This allows to keep
more space for important image regions, which can

be better preserved without introducing heavy defor-
mations.
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Table 1: EMD and SIFTflow measures for images ofRetar-
getMeframework.

Measure EMD SIFTflow
Monte-carlo 8.01±3.23·103 3.98±2.02·105

Multi-operator 8.30±3.58·103 3.94±1.99·105

Non-homogeneous 8.68±3.73·103 4.12±2.15·105

Seam carving 8.69±3.60·103 4.09±2.38·105

Scale and stretch 8.95±3.82·103 5.37±2.69·105

4.1 Complexity Considerations

Looking at the proposed retargeting operator from a
complexity perspective, is possible to take both mem-
ory and computational considerations.

The memory amount required to store all the data
needed to retarget an image composed ofs into one
composed ofs′ lines is the following:

• s real values to store the positions of the linesl i ,

• s real values to store thedpm f,

• s′ · klod real values to store the samples extracted
from thedpm f,

As a consequence, the proposed method needs a total
of 2s· s′ · klod real values, keeping the memory com-
plexity polynomial.

From a computational point of view, the main bur-
den is related to the saliency extraction which is com-
mon in all of the retargeting methods, so it is not con-
sidered. For the same reason, image reconstruction
is not taken into account. The rest of the process is
accomplished by the following operations:

• Design of thedpm f. Each valuepd(i) is designed
starting from the saliencyS(i, j) using the max(·)
operator→ polynomial,

• Samplingpd(i). This operation is repeateds′ ·klod
times→ polynomial,

• Updating of the lines positionl i according to the
extracted samples→ polynomial.

Being all of the subprocess polynomial, the whole
procedure is polynomial too. In addition, all of the
previous operations can be easily implemented in par-
allel, since little or no dependencies exists both be-
tween data and processes. This allow very fast one-
shot retargeting of images, opposed to many of the
reference literature methods relying onto iterative op-
timization.

5 CONCLUSIONS AND FUTURE
WORKS

A novel efficient method for image retargeting was

presented. It is based on Monte Carlo sampling of the
deformation probability mass function of the image,
which is defined using the image saliency map. This
allows its use for real-time applications. Experimen-
tal results show that its performance are comparable
or even superior tested against more complex existing
systems. The method keeps its complexity very low
both from a memory and computational perspective,
also leveraging the parallelization of its processes.

Further work will involve overall system improve-
ments and its extension to video resizing. This issue
requires the introduction of a time-coherent saliency
map and further constraints. Additionally, the model
will be embedded in systems making use of retarget-
ing for real-time applications, such as personalized
media content distribution on mobile devices or the
web.
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