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Abstract: In this paper we suggest an improvement to a recent algorithm for estimating the pose and ego-motion of a
camera which is constrained to planar motion at a constant height above the floor, with a constant tilt. Such
motion is common in robotics applications where a camera is mounted onto a mobile platform and directed
towards the floor. Due to the planar nature of the scene, images taken with such a camera will be related by
a planar homography, which may be used to extract the ego-motion and camera pose. Earlier algorithms for
this particular kind of motion were not concerned with determining the tilt of the camera, focusing instead on
recovering only the motion. Estimating the tilt is a necessary step in order to create a rectified map for a SLAM
system. Our contribution extends the aforementioned recent method, and we demonstrate that our enhanced
algorithm gives more accurate estimates of the motion parameters.

1 INTRODUCTION

One of the long-standing aims in robotics research is
the development of algorithms for autonomous nav-
igation. A popular class of such algorithms are the
ones concerned with so called Simultaneous Locali-
sation and Mapping (SLAM), in which a mobile plat-
form, equipped with an array of suitable sensors (laser
scanners, cameras, odometers, sonar, . . . ), explores
and maps the surrounding environment while keep-
ing track of its own location with respect to the map.
The map created in the process should mark notable
objects and landmarks in a way which allows for re-
liable re-identification. The type of map that can be
created is highly dependent on the kinds of sensors
employed and on the environment being mapped, and
can range from sparsely placed points to dense and
detailed textured 3D models.

Using cameras to build the map is becoming in-
creasingly attractive, as they are cheap compared to
many of the other sensors, and since the traditional
obstacle of high computational cost becomes less in-
hibiting with time as computational power increases.
Another advantage of using cameras is that it allows for
utilisation of the increasingly sophisticated methods
and great experience that the computer vision commu-
nity has produced during the past few decades. Indeed,
scene reconstruction from images is a classical and
continually studied problem in computer vision, and

various methods have been proposed for both general
cases and specialised applications.

Many of the successful general reconstruction tech-
niques are based on epipolar geometry, and in partic-
ular the fundamental matrix, which was introduced
independently in (Faugeras, 1992) and (Hartley, 1992).
Such methods make the implicit assumption that the
data are not positioned in one of the so called criti-
cal configurations, and in many practical cases such
degeneracies are indeed very unlikely to occur. How-
ever, one of the less unlikely critical configurations
occurs when the data points are coplanar — indeed,
the application to navigation that we describe in this
paper requires the data points to lie in a plane. Since
planar structures are very common in man-made en-
vironments, this is an area in which specialised al-
gorithms which can avoid degeneracy can have great
advantages.

While invariant local features, for instance SIFT
(Lowe, 2004) and other similar features, are standard
in Structure from Motion (SfM), their use in camera
based SLAM has been less prevalent. One of the main
reasons for this is probably, as observed in (Davison
et al., 2007), that though such features allow for accu-
rate and robust re-identification, their computational
cost has traditionally been obstructive for real time
applications. Although this is essentially still a valid
point, particularly on embedded systems or with high
resolution images, computational power continues to
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improve. In our view, feature based approaches are
inevitably becoming feasible for real-time operation.

2 RELATED WORK

A robot mapping application not only requires an in-
cremental reconstruction, as data becomes available
sequentially, but in contrast to Structure from Motion
approaches such as the popular Bundler system de-
scribed in (Snavely et al., 2008), the order in which
views are added in a more or less predetermined order.
Though the views are added to the reconstruction in a
fixed order, some SLAM approaches allow the robot
path itself to be planned so that the images can be taken
from locations which make the reconstruction better
(Haner and Heyden, 2011), but we will in this paper
consider the path to already be decided. Some very
early work which respects the restriction on the order
of views is (Harris and Pike, 1988), in which a Kalman
filter was used to estimate camera position based on
inter-image point correspondences throughout a short
image sequence. Probabilistic viewpoints based on
extended Kalman filters (EKF) remain popular in later
systems such as the vSLAM system (Karlsson et al.,
2005) and the MonoSLAM system (Davison et al.,
2007).

The systems mentioned above allow general 3D
camera motion, but this is not always necessary or even
desired. A camera that has been mounted onto a mo-
bile platform will typically perform two-dimensional
motion since it remains at a fixed height above the
ground, and with this knowledge one can eliminate
some of the uncertainty which 3D motion allows. Our
work continues in the spirit of (Liang and Pears, 2002)
and (Hajjdiab and Laganière, 2004) and others, in that
we intend to navigate using images of the floor. Since
the scene is planar, the images will be related by planar
homographies.

Liang and Pears find the robot rotation angle j by
noting that the eigenvalues of the inter-image homog-
raphy are (up to scale) 1 and e�ij, and they derive an
expression for the translation from the eigenvectors.
One drawback of this method is that it does not deter-
mine the tilt. Determining the tilt allows a rectified
map to be created, and is therefore highly desirable.

A more recent method described in (Wadenbäck
and Heyden, 2013) starts with estimating the tilt Ryq,
and then performs a QR decomposition of RT

yq
HRyq

to determine j and the translation (tx; ty).
We show in this paper how to extend their estima-

tion algorithm to use more than one homography for
estimating the tilt. This improves robustness to noise
and erroneous measurements.

(a) Original image. (b) Rectified image.

Figure 1: A typical image taken by a camera under the
conditions described in this paper is shown in Figure 1(a). A
rectified version, as if seen straight from above, can be seen
in Figure 1(b). In order to rectify such images, it is necessary
to be able to estimate the camera tilt.

z = 1
floor plane

plane normal camera vector

z = 0

camera centre

Figure 2: The camera moves freely in the plane z = 0, and
can rotate about the normal of the plane, but the angle to the
plane normal (tilt) is held constant.

3 PROBLEM GEOMETRY

We shall consider the navigation of a mobile platform
equipped with a single camera that has been mounted
rigidly onto the platform and directed towards the floor.
This setup means that the camera will move at con-
stant height in a plane parallel to the floor, and have
a constant angle to the plane normal (tilt). Figure 1
shows a typical image from one of our datasets, taken
under the conditions described here. Figure 2 shows
an illustration of the geometrical situation. We will
further assume zero skew and square pixels, and that
the camera parameters remain constant during the mo-
tion (no zooming or refocusing). It will be convenient
to work with a global coordinate system in which the
camera moves in the plane z = 0 and the ground plane
is represented by the plane z = 1.

As already noted, two images will be related by a
planar homography H. We model the camera motion
by a translation t = (tx; ty) and a rotation Rj an angle j

about the normal of the floor plane (the z-axis). Using
homogeneous coordinates in the plane, the motion of
the camera is represented by the transformation RjT ,
with

T =

241 0 �tx
0 1 �ty
0 0 1

35 : (1)

If the camera is tilted, the camera coordinate system
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and the world coordinate system are related by a ro-
tation Ryq = RyRq. This means that the inter-image
homographies will be of the form

H = lRyqRjT RT
yq; (2)

where l 6= 0 is an unknown scale parameter.
Estimating the homographies from the images can

be done using point correspondences and a robust
method such as RANSAC. This is not the focus of
our work, and we will henceforth assume that well-
estimated homographies are available, without con-
cerning ourselves with how they were obtained.

4 PARAMETER RECOVERY

Suppose we have a number of homographies of the
form in (2), that is,

H j = l jRyqRj j T jRT
yq; j = 1; : : :N; (3)

and want to recover the motion parameters. As ob-
served in (Wadenbäck and Heyden, 2013), the prod-
ucts

M j =

24m j
11 m j

12 m j
13

m j
12 m j

22 m j
23

m j
13 m j

23 m j
33

35= HT
j H j (4)

are all independent of j.
An iterative scheme is also presented which alter-

nates between solving for y and q, keeping the other
one fixed. Their paper demonstrates that this can be
accomplished by finding the null space of the matrix

Y j =

24bm j
11� bm j

22 �2bm j
23 bm j

11� bm j
33bm j

12 bm j
13 0

0 bm j
12 bm j

13

35 (5)

in the y case (where bM = RT
q

MRq), and of the matrix

Q j =

24bm j
11� bm j

22 �2bm j
13 bm j

33� bm j
22bm j

12 �bm j
23 0

0 bm j
12 �bm j

23

35 (6)

in the q case (with bM = RT
yMRy). It can clearly be

seen that these matrices have at least rank two, except
in the case where the bottom two rows are identically
zero, so a one dimensional null space is expected. Due
to measurement errors the null space will in practice
be trivial, and a one dimensional approximation is
computed as the singular vector v = (v1;v2;v3) cor-
responding to the smallest singular value. In the y

case, any vector v in the null space should be a scalar
multiple of (c2

y;cysy;s2
y), which gives

y =
1
2

arcsin
2v2

v1 + v3
; (7)

while in the same way, the the solution in the q case is
a scalar multiple of (c2

q
;cqsq;s2

q
), and

q =
1
2

arcsin
2v2

v1 + v3
: (8)

This paper presents the insight that if the tilt Ryq re-
mains constant, then the matrices Y j all should have
the same null space. Instead of considering each Y j
separately, we can therefore solve

Yv =

264Y1
...

YN

375
24 c2

y

cysy

s2
y

35= 0: (9)

In the same way, we may combine the equations for q

into

Qv =

264Q1
...

QN

375
24 c2

q

cqsq

s2
q

35= 0: (10)

The angles are computed from the solution v in the
same way as above using (7) and (8).

5 EXPERIMENTS

For the purpose of comparing the unmodified algo-
rithm outlined in (Wadenbäck and Heyden, 2013) with
our enhanced version, we have randomly generated
a large number of homographies of the form in (3).
Gaußian noise with standard deviation of 0:5° was
added to each of the angles, intended to simulate mea-
surement noise. Figure 3 shows the estimation results
obtained using only one homography at a time, and
Figure 4 shows the results using our proposed method
with five homographies used at each step. The same
number of iterations were used for the two methods.
Note that the scale on the axes is the same in both fig-
ures, for the benefit of easier comparison. It is readily
seen that the proposed method drastically decreases the
number of cases where the algorithm fails to converge.

It should be pointed out that while the results from
the unmodified method can be much improved using
filtering techniques, the same is true for our enhanced
method.

The unmodified algorithm was reported to have
difficulties when the translation was close to a pure
x-translation or a pure y-translation. In the case of an
x-translation, q would be poorly estimated, and con-
versely for a y-translation. Figure 5 shows the x- and
y components of the translation used to generate the
homographies, normalised by the length of the trans-
lation in that step. Certainly, some of the translations
are close to pure x-translations or y-translations, and
some of them do indeed coincide with bad estimates
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Figure 3: Tilt and motion parameters estimated from one
homography at a time using the unmodified method. The
starred parameters are the estimates.

in Figure 3. The proposed method, on the other hand,
handles these translations without significant difficul-
ties, as Figure 4 confirms.

6 CONCLUSIONS

In this paper we have extended the estimation method
in (Wadenbäck and Heyden, 2013) to use more than
one homography to estimate the tilt. This enhancement
produces a robuster and more accurate estimate, which
demonstrably allows the other motion parameters to
be recovered with higher precision. The problems with
ill-conditioned motion patterns that were reported in
for the original algorithm have also been remedied by
using more than one homography at a time.
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Figure 4: Tilt and motion parameters estimated from five
homographies at a time using our proposed method. The
starred parameters are the estimates.
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Figure 5: The x- and y components of the translation that
was used to generate the homographies, normalised by the
length of the translation in that step. Some of the translations
used are apparently close to pure x-translations or pure y-
translations, which were reported to be problematic for the
original algorithm.
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