
Desing of Full-text Search for Database and Linkedin Social
 Network in Electrophysiology

Jan Štěbeták, Roman Mouček and Jan Koreň
Department of Computer Science and Engineering, University of West Bohemia, Univerzitní 8, Pilsen, Czech Republic

Keywords: Neuroinformatics, Electroencephalography, Event-related Potentials, Information Retrieval, Full-text
Search, Index Design.

Abstract: EEG/ERP (electroencephalography, event-related potential) laboratories produce experimental data and
metadata. Authors’ research group has contributed to the building of a neuroinformatics infrastructure by
developing and integrating data management and analytic tools for EEG/ERP research - the EEG/ERP
Portal. With the development of the Portal and the increasing amount of data/metadata, a proper full text
search mechanism for efficient information retrieval is necessary to improve the user experience. The
presented solution combines search over data/metadata stored in an electrophysiological database and in the
LinkedIn social network. Open source search engines, criteria, suitable engine selection, and index design
are presented. Integration of the full-text solution to the EEG/ERP Portal is described.

1 INTRODUCTION

Accessing required information from a large set of
data in a quick and user-friendly manner is no longer
an unachievable goal. Advancements in the field of
information retrieval in the last few decades have
made its applications very common. Full-text search,
as one of such applications, has in fact become an
essential part of everyday’s life in a modern society.

Our research group specializes in the research of
brain activity; especially attention of drivers is
investigated. We widely use the methods of
electroencephalography (EEG) and event-related
potentials (ERP). EEG/ERP experiments usually
take long time and produce a lot of data.

As the members of the XXX National Node of
International Neuroinformatics Coordinating Facility
(INCF, 2011) we participate in definition and
development of standardized formats for
electrophysiology research. Our efforts, following
INCF recommendations (Pelt and Horn, 2007)
resulted in the central custom solution - the
EEG/ERP Portal. This portal serves as a managing
application for storing and managing experimental
data and metadata.

In this paper we briefly present the common
architecture of full-text search engines. Specific
open-source full-text search engines are also

described. Then the basic requirements and selection
of a suitable full-text search engine are introduced.
The next section is focused on creating a document
model for indexed data and metadata stored in
EEG/ERP Portal and articles or discussion in the
LinkedIn social network. Since a model of our
electrophysiological database is specific, an
identification of domain entities had to be made first.
We combine indexing data from both sources (the
database and the LinkedIn) into a common index.
The presented solution of full-text search is
integrated into the EEG/ERP Portal. This solution
will enable users of the EEG/ERP Portal to retrieve
information from database and the LinkedIn in one
place.

2 STATE OF THE ART

This section briefly describes the architecture of full-
text search engines, open source engines and the
EEG/ERP Portal.

2.1 Architecture of Full-text Search
Engines

A full-text search engines comprise several steps in
order to provide a user with search results to a given

238 Štěbeták J., Mouček R. and Koreň J..
Desing of Full-text Search for Database and Linkedin Social Network in Electrophysiology.
DOI: 10.5220/0004748602380243
In Proceedings of the International Conference on Health Informatics (HEALTHINF-2014), pages 238-243
ISBN: 978-989-758-010-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

query. Query is in this case a text phrase, optionally
enriched by special operators which serve for
refining the query. It is a user of the search system
who comes up with the query, expecting that the
system will fulfill his/her information need by
returning relevant search results (Koren, 2013).

2.2 Available search engines

Indri (Indri, 2013) is an academic C++ based text
search engine developed at the University of Massa-
chusetts and is a part of the Lemur Project. Its API
is accessible also from other languages such as Java
or C#. In the technical paper (Turtle, Hedge and
Rowe, 2012) it was shown that Indri is achievers in
comparison with Lucene even slightly better results
in terms of retrieval effectiveness for short queries,
index size and performance.

Lucene (Lucene, 2013) is an open source Java-
based search library. It can enrich applications by its
ability to index data and search over them.
According to (Middleton and Baeza-Yates, 2007),
it belongs to the fastest engines and its performance
is high especially when querying one- or two-word
phrases. Its small size of index it creates is also a
plus when the lack of memory could be an issue.

Solr (Solr, 2013) is an open source search server
built on top of Lucene which runs within a servlet
container, such as Jetty or Tomcat. Because it can be
considered as a Lucene extension, most of the
Lucene terminology is used for Solr as well. Solr
extends Lucene by providing many useful features
related to full-text search, e.g. keyword highlighting,
faceted search, or rich document. Since Solr runs as
a separate process, it communicates with
applications via HTTP requests, which represent
query data, and HTTP responses, representing
search results found in the index, by exposing its
REST-like API.

Sphinx (Sphinx, 2013) is an open source search
server distributed under GPL license. It consists of
an indexing tool, which is also referred to as indexer,
and a searching daemon. Sphinx is written in C++
and is especially designed for indexing database
systems (it integrates well with MySQL). Among its
strengths we can name quick installation and
deployment and a perfect online documentation for
an open source project.

2.3 EEG/ERP Portal

The purpose of the EEG/ERP Portal (Jezek and
Moucek, 2010) (Fig. 1) is to serve as a managing
tool for EEG/ERP experiments that enables to share

and interchange stored experiments (data, metadata,
experimental scenarios, etc.) among interested
laboratories.The EEG/ERP Portal is developed as a
standalone product running on servers in our
department. The usage of the Portal does not require
any software installation, only a web browser.

Data and metadata are stored in the Oracle
relational database. Access to the database is
ensured with the Hibernate framework (Hibernate,
2013). Each database entity is presented by the Java
POJO class. The model of the database will be
described in Section 4.

The EEG/ERP Portal is registered in the
LinkedIn social network. Articles, news, and
discussion are stored in the database and also in the
LinkedIn, where we created a research group. Posts
in the LinkedIn are not stored in our database.
Currently, we design a full-text search solution,
which allows searching information in the database
and also in the LinkedIn. That enables users of the
EEG/ERP Portal to retrieve information from both
sources (database and LinkedIn) in one place.

Figure 1: EEG/ERP Portal.

3 SELECTION OF SUITABLE
FULL-TEXT SEARCH ENGINE

Based on our expectations (such as speed or
independence of data sources) and used technologies
by developing the EEG/ERP Portal, the selection of
full-text search engine is restricted by the following
criteria (Koren, 2013):
 Speed - the speeds of compared search engines

differ only slightly and the observable
differences depend on a specific use case.
Therefore, all listed search engines can be
considered as a suitable solution.

Desing�of�Full-text�Search�for�Database�and�Linkedin�Social�Network�in�Electrophysiology

239

 Integration with the EEG/ERP Portal - The
EEG/ERP Portal is based on Java technologies
and this is why search engines providing Java
API are easier to be integrated to the working
infrastructure and therefore preferred.

 Other Features and Extension – Since we offer
comfort to users of the EEG/ERP Portal, it is
necessary to have a set of built-in features such
as result highlighting, faceted search, synonym
search, etc.

 Independence of Data Sources - The chosen
search engine must be able to accept data from
various sources and not to be limited only to
one specific data source, such as relational
database. The reason behind this is the
mentioned need to index LinkedIn articles as
well as to enable further possible indexing
scenarios in the future, such as indexing .pdf or
XML files.

 Independence of other Technologies - This
criterion means that the search engine should
not rely on a specific technology to be used.
Dependence of Hibernate Search on Hibernate
or heavy orientation of Sphinx on MySQL may
serve as the examples of the search engines
which perform well if certain conditions are
met, but cannot run or do not perform well if
not.

 Community - Numerous and active developer
community also plays a big role in the final
choice. The bigger community around the
search engine is, the higher is the chance that
the engine development will not stop early,
new features will be introduced and found bugs
will be resolved quickly.

The search engines were evaluated based on
these criteria. Since it was stated for the speed
criterion that its differences for the discussed search
engines were not significant, it is not included in the
final evaluation.

Note that the last criterion, community cannot be
evaluated by an exact manner. This criterion
involves the following four points: the size of
mailing lists, the number of search results about the
search engines found on Google, the number of
related blog posts as well as the number of posts on
specialized websites.

According to the evaluation, the Lucene based
full-text search Solr was chosen.

4 INDEX DESIGN

The full-text search engines create an index
document that ensures faster search through source
texts or databases. This section is focused on
identifying domain entities and design of a common
index structure for the electrophysiological database
that the EEG/ERP Portal uses and the LinkedIn
social network.

4.1 Identification of Domain Entities

Data and metadata are logically stored into tables.
Unfortunately, our database contains 71 tables.
Therefore, we do not attach our data model as a
figure. Instead of the data model, we describe core
data that we store. There are tables containing core
data. These tables represent domain entities. Other
tables extend core data. In relation to POJO classes,
the domain entities are represented by parent classes
in the full-text search context. There exist one-to-
one or one-to-many associations between parent
POJO classes and child classes.

The following list shows domain entities. It also
captures relations between parent and child classes
(Koren, 2013):
 Article - Articles are represented by the Article

class. It contains the title and text string fields
that hold values of article title and its text,
respectively. Articles and news are stored in
the database and also in the LinkedIn social
network. Articles can be commented on, so
each article may have one or more article
comments associated. Text of the comments
themselves is contained in the ArticleComment
instances.

 Experiment - This class has the field
environmentNote to describe the experiment
environment. Apart from this field, it also
refers to related Weather, Disease, DataFile,
Hardware and Software objects that include
information about weather, diseases of a tested
subject, related data files, and used hardware
and software during an experiment,
respectively.

 Person - This class contains a person’s name,
surname and a note about the person. Although
there are also associations to other classes, it is
not necessary to include them for indexing and
searching purposes.

 Research group - This class keeps a name, title
and description of a research group and as in
the case of the Person class, its structure

HEALTHINF�2014�-�International�Conference�on�Health�Informatics

240

matches the structure of its domain entity, so
no other referenced class instances are needed.

 Scenario - This class contains its name, title
and description. The class itself corresponds to
its domain entity.

The full-text search functionality is oriented on
searching and displaying information about the
domain entities mentioned above.

Many POJO classes possess the title and
description fields. It is also worth noticing that the
fields description, text, and note contain a text
information and have a similar meaning. On the
other hand, there are several class fields that are
distinctive only for a few or for a single domain
entity such as the temperature field in the
Experiment class.

4.2 Ensuring Document Uniqueness

When storing different types of documents (entities)
under a single index, a problem of document
uniqueness arises. Although a relational database
record can be uniquely identified by its primary key
and a source table, its information about the source
table is lost after its corresponding Solr document is
created. Hence, the original uniqueness is lost as
there might be documents created from records
coming from different tables and having the same id.

The following fields related to unique
identification of documents were added in the Solr
schema file:
 Id - The purpose of this field is to keep an

original ID value.
 Class - Identifies a type of indexed document

(entity). In combination with id value it
provides an identification of a specific object.

 Uuid - This field serves as a unique identifier
for each document in the index. It consists of
two concatenated parts. The first part is the
class name of an indexed object; the second
part is the ID value of the object. For example,
the uuid value of an article with ID 20 is
cz.zcu.kiv.eegdatabase.data.pojo.Article20.

4.3 Proposed Index Structure

Based on the structure of the database, object
hierarchy, and the fields contained in these objects,
the following index fields were configured:
 Title - It is a title of a parent object.
 Text - It is a longer textual sequence such as

description or a note of parent object. It also
includes text of articles or discussion stored in
the database or the LinkedIn within our

 research group.
 Name - It contains a person’s name.
 Source - It determines if the object’s source is

the database or LinkedIn (in case of LinkedIn
articles).

 Temperature - It stores a temperature during an
experiment

 Param_datatype – A model of our database
allows adding additional information about
core tables. This field represents a data type or
value of an additional parameter of a parent
POJO class.

 File_mimetype - It stores mimetype values of
stored data file of parent POJOs. In this case, it
concerns the Scenario class.

 Child_title - It is a multi-valued field which
stores all titles of child objects.

 Child_text - This field is analogous to the text
field. The difference is that it is a multi-valued
field and stores all textual values of child
objects.

 Child_File_mimetype - It is used for the same
reasons as the File_mimetype field, except that
it is used for child object values (e.g. DataFile
class).

5 INTEGRATION INTO EEG/ERP
PORTAL

This section describes necessary implementation
steps to integrate the Solr based full-text search into
the EEG/ERP Portal.

To separate common functionality of indexing
from the specialized step during which a Solr
document is built, the Template Method design
pattern (Gamma, et al. 1994) was used. By applying
this design pattern, the class hierarchy depicted in
Figure 2 was implemented.

The parent abstract class Indexer takes care of
performing the generic steps only by providing an
HttpSolrServer instance.

PojoIndexer class is responsible for indexing
data from the database. We created a set of
annotations, which POJO classes are marked with.
The annotation @Indexed means that the marked
class should be indexed. The annotation @SolrField
marks an attribute of a class and set the relationship
with belonging field in the index schema. The
annotation @SolrId marks an attribute representing
unique identifier of indexed class. Indexing using
annotation interface works in cooperation with Java
reflection.

Desing�of�Full-text�Search�for�Database�and�Linkedin�Social�Network�in�Electrophysiology

241

Figure 2: UML diagram of Indexer classs (Koren, 2013).

LinkedInIndexer class is responsible for indexing
articles, news and, discussion from the LinkedIn
social network within our research group. We use
LinkedIn REST api via Spring Social.
The following example shows the usage of field
selectors in the REST call. The REST call in the
listing gets full information about twenty latest
LinkedIn articles published in the EEG/ERP Portal
group. Note the group-id placeholder which is later
substituted by the real value of the EEG/ERP Portal
group ID.

http://api.linkedin.com/v1/groups/{grou
p-id}/ posts: (creation -timestamp,
title, summary, id, creator:(first -
name ,last -name))? count=20& start =0&
order=recency"

Data stored in the database are indexed on
change. However, LinkedIn articles are independent
of the EEG/ERP Portal and cannot be indexed on
change. Therefore, a periodical indexing was
created. In Figure 3, the created user interface is
shown.

5.1 Addition of a New Entity

The presented index schema is dependent on the
database structure. It usually happens that the
database is modified, new entities are added. When a
new entity is added, two situations arise:
 A new entity includes metadata that are already

covered by the index schema (e.g. titles, texts,
notes, or descriptions). In this case, no change
of the index schema is required.

 A new entity includes new type of metadata. In
this case, it is necessary to add this attribute as

 a field into the index schema.

6 RESULTS

We implemented and successfully integrated a Solr
based solution of full-text search into the EEG/ERP
Portal. The Solr server runs at the address
147.228.63.134/solr.

We created several JUnit tests. These tests covers
use cases such as searching a string in the database
or LinkedIn and returning whole record, indexing
and unindexing (when data is removed from the
database) of records, or verification of proper
indexing (Koren, 2013).

Currently, the database includes approximately
200 experiments. Time requested to display full-text
search results is 1s.

7 CONCLUSIONS

We created a research group in LinkedIn. This group
is connected to the EEG/ERP Portal. Users of our
Portal can contribute to the Portal or the LinkedIn.
Therefore, we presented solution combines full-text
search data/metadata from an electrophysiological
database and the LinkedIn social network. Based on
requirements described in Section 3, the full-text
search engine Solr was chosen.

The index schema presented in Section 4 is
designed according to our database. However, new
entities can be easily added. If a new entity includes
type of metadata that are already included in the
index schema, no change of the index schema is

HEALTHINF�2014�-�International�Conference�on�Health�Informatics

242

Figure 3: Full-text search user interface.

required. Otherwise, the new attribute can be simply
added into the schema.

Our solution puts together search over data and
metadata from the database and news and discussion
from the LinkedIn within our research group.
Integration to the EEG/ERP Portal allows users
searching from both sources in one place.

Our future work will focus on improvement of
the full-text search solution. It includes defining
synonyms of electrophysiology research and
integrating them into the full-text search solution in
the EEG/ERP Portal.

ACKNOWLEDGEMENTS

The work was supported by the UWB grant SGS-
2013-039 Methods and Applications of Bio- and
Medical Informatics.

REFERENCES

International Neuroinformatics Coordinating Facility
(INCF, 2011),

http://www.incf.org/about/what-is-neuroinformatics
Pelt, J. van, Horn J. van, 2007, Workshop report. 1st INCF

Workshop on Sustainability of Neuroscience
Databases. Stockholm.

Middleton, C., Baeza-Yates, R., 2007, “A comparison of
open source search engines,” tech. rep., 10.

http://wrg.upf.edu/WRG/dctos/Middleton-Baeza.pdf
Indri homepage (2013), http://

www.lemurproject.org/indri.php
Turtle, H., Hegde, Y., Rowe, S. A., 2012, “Yet another

comparison of lucene and indri performance”, in

Proceedings of the SIGIR 2012 Workshop on Open
Source Information Retrieval, vol. 46, pp. 64–67.

Lucene homepage (2013), http://lucene.apache.org/
Sphinx homepage (2013), http://sphinxsearch.com
Solr homepage (2013), http://lucene.apache.org/solr
Gamma E., Helm, R., Johnson, R., Vlissides, J., 1994,

Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1
ed.

Hibernate (2013), http://www.hibernate.org/
Jezek, P., Moucek, R., 2010, “System for storage and

management of EEG/ERP experiments – generation
on ontology” Databases and Information System
Integration vol. 1, Madeira: SciTePress, ICEIS.

Koren, J., 2013 “Fulltext search in the database and in
text of social netwoks” Master Thesis, Pilsen.

Desing�of�Full-text�Search�for�Database�and�Linkedin�Social�Network�in�Electrophysiology

243

