
Adaptive Content Sequencing without Domain Information

Carlotta Schatten and Lars Schmidt-Thieme
Information Systems and Machine Learning Lab, University of Hildesheim, Marienburger Platz 22, Hildesheim, Germany

Keywords: Sequencing, Performance Prediction, Intelligent Tutoring Systems, Matrix Factorization.

Abstract: In Intelligent Tutoring Systems, adaptive sequencers can take past student performances into account to select
the next task which best fits the student’s learning needs. In order to do so, the system has to assess student
skills and match them to the required skills and difficulties of available tasks. In this scenario two problems
arise: (i) Tagging tasks with required skills and difficulties necessitate experts and thus is time-consuming,
costly, and, especially for fine-grained skill levels, also potentially subjective. (ii) Learning adaptive sequenc-
ing models requires online experiments with real students, that have to be diligently ethically monitored. In
this paper we address these two problems. First, we show that Matrix Factorization, as performance predic-
tion model, can be employed to uncover unknown skill requirements and difficulties of tasks. It thus enables
sequencing without explicit domain knowledge, exploiting the Vygotski concept of Zone of Proximal Devel-
opment. In simulation experiments, this approach compares favorably to common domain informed sequenc-
ing strategies, making tagging tasks obsolete. Second, we propose a simulation model for synthetic learning
processes, discuss its plausibility and show how it can be used to facilitate preliminary testing of sequencers
before real students are involved.

1 INTRODUCTION

Intelligent Tutoring Systems (ITS) are more and more
becoming of crucial importance in education. Apart
from the possibility to practice any time, adaptivity
and individualization are the main reasons for their
widespread availability as app, web service and soft-
ware. The system generally is composed of an in-
ternal user model and a sequencer, that, according to
the given information, sequences the contents with a
policy. On that side many efforts have been put into
Bayesian Knowledge Tracing (BKT), starting with
not personalized and single skills user modeling. The
limit of this problem formulation became clear soon,
also because the contents evolved together with the
technology. Multiple skills contents were developed,
e.g. multiple step exercises and simulated exploration
environment for learning. In order to maintain the
single skill formulation systems fell back on scaffold-
ing, i.e. a built in structure was inserted in order to
clearly distinguish within the content between the dif-
ferent steps/skills required. As a consequence, the en-
gineering and authoring effort to develop an ITS in-
creased exponentially obliging a meticulous analysis
of the contents in order to subdivide and design them
in clearly separable skills.

Other efforts have been put into adaptive sequenc-

ing. The main approach used can be reconnected to
robotics, which has an availability of accurate simu-
lators and tireless test subjects. The same cannot be
said for ITS where, generally, apart from adults, also
children of any age are involved.
In this paper we propose a novel method of sequenc-
ing based on Matrix Factorization Performance Pre-
diction and Vygotski concept of Zone of Proximal
Development. The main contributions are:

1. A content sequencer based on a performance pre-
diction systems that (1) can be set up and prelim-
inary evaluated in a laboratory, (2) models multi-
ple skills and individualization without engineer-
ing/authoring effort, (3) adapts to each combina-
tion of contents, levels and skills available.

2. Simulated environment with multiple skill con-
tents and students’ knowledge representation,
where knowledge and performance are modeled
in a continuous way.

3. Experiments on different scenarios with direct
comparison with informed baseline.

The paper is structured as follows: in Section 2 one
can find a brief state of the art description, in Section
3 the explanation of the sequencer problem, in Sec-
tion 4 the simulated learning process, in Section 5 the
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performance based policy and predictor, in Section 6
the experimental results and least the conclusions.

2 RELATED WORK

Many Machine Learning techniques have been used
to ameliorate ITS, especially in order to extend learn-
ing potential for students and reduce engineering ef-
forts for designing the ITS. The most used technol-
ogy for sequencing is Reinforcement Learning (RL),
which computes the best sequence trying to maximize
a previously defined reward function. Both model–
free and model–based (Malpani et al., 2011; Beck
et al., 2000) RL were tested for content sequenc-
ing. Unfortunately, the model–based RL necessitates
of a special kind of data sets called exploratory cor-
pus. Available data sets are log files of ITS which
have a fixed sequencing policy that teachers designed
to grant learning. They explore a small part of the
state–action space and yield to biased or limited in-
formation. For instance, since a novice student will
never see an exercise of expert level, it is impossible
to retrieve the probability of a novice student solv-
ing some contents. Without these probabilities the
RL model cannot be built (Chi et al., 2011). Model–
free RL, instead, assumes a high availability of stu-
dents on which one can perform an on-line training.
The model does not require an exploratory corpus but
needs to be built while the users are playing with the
designed system. Given the high cost of an exper-
iment with humans, most authors exploit simulated
single skill students based on different technologies
like Artificial Neural Networks or self developed stu-
dent models (Sarma and Ravindran, 2007; Malpani
et al., 2011). Particularly similar to our approach is
(Malpani et al., 2011), where contents are sequenced
with a particular model–free RL based on the actor
critic algorithm (Konda and Tsitsiklis, 2000), which
was selected because of its faster convergence in com-
parison with the classic Q–Learning algorithm (Sut-
ton and Barto, 1998). Unfortunately, RL algorithms
still need many episodes to converge and will always
need preliminary trainings on simulated students.

Our developed content sequencer is based on stu-
dent performance predictions. An example of state of
the art method is Bayesian Knowledge Tracing (BKT)
and its extensions. The algorithm is built on a given
prior knowledge of the students and a data set of bi-
nary student performances. It is assumed that there
is a hidden state representing the knowledge of a stu-
dent and an observed state given by the recorded per-
formances. The model learned is composed by slip,
guess, learning and not learning probability, which

are then used to compute the predicted performances
(Corbett and Anderson, 1994). In the BKT exten-
sions also difficulty, multiple skill levels and person-
alization are taken into account separately (Wang and
Heffernan, 2012; Pardos and Heffernan, 2010; Par-
dos and Heffernan, 2011; D Baker et al., 2008). BKT
researchers have discussed the problem of sequenc-
ing both in single and in multiple skill environment in
(Koedinger et al., 2011). In a single skill environment
the most not mastered skill is selected, whereas in the
multiple skill this behavior would present a too dif-
ficult content sequence. Consequently, the contents
with a small number of not mastered skills are se-
lected. Moreover, (Koedinger et al., 2011) point out
how in ITS multiple skill exercises are modeled as
single skill ones in order to overcome BKT limita-
tions. We would like to stress that the sequencing
requires an internal skills representation and conse-
quently, together with the performance prediction al-
gorithm, is domain dependent.

Another domain dependent algorithm used for
performance prediction is the Performance Factors
Analysis (PFM). In the latter the probability of learn-
ing is computed using the previous number of failures
and successes, i.e. the representation of score is bi-
nary like in BKT (Pavlik et al., 2009). Moreover, sim-
ilarly to BKT, a table connecting contents and skills is
required.

Matrix Factorization (MF) is the algorithm used
in this paper for performance prediction. It has many
applications like, for instance, dimensionality reduc-
tion, clustering and also classification (Cichocki et al.,
2009). The most common use is for Recommender
Systems (Koren et al., 2009) and recently this con-
cept was extended to ITS (Thai-Nghe et al., 2011).
We selected this algorithm for several reasons:
1. Domain independence. Ability to model each

skill, i.e. no engineering/authoring effort in in-
dividuating the skills involved in the contents.

2. Having comparable results with BKT latest im-
plementations (Thai-Nghe et al., 2012).

3. Possibility to build the system with a common
data set, i.e. without an exploratory corpus.

4. Small computational time on a 3rd Gen Ci5/4GB
laptop and Java implementation: 0.43 s for build-
ing the model with already 122000 lines, negligi-
ble time for performance prediction.

3 CONTENT SEQUENCING IN
ITS

The designed system consists of two main blocks.
The first one is the environment and is represented by
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Figure 1: System structure in a block diagram.

the students playing with the ITS. In our case this role
is simulated because an on-line evaluation is required,
i.e. the sequence optimality can be measured only
after a student worked with it. We excluded the pos-
sibility of collecting an exploratory corpus because
making practice with very easy and very difficult
exercises in random order could be frustrating for the
students, who could be children. Moreover, having
a simulated environment could help gaining the
confidence necessary for experimenting on humans.
Anyway, after a first validation with real students,
only a common data set collection will be necessary
to set up the system with new contents, giving also
the possibility to calibrate the environment and later
use it for new sequencing methods.

The second block consists of different modules,
i.e. the available contents, the previous interactions
of the students with the system (log files), the stu-
dent Performance Predictor and the Sequencer Policy.
We chose a specific Performance Predictor and policy,
but nothing is against using other ones in the future.
When a student plays with the system the next exer-
cise is proposed to him by the sequencer according
to a policy. The Performance Predictor needs the log
files of students playing with the contents considered
to predict their scores in the next contents. The pol-
icy is applied in an adaptive way thanks to the infor-
mation on the predicted scores shared between Per-
formance Predictor and Sequencer. In the following
Sections we will describe the different blocks repre-
sented in Fig. 1.

4 SIMULATED LEARNING
PROCESS

We designed a simulated student based on the follow-
ing assumptions. (1) A content is either of the correct
difficulty for a student, or too easy, or too difficult.
(2) A student cannot learn from too easy contents and
learns from difficult ones proportionally to his knowl-

edge level. (3) It is impossible to learn from a content
more than the required skills to solve it. (4) The total
knowledge at the beginning is different than zero. (5)
The general knowledge of connected skills helps solv-
ing and learning from a content. The last assumption
is more plausible because we assume to sequence ac-
tivities of the same domain. For instance, in order to
solve a fraction addition, a student needs more related
skills: multiplication, fraction expansion etc. It is un-
likely for a student to do a fraction expansion without
knowing how multiplication works. At the same time
the knowledge of multiplication will help him solving
the steps on fraction expansion.
A student simulator is a tuple (S,C,y,τ) where, given
a set S ⊆ [0,1]K of students, si is a specific student de-
scribed as a vector φt . The latter is of dimension K,
where K is the number of skills involved. C ⊆ [0,1]K

is a set of contents, where c j is the j–th content, de-
fined with a vector ψ j of K elements representing
the skills required. φi,k = 0 means student i has no
knowledge skill k, whereas φi,k = 1 means having full
knowledge. τ : S×C → S is a function defining the
follow-up state φt+1 = φt + τ of a student si ∈ S after
working on contents ct

j. In particular S and C are the
spaces of the students and contents respectively. Fi-
nally, a function y defines the performance y(φi,ψ j).
y and τ can be formalized as follows:

y(φi,ψ j) :=max(1− ||α||
||φi||

,0)

τ(φi,ψ j)k :=y(φik,ψ jk)αk

ỹ :=yε (1)

where
αi, j

k = max(ψ jk −φik,0) (2)

and ε is proportional to the beta distribution B (p,q).
We selected p and q in order to have ỹ ∼ B

(
y,σ2

)
,

where σ2 is the variance, i.e. the amount of noise. We
chose the beta distribution because it is defined be-
tween zero and one as the score. Consequently it will
not change the codomain of the y function. The char-
acteristic of the formulas are the following. (1) The
performance of a student on a content decreases pro-
portionally to his skill deficiencies w.r.t. the required
skills. (2) The student will improve all the required
skills of a content proportionally to his performance
and his skill-specific deficiency up to the skill level a
content requires. (3) As a consequence it is not pos-
sible to learn from a content more than the difference
from the required and possessed skills. (4) A further
property of this model is that contents requiring twice
the skills level that a student has, i.e.

∥∥ψ j
∥∥ ≥ 2∥φi∥,

are beyond the reach of a student. For this reason
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Table 1: Simulated learning process with two skills. A sim-
ulated student with φ = {0.3,0.5} scores y and learning τ
after interacting with different contents c j.

c j dc y τk
{0.1,0.1} 0.2 1 {0,0}
{0.5,0.6} 1.1 0.617 {0.12,0.0617}
{0.5,0.7} 1.2 0.515 {0.1,0.1}
{0.9,0.9} 1.8 0 {0,0}

his performance will be zero (y = 0). With a sim-
ple experiment without noise, we can show the plau-
sibility of the designed simulator. We inserted val-
ues in Eqs. 1 as follows. Let us consider a system
with two skills and represent the student knowledge
as φ = {0.3,0.5}.

As it is possible to see in Tab. 1 with the increase
of the content difficulty the learning increases and the
score decreases until ∥ψi∥ ≥ 2

∥∥∥φ j

∥∥∥. The maximal
difficulty level is equal to the number of skills since a
single skill value cannot be greater than one.

5 VYGOTSKI POLICY AND
MATRIX FACTORIZATION

5.1 Sequencer

The designed sequencer is defined as follows. Let
C ⊆C and S ⊆ S be respectively a set of contents and
students defined in Section 4, dc j be the difficulty of a
content defined as dc j = ∑K

k=0 ψ j,k, ỹ : S×C→ [0,1]
be the performance or the score of a student working
on the content, and T be the number of time steps as-
suming that the student is seeing one content every
time step. The content sequencing problem consists
in finding a policy:

π∗ : (C× [0,1])→ C. (3)

that maximize the learning of a student within a
given time T without any environment knowledge, i.e.
without knowing the difficulties of the contents and
the required skills to solve them. A common problem
in designing a policy for ITS is retrieving the knowl-
edge of the student from the given information, e.g.
score, time needed, previous exercises, etc. The pre-
vious mentioned data types are just an indirect repre-
sentation of the knowledge, which cannot be automat-
ically measured, but needs to be modeled inside the
system. Hence, integrating the curriculum and skills
structure is the cause of the high costs in designing
the sequencer.

In this paper we try to keep the contents in the Vy-
gotskis Zone of Proximal Development (ZPD) (Vy-
gotski, 1978), i.e. the area where the contents neither
bore or overwhelm the learner. We mathematically
formalized the concept with the following policy, that
we called Vygotski Policy (VP):

ct∗ = argminc
∣∣yth − ŷt (c)

∣∣ (4)

where yth is the threshold score, i.e. the score that
keeps the contents in the ZPD. The policy will select
at each time step the content with the predicted score
ŷt at time t most similar to yth. We will discuss fur-
ther in the experiment session how to tune this hyper
parameter and its meaning.
The peculiarity of the VP is the absence of the dif-
ficulty concept. Defining the difficulty for a content
in a simulated environment as ours is easy, because
we mathematically define the skills required. In the
real case it is not trivial and quite subjective. Also
the required skills are considered as given in the other
state of the art methods like PFM and BKT, where
a table represents the connection between contents
and skills required. Without skills information not
only BKT and PFM performance prediction cannot
be used in our formalization, also sequencing meth-
ods (Koedinger et al., 2011) have no information to
work with.

5.2 Matrix Factorization as
Performance Predictor

Matrix Factorization (MF) is a state-of-the-art method
for recommender systems. It predicts which is the fu-
ture user ratings on a specific items based on his pre-
vious ratings and the previous ratings of other users.
The concept has been extended to student perfor-
mance prediction, where a student next performance,
or score is predicted. The matrix Y ∈ Rns×nc can be
seen as a table of nc total contents and ns students used
to train the system, where for some contents and stu-
dents performance measures are given. MF decom-
poses the matrix Y in two other ones Ψ ∈ Rnc×P and
Φ ∈ Rns×P, so that Y ≈ Ŷ = ΨΦ. Ψ and Φ are matri-
ces of latent features. Their elements are learned with
gradient descend from the given performances. This
allows computing the missing elements of Y and con-
sequently predicting the student performances (Fig.
2). The optimization function is represented by:

min
ψ j ,φi

∑
j∈C

(yi j − ŷi j)
2 +λ(∥Ψ∥2 +∥Φ∥2) (5)

where one wants to minimize the regularized squared
error on the set of known scores. The prediction func-
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Figure 2: Table of scores given for each student on contents
(left), completed table by the MF algorithm with predicted
scores (right).

tion is represented by:

ŷi j = µ+µc j +µsi +
P

∑
p=0

φT
ipψ jp (6)

where µ, µc and µs are respectively the average per-
formance of all contents of all students, the learned
average performance of a content, and learned aver-
age performance of a student. The two last mentioned
parameters are also learned with the gradient descend
algorithm.

The MF problem does not deal with time, i.e. all
the training performances are considered equally. In
order to keep the model up to date, it is necessary to
re-train the model at each time step. MF has a per-
sonalized prediction, i.e. a small number of exercises
needs to be shown to each student in order to avoid the
so called cold–start problem. Although some solu-
tions to these problems have been proposed in (Thai-
Nghe et al., 2011; Krohn-Grimberghe et al., 2011),
we will show in the experiment session that these as-
pects do not affect the performance of the system, nei-
ther they reduce its applicability. From now on we
will call the sequencer utilizing the VP policy and the
MF performance predictor VPS, i.e. Vygotsky Policy
based Sequencer.

6 EXPERIMENT SESSION

In this section we show how the single elements work
in detail. We start with the student simulator, continue
with the VP and end with some experiments with per-
formance prediction in different scenarios and noise.
A scenario is represented by a number of contents nc,
a number of difficulty levels nd , a number of skills nk,
and a number of students for each group nt

1. All the
first experiments will have no noise, i.e. ỹ = y.

1The MF was previously trained with ns students that
were used to learn the characteristic of the contents. Con-
sequently, the dimensions of the MF during the simulated
learning process are: Ψ ∈ Rnc×P and Φ ∈ R(ns+nt )×P, so
that Y ≈ Ŷ = ΨΦ.

6.1 Experiments on the Simulated
Learning Process

To prove the operating principle of the simulator we
tested basic sequencing methods in a particular sce-
nario. The one we chose is described in Fig. 3, with
nd = 7 and nc = 100. For representation purposes
we created the contents with increasing difficulty, so
that IDs implicitly indicates the difficulty2. The sce-
nario mimics an interesting situation for sequencing,
i.e. when more apparently equivalent exercises are
available. The two policies we used are (1) Random
(RND), where contents are selected randomly, and
(2) the in range policy (RANGE), where each second
content is selected in difficulty order. This strategy
is informed on the domain because it knows the diffi-
culty of the contents. We initialized the students and
contents skills with an uniform random distribution
between 0 and 1. Again for representation purposes
we show the average total knowledge of the students
that is represented by average of the students skills
sum at each time step. We chose to perform the tests
on 10 skills, i.e. the maximal total knowledge possi-
ble is equal to 10. We considered the scenario mas-
tered when the total knowledge of the student group is
greater than or equal to the 95% of the maximal total
knowledge.
Fig. 4 shows the total knowledge of two groups of
nt = 200 students, one group was trained with random
policy the other one with the in range policy. RANGE
is characterized by a low variance in the learning pro-
cess. RND, instead, has a high variance because the
knowledge level of the students at each time step is
given by chance. It is shown that the order in which
the student practices on the contents is important for
the total final learning. Fig. 4 also shows how the
practice on too many contents of the same difficulty
level, after a while, saturates the knowledge acquisi-
tion. All these aspects demonstrate that the learning
progress is plausibly simulated.

6.2 Sensitivity Analysis on the Vygotski
Policy

In order to evaluate the VP we created two more se-
quencing methods that exploit information not avail-
able in reality. The best sequencing knows ex-
actly which is the content maximizing the learning
for a student, for this reason we called it Ground
Truth (GT). Vygotski Policy Sequencer Ground Truth
(VPSGT), instead, uses the Vygotski Policy and the

2A content with ID 2 is easier than a content with ID
100, see Fig. 3

Adaptive�Content�Sequencing�without�Domain�Information

29



true score y of a student to select the following con-
tent. GT and VPSGT can be considered the upper
bound of the sequencer potential in a scenario. In or-
der to select the correct value of yth we plot the aver-
age knowledge level at time t = 11 for the policy with
different yth. From Fig. 5 one can see that the policy
is working for yth ∈ [0.4,0.7], this because of the re-
lationship between Eqs. 1 of the student simulator. In
a real environment the interpretation of these results
is twofold. First we assume yth will be approximately
the score keeping the students in the ZDP. Second,
from a RL perspective, this value would allow finding
the trade–off between exploring new concepts and ex-
ploiting the already possessed knowledge. Moreover,
as one can see in Fig. 6, the policy obtains good re-
sults if compared with GT for some yth, but for others
the policy is outside the ZPD and the students do not
reach the total knowledge of the scenario. In some
experiments we noticed that the width of the curve
in Fig. 5 decreased so that the outer limits of the yth
interval create a sequence outside the ZPD. As conse-
quence we selected the value yth = 0.5 that was suc-
cessful in most of the scenarios.

6.3 Vygotski Policy based Sequencer

The scenario we selected for the tests with the VPS
has nc = 200, nd = 6, nk = 10 and nt = 400. In or-
der to train the MF–model a training and test data set
need to be created. We used ns = 300 students who
learned with all the contents in order of difficulty. We
used 66% of the data to train the MF–model and the
remaining 34% to evaluate the Root Mean Squared
Error (RMSE) for selecting the regularization factor
λ and the learning rate of the gradient descent algo-
rithm. We performed a full Grid Search and selected
the parameters shown in Tab. 2. The sequencing ex-
periments are done on a separate group of nt students.
In order to avoid the cold start problem 5 contents are
shown to them and their scores added to the training
set of the MF. For T = 40 the best content c∗t

j is se-
lected with the policy VP for the nt students, using the
predicted performance ŷt

i j. In order to avoid the dete-
rioration of the model, after each time step the model
is trained again once all students saw an exercise. A
detailed description of the algorithm of the sequencer
can be found in Alg. 1, where Y0 is the initial data set.
As one can see in Fig. 7 the VPS selects the first con-
tent similarly to RANGE. Then the prediction allows
to skip unnecessary contents speeding up the learning.
Once the total knowledge arrives around 95%, the se-
lection policy cannot find contents that fit to the re-
quirements. Consequently the students learn as slow
as the RND group, as one can see from the saturat-

Table 2: Parameters MF.

Parameters Choice
Learning Rate 0.01
Latent Features 60
Regularization 0.02

Number of Iteration 10

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Exercise number
D

iff
uc

ul
ty

, o
r s

um
 o

f t
he

 re
qu

ire
d 

sk
ill

s

Figure 3: Scenario: Content Number and difficulty level.

ing curve. In Fig. 8 GT selects the contents in diffi-
culty order skipping the unnecesary ones. The aver-
age sequence of the VPS, instead, is also with approx-
imately increasing difficulty but in an irregular way.
This is due to the error in the prediction performance.
In conclusion the proposed sequencer gains 63% over
RANGE and 150% over RND.

Algorithm 1: Vygotski Policy based Sequencer.
Input: C, Y0 π, si, T

1 Train the MF using Y0;
2 for t = 1 to T do
3 for All c ∈ C do
4 Predict ŷ(c j,si) Eq. 6;
5 end
6 Find ct∗ according to Eq. 5;
7 Show ct∗ to si with Eq. 1;
8 Add y(si,ct∗) to Yt ;
9 Retrain the MF; // Corrects over- or

underestimation by the MF
10 end

The presented experiments show how the MF is
able, without domain information, to model the differ-
ent skills of students and contents and partially mim-
ics the best sequence, which is the one selected by GT
in Fig. 8.

6.4 Advanced Experiments

In this section we want to show the correct working of
the sequencer changing the parameters of the scenario
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Figure 5: Policy selection, i.e. the performance of the Vy-
gotski policy with different yth at the same time step. Dif-
ferent groups of students learned with the Vygotski policy
with yth values going from 0.1 to 0.9. As shown in the figure
the knowledge levels change according to the yth selected.

nk and nc and later adding noise. In order to do so we
consider the percentage of gain of VPS with respect to
RANGE considering a specific time step t = 30 with
nk = 10 and nd = 6. As one can see in Fig. 10 the gain
obtained by the sequencer depends on the available
number of contents. Since in RANGE each second
content is selected, with nc < 60 there are not enough

Table 3: Baselines Description.

Policy Description
Random (RND) Contents are selected randomly
In Range (RANGE) Each second content is selected

in difficulty order.
Ground Truth (GT) Selects the contents according

to which is the one maximizing
the learning.

Vygotski Policy based Chooses the next content using
Sequencer Ground Truth the policy and the real score of
(VPSGT) a student.
Vygotski Policy based Chooses the next content using
Sequencer (VPS) the policy and the predicted

score of a student.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 T
ot

al
 K

no
w

le
dg

e 
w

ith
 d

iff
er

en
t y

th

Time Step

 

 
GT
yth=0.2
yth=0.3
yth=0.4
yth=0.45
yth=0.5
yth=0.55
yth=0.6
yth=0.7
yth=0.8
yth=0.9
yth=1
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Figure 7: Average Total Knowledge. How the average
learning curve of the students changes over time.
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Figure 8: Average sequence selected by the GT and the
VPS. The VPS approximate the optimal sequence that GT
computes thanks to the real skills of the students.

contents for all time steps. Our sequencer can adapt
without problems to the situation. The optimal point
for the in range policy is when nc = 60 because there
is exactly the necessary number of contents for the
student to learn. When nc > 60 the students see many
unnecessary contents and consequently learn slower.
Fig. 9 with nc = 60, t = 30 and nd = 6 shows the de-
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Figure 9: Gain over RANGE policy varying nk. The gain is
measured at a specific time step in percentage, considering
the average knowledge level of the two groups of students,
one practicing with the RANGE sequencer and one with the
VPS.
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Figure 10: Gain over RANGE policy varying nc. The gain
is measured at a specific time step in percentage, consider-
ing the average knowledge level of the two groups of stu-
dents, one practicing with the RANGE sequencer and one
with the VPS.

pendencies between skills and gain. The experiments
demonstrated a high adaptability of the sequencer to
the different scenarios.
Last we experimented the results robustness adding
noise, i.e. ỹ = yε. We experimented with σ2 ∈ [0,0.5].
As one can see in Fig. 11 with σ2 = 0.1 the Vygotski
sequencers are still able to produce a correct learning
sequence but more time is required. The VPSGT is
the one that suffered the most from the introduction
of noise, probably related to the selection of yth.

7 CONCLUSIONS

In this paper we presented VPS, a sequencer based on
performance prediction and Vygotski concept of ZPD
for multiple skills contents with continuous knowl-
edge and performance representation. We showed
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Figure 11: Effect of noise in the simulated learning process.
Beta distribution noise with σ2 = 0.1.

that MF is able dealing with the most actual problems
of Intelligent Tutoring Systems, like time and person-
alization, retrieving automatically skills required and
difficulty. We proposed VP, a performance based pol-
icy that does not require direct input of domain in-
formation, and a student simulator that partially over-
comes the problem of massive testing with real stu-
dents. The designed system achieved time gain over
random and in range policy in almost each scenario
and is robust to noise. This demonstrates how the se-
quencer could solve many engineering/authoring ef-
forts. Nevertheless, an experiment with real students
is required to better confirm the validity of the as-
sumptions of the simulated learning process. A dif-
ferent evaluation is required for the performance pre-
diction based sequencer. Since MF was already tested
on real data, the main risk, in this case, is represented
by the VP, which requires the tuning of the threshold
score yth on real students. Another minor risk, the
over- or underestimation of the student’s parameters
by the performance predictor, was already addressed
in (Koedinger et al., 2011) and is minimized here by
retraining the model. In conclusion, to use VPS, no
further analysis are required, since the MF will re-
construct the domain information, thanks to continu-
ous score representation. The exploitation of perfor-
mance predictors able to deal with continuous scores
and knowledge representation are the future of adap-
tive ITS. With the results obtained in this paper we
plan to extend such an approach also to other inter-
vention strategies to further reduce the engineering
efforts in ITS.
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