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Abstract: Non-volatile memory (NVM) storage is rapidly dominating the high end markets of enterprise storage, which
requires high performance, and mobile devices, which require lower power consumption. As NVM storage
becomes more popular, its form evolves from that of HDDs into those that fit the market requirements more
appropriately. Such evolution also stimulates the performance improvement because it leads to the changes of
the interface that connects NVM storage with systems. There is a claim that the further improvement of NVM
storage performance makes it better to poll a storage device to sense completion of access requests rather than
to use interrupts. Polling based storage can expand to become main memory based on NVM storage since
there is no complex mechanism required to enable interrupts and access requests are processed one by one.
This paper predicts that NVM storage will be in a form of main memory, and proposes constructing a file
system directly on it in order to overcome its drawbacks when used simply as main memory. The performance
projection of the proposed architecture is that accessing files on such a file system can reduce the overhead
introduced by handling block devices.

1 INTRODUCTION

Non-volatile memory (NVM) storage is rapidly dom-
inating the high end markets of enterprise storage,
which requires high performance, and mobile de-
vices, which require lower power consumption. Flash
memory1 is currently the most popular NVM, and its
storage is called SSDs (Solid State Drives). As NVM
storage becomes more popular, its form evolves from
that of HDDs (Hard Disk Drives) into those that fit the
market requirements more appropriately. Such evo-
lution also stimulates the performance improvement
because it leads to the changes of the interface that
connects NVM storage with systems. The examples
of the currently employed interfaces are PCI Express
and NVM Express.

The investigation results shown by (Caulfield
et al., 2010) and (Yang et al., 2012) posed one in-
teresting claim that the further improvement of NVM
storage performance makes it better to poll a storage
device to sense completion of access requests rather
than to use interrupts. They investigated high perfor-
mance NVM storage architecture and found that the
existing block device interface of the operating sys-
tem (OS) kernel does not always perform well with it.
The reason of this claim is that by excluding the time
required for process context switching and interrupt

1In this paper, flash memory stands for NAND flash
memory.

processing there is no time left for a yielded process
to be executed if processing times of access requests
shorten; thus, it is simply faster for systems to poll a
device in order to wait for completion of access re-
quests.

Such polling based storage device can simplify the
mechanisms that constitute the device since there is
no complex mechanism required to enable interrupts
and access requests are processed synchronously.
Synchronous processing of access requests corre-
sponds to the functionality of main memory; thus,
NVM storage can expand to become main memory
in this aspect. Flash memory is, however, not byte
addressable; thus, DRAM buffer is required in or-
der to connect flash memory to the memory bus of
CPUs, and address translation is performed to export
the whole address space of flash memory. This paper
calls this memory architecture NVM storage based
main memory. eNVy (Wu and Zwaenepoel, 1994) is
an example of such a memory architecture while it as-
sumes that flash memory is byte addressable. This ap-
proach, however, has a significant drawback that there
is no way to predict addresses of future access; thus,
access locality is the only means to mitigate the long
access latency of NVM.

This paper predicts that NVM storage will be in
a form of main memory and connect with the mem-
ory bus; thus, the storage devices are byte address-
able, and CPUs can simply access the data on them by
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using memory access instructions. The drawback of
this architecture is that access latencies vary depend-
ing upon the locations of the accessed data. Based on
the prediction, the paper proposes constructing a file
system directly on NVM storage in order to overcome
its drawbacks when used simply as main memory.

The proposed architecture utilizes NVM storage
based main memory as a base device of a file system.
The file system directly interacts with the device with-
out the interposition of the block device driver frame-
work and the page cache mechanism. This architec-
ture can be a solution to avoid the drawback posed by
NVM storage based main memory, and also has sev-
eral advantages over the existing file system architec-
ture based on block devices. The advantages include
the simplification of the OS kernel architecture and
faster processing of data access requests because of
the simplified execution paths.

We show the performance advantage of the pro-
posed architecture by performing two experiments.
The experiments show the performance impacts im-
posed by the existing block device driver framework.
The results show the significant overhead of the block
device driver framework, and the proposed architec-
ture has a lot of room to achieve high performance
access to data on NVM storage.

The rest of this paper is organized as follows. Sec-
tion 2 describes the background of the work. Section
3 describes the details of the proposed architecture.
Section 4 describes the result of the experiments. Sec-
tion 5 describes the related work. Section 6 summa-
rizes the paper.

2 BACKGROUND

This section describes the background of the work.
It first describes the OS kernel’s interaction with
block devices. It then describes, the implication of
NVM storage performance improvement. It finally
describes the overall architecture of NVM storage
based main memory.

2.1 Interacting with Block Devices

Block devices, such as SSDs and HDDs, are not byte
addressable; thus, CPUs cannot directly access the
data on these devices. A certain size of data, which
is typically multiples of 512 byte, needs to be trans-
ferred between memory and a block device for CPUs
to access the data on the device. Such a unit to trans-
fer data is called a block.

The OS kernel employs a file system to store data
in a block device. A file system is constructed on a
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Figure 1: The existing architecture to interact with block
devices.
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Figure 2: The asynchronous access command processing
and process context switches.

block device, and files are stored in it. In order to read
the data in a file, the data first needs to be read from a
block device to memory. If the data on memory was
modified, it is written back to a block device. A mem-
ory region used to store the data of a block device is
called a page cache. Therefore, CPUs access a page
cache on behalf of a block device. Figure 1 depicts
the hierarchy of CPUs, a page cache, and a block de-
vice as the existing architecture to interact with block
devices.

Since HDDs are orders of magnitude slower than
memory to access data on them, various techniques
were devised to amortize the slow access time. The
asynchronous access command processing is one of
commonly used techniques. Its basic idea is that a
CPU executes another process while a device pro-
cesses a command. In Figure 2, Process 1 issues a
system call to access data on a block device. The
kernel processes the system call and issues an access
command to the corresponding device. The kernel
then looks for the next process to execute and per-
form context switching to Process 2. Meanwhile, the
device processes the command, and sends an interrupt
to notify its completion. The kernel handles the inter-
rupt, processes command completion, and performs
context switching back to Process 1. Tproc2 is a time
left for Process 2 to run. Because HDDs are slow and
thus their command processing time is long, Tproc2 is
long enough for Process 2 to proceed its execution.

2.2 Implication of NVM Storage
Performance Improvement

The performance of flash memory storage has been
improved by exploiting parallel access to multiple
chips (Josephson et al., 2010), and newer NVM
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technologies inherently achieve higher performance.
Such higher performance changes a premise that de-
vised the asynchronous access command processing
to amortize the slow access time of block devices, and
can affects how the OS kernel manages the interaction
with NVM storage.

One of such possibilities is a claim made by
(Caulfield et al., 2010) and (Yang et al., 2012). The
claim compares the asynchronous access command
processing with the synchronous processing, and
shows that the synchronous processing is faster. The
claim was supported by the experiments performed by
employing a DRAM-based prototype block storage
device, which was connected to a system through the
PCIe Gen2 I/O bus. For a 4KB transfer experiment
performed by (Yang et al., 2012), the asynchronous
processing takes 9.0 µs for Process 1 to receive data
from the block device, and Tproc2 is 2.7 µs. In contrast,
the synchronous processing takes only 4.38 µs. The
difference is 4.62 µs, which is longer than Tproc2 of
the asynchronous processing; thus, the synchronous
processing saves the overall processing time.

As the I/O bus becomes faster, the command pro-
cessing time of a device becomes shorter; thus, Tproc2
also becomes shorter because the context switching
time remains the same. Therefore, there will be no
useful time left for another process while waiting for
command completion.

2.3 NVM Storage based Main Memory

High performance NVM storage makes asynchronous
processing of access requests meaningless as de-
scribed above. Moreover, most of the current NVM
storage devices equip with a certain amount of
DRAM as a buffer to accommodate transient data.
Though the sizes of DRAM buffer vary in accord with
their targets and prices, devices with 1GB of DRAM
buffer can be found among recent products.

Such facts easily make NVM storage expand to
become main memory. By making it directly con-
nect to CPUs through a memory bus, there is no com-
plex mechanism required to enable the asynchronous
access command processing, and access requests are
simply processed synchronously. In order to make
NVM storage work as main memory, the whole ad-
dress space made available by NVM storage needs to
be addressable by CPUs while NVM storage cannot
be directly connected to CPUs. Since a DRAM buffer
is connected to CPUs through an address translation
mechanism, the address translation mechanism en-
ables mapping of DRAM to NVM storage. This paper
calls this memory architecture NVM storage based
main memory, and Figure 3 depicts it. Making NVM
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Figure 3: NVM storage based main memory architecture.

storage work as main memory is not a new idea as it
was researched when flash memory appeared. eNVy
(Wu and Zwaenepoel, 1994) is such an example.

Newer NVM technologies, such as PCM and
ReRAM, are byte addressable and provide higher per-
formance than flash memory. They, however, have
limited write similar to flash memory; thus, they can-
not simply replace DRAM, and a DRAM buffer is re-
quired to place frequently accessed data. Therefore,
NVM storage based main memory is also legitimate
for such newer NVM technologies.

This approach, however, has a significant draw-
back that access latencies vary depending upon the lo-
cations of the accessed data. If the data is on a DRAM
buffer, the access latencies are comparable to DRAM.
If the data is on NVM, the access latencies can be
significantly longer. The problem is that there is no
generally working way to predict addresses of future
access. If addresses of future access can be predicted,
the data of these addresses can be read ahead in the
DRAM buffer in order to mitigate the long access la-
tency of NVM. Main memory is accessed by physical
addresses. Because physical addresses do not provide
any information of higher abstractions that can be clue
to predict addresses of future access, no useful infor-
mation is available. Therefore, access locality is the
only means to accommodate frequently accessed data
in the DRAM buffer.

3 PROPOSED ARCHITECTURE

This section describes the proposed architecture that
constructs a file system on NVM storage based main
memory.

The proposed architecture utilizes NVM storage
based main memory as a base device of a file sys-
tem. NVM storage persistently stores the data of a file
system, and CPUs access the data through a memory
bus. The file system directly interacts with the de-
vice through the memory interface; thus, the block
device driver for NVM storage is not required. Files
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in the file system can be directly accessed and also
mapped into the virtual address spaces of processes
since files reside on memory; thus, there is no need to
copy the data of files to a page cache. Therefore, the
page cache mechanism is not required, either.

This architecture can be a solution to avoid the
drawback posed by NVM storage based main mem-
ory. File systems are designed to allocate the blocks
referenced by a single file as contiguous as possi-
ble since contiguous blocks can be accessed faster
on HDDs. Such contiguous blocks make it easy to
read ahead blocks in the DRAM buffer. Moreover,
recent advances of file systems and storage architec-
ture bring the concept of object based storage devices
(OSDs), and higher abstractions are introduced and
made available in storage. Such an architecture also
enables to take advantage of the knowledge of higher
abstractions for the prediction of future access. It
should also be possible for user processes to give hints
to NVM storage based main memory in order to read
ahead blocks since user processes should have knowl-
edge of their access patterns.

The architecture also has several advantages over
the existing file system architecture based on block
devices, such as the simplification of the kernel archi-
tecture and faster processing of data access requests
because of the simplified execution paths in the ker-
nel. The kernel architecture can be significantly sim-
plified since the architecture does not require block
device drivers and a page cache. File systems di-
rectly interact with NVM storage through the mem-
ory interface although additional command interface
may be needed to communicate with it in order to ex-
change hint information. The simplified architecture
can stimulate active development of more advance
features that take advantage of NVM storage based
main memory. Accessing data in a file becomes much
faster since there is no need to go through a com-
plex software framework that consists of a page cache
mechanism and block device drivers in the kernel.
Such a complex software framework paid off when
block devices are as slow as HDDs. High perfor-
mance NVM storage makes it outdated, and can rather
take advantage of the simplified execution paths in the
kernel.

4 EXPERIMENTS

This section shows the performance advantage of the
proposed architecture. We performed two experi-
ments in order to show the performance impacts im-
posed by the existing block device driver framework.
We performed the experiments on the QEMU system

emulator, and measured the number of instructions re-
quired to read and write certain sizes of a file from a
user process by using read and write system calls on
the Linux kernel, of which version is 3.4. The NVM
storage based main memory is emulated by memory;
thus, no extra overhead is considered. The user pro-
cess allocates a 8KB buffer for reading and writing.

For the measurements of file reading, the file was
read when its data is not cached; thus, the measure-
ments include the costs of page cache allocation if
applicable. For the measurements of file writing, the
file was written when all the blocks of the file were
allocated; thus, the measurements do not include the
costs of block allocation.

4.1 Performance Impact of I/O Request
Scheduling

The first experiment measures the performance im-
pact of I/O request scheduling involved in the block
device driver framework. The I/O request scheduling
is especially necessary for HDDs. It queues access
requests and sorts them, so that it can minimize seek
times, which are the major factor of access latencies.
The I/O scheduler is, however, unnecessary for NVM
storage of which random access performance is much
better than HDDs. Therefore, it is recommended for
NVM storage to use the noop mode, which stands for
no operation, of the I/O scheduler, in order to mini-
mize the overhead. The noop mode still involves sim-
ple queueing.

The synchronous access of NVM storage allows
the I/O scheduler to be skipped completely. When
skipped, each access request is processed in the order
of issuing. By comparing the noop mode of the I/O
scheduler and the synchronous access mode, it is pos-
sible to reveal the performance impact of I/O request
scheduling. We developed a ram disk block device
driver that can choose the use the noop mode of the
I/O scheduler or the synchronous access mode.

Figure 4 and 5 show the results of file reading and
writing with and without the I/O request scheduling,
respectively. We used the three file systems, Ext2,
Ext4, and Btrfs, for the measurements in order to see
the differences of the processing costs. In the figures,
queueing means the I/O request scheduling is used.

The results show the significant overheads of the
I/O request scheduling. For file reading, Ext2, Ext4,
and Btrfs performs 4.69x, 4.75x, and 2.02x slower
with the I/O request scheduling than the synchronous
access, respectively. For file writing, Ext2, Ext4, and
Btrfs performs 3.52x, 3.31x, and 1.48x slower with
the I/O request scheduling than the synchronous ac-
cess, respectively. The results advocate that the syn-
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Figure 4: The experiment result of file reading with and
without I/O request scheduling.
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Figure 5: The experiment result of file writing with and
without I/O request scheduling.

chronous access of NVM storage can reduce the I/O
processing cost significantly, and the processing cost
of the I/O request scheduling can pay off only with
slow storage devices.

The results also clearly show the differences of
file system performance. Btrfs is the slowest among
the three file systems that were used for the measure-
ments although it is the most functionally rich file sys-
tem. Ext2 is the fastest but the functionally simplest.
Ext4 performs comparably to Ext2 with more func-
tionality than Ext2.

4.2 Performance Impact of XIP

The second experiment measures the performance im-
pact of the XIP (Execution-In-Place) feature in order
to seek the further performance improvement. The
XIP feature is for byte addressable devices, such as
ram disks, and enables direct access to blocks with-
out going through a page cache. Since the XIP fea-
ture does not require a page cache, there is no need
to copy data to a page cache; thus, it incurs less pro-
cessing cost. The XIP feature requires device drivers
to support the direct access interface; thus, we imple-

0 !

100,000 !

200,000 !

300,000 !

400,000 !

500,000 !

600,000 !

700,000 !

800,000 !

900,000 !

1,000,000 !

1! 32! 64! 128! 256! 512!

Th
e 

nu
m

be
r o

f e
xe

cu
te

d 
in

st
ru

ct
io

ns
 [1

/1
00

0]
�

File size [MB]�

PRAMFS (XIP)!
Ext2 (XIP)!
Ext2!

Figure 6: The experiment result of file reading with and
without XIP.
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Figure 7: The experiment result of file writing with and
without XIP.

mented the interface in our ram disk driver.
Figure 6 and 7 show the results of file reading

and writing with and without the XIP feature, re-
spectively. We used the two file systems, Ext2 and
PRAMFS. We chose Ext2 because it is the fastest file
system as shown in the previous experiment. We also
chose PRAMFS because PRAMFS is a file system
that directly access memory and does not require a
device driver. In the figures, XIP means the XIP fea-
ture is used.

The results show the XIP feature can accelerate
the file access performance even further. For file read-
ing and writing, Ext2 with XIP performs 2.92x and
3.42x faster than without XIP, respectively. PRAMFS
is even faster than Ext2 with XIP. It is 1.36x and
1.26x faster than Ext2 for file reading and writing,
respectively. The cumulative performance gains by
both XIP and the exclusion of I/O request scheduling
for file reading and writing are 13.69x and 12.03x,
respectively, on Ext2. If further acceleration made
possible by PRAMFS is included, the gains become
18.61x and 15.15x, respectively.

From the above experiment results, constructing a
file system on NVM storage based main memory en-
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ables significantly higher performance of file access
than using the block device framework by removing
the overheads of the framework.

5 RELATED WORK

eNVy (Wu and Zwaenepoel, 1994) proposes NVM
storage based main memory. It assumes the utiliza-
tion of NOR flash memory, which is byte address-
able and of which read access latency is compara-
ble to DRAM. Moneta (Caulfield et al., 2010) is a
storage array architecture designed for NVM. While
its evaluation revealed the necessity of reducing the
software costs to deal with block devices, it does not
consider the removal of the block device interface.
(Yang et al., 2012) also investigated the software costs
to deal with block devices on the premise that PCIe
gen3 based flash storage devices will become even
faster. While it proposed the synchronous interface
to block devices, it is still based on the block device
interface. (Tanakamaru et al., 2013) proposed a stor-
age state storage device that is a hybrid of flash mem-
ory and ReRAM. Their hybrid architecture is simi-
lar to the NVM storage based main memory, they do
not discuss the interaction with a file system. (Meza
et al., 2013) describes the idea to coordinate the man-
agement of memory and storage under a single hard-
ware unit in a single address space. They focused
energy efficiency, and did not propose any software
architecture. (Condit et al., 2009) and SCMFS (Wu
and Reddy, 2011) proposed the file systems that were
designed to be constructed directly on NVM. They,
however, have no consideration of hybrid storage ar-
chitecture.

6 SUMMARY AND FUTURE
WORK

Non-volatile memory (NVM) storage is becoming
more popular as its performance and cost efficiency
improve. High performance NVM storage can expand
to become NVM storage based main memory since
polling based access is faster and its hardware can be
simplified. This paper proposed constructing a file
system directly on NVM storage based main memory
in order to overcome its drawbacks when used simply
as main memory. The performance projection of the
proposed architecture is that accessing files on such
a file system can reduce the overhead introduced by
handling block devices.

We are currently developing a simulation environ-

ment of NVM storage based main memory based on
a virtual machine. By employing a virtual machine
environment, the simulation of NVM storage and its
interface with the DRAM buffer becomes possible.
It also enables more precise performance evaluation
with realistic benchmark and workload.
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