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Abstract: In this paper a model has been developed which intends to simulate the increase of self-consumption of 
photovoltaic (PV)-power by storing energy in electric vehicle (EV) using smart grid technology in the 
residential sector. Three different possible smart grid control algorithms for a micro-grid consisting of solar 
panels, a household and an EV are presented that manage the (dis-)charging profile of an EV, either in real-
time or using linear optimization using predictions for PV-power and electricity demand. The different 
control algorithms are simulated for a year using data for PV-power and electricity demand from the 
Netherlands and one specific EV. Preliminary results of the model are presented, showing that all control 
algorithms could significantly increase self-consumption and reduce peaks in electricity demand from the 
main grid. Although the difference in performance of the control algorithms for self-consumption is 
marginal, we find that linear optimization works better than the real-time algorithms for peak reduction.  

1 INTRODUCTION 

The worldwide increase of electricity demand poses 
major challenges in the energy sector. Since 1971, 
the final consumption of electricity has increased 
four-fold to 60 PJ in 2010 (IEA, 2012) and is 
expected to further increase due to growing global 
population and welfare. Issues related to this 
development include availability, cost and 
environmental issues such as global warming and 
depletion of resources. While the industrial sector 
has the highest demand for electricity, demand in the 
residential sector shows the highest increase in 
Europe (Bertoldi and Atanusiu, 2008) and is 
therefore an important sector for changes in 
electricity provision and distribution.  

Another important sector contributing to global 
warming is the transport sector. Globally the 
contributions of the transport sector to greenhouse 
gas (GHG)-emissions amounted to nearly 20% in 
2009 (Hoen et al., 2009). According to the European 
Federation for Transport and Environment (2011) 
CO2 emissions from the European transport sector 
have increased by 29% since 1990. 

Electric vehicles (EVs) are a promising 
technology for reducing the environmental burden of 

road transport (Essen, et al. 2011). If EV sales 
increase it can be beneficial for reducing GHG-
emissions, but it also creates another issue; 
electricity demand will increase even further. Also, 
the typical charging pattern of EVs without a control 
system coincides roughly with that of households 
(E-laad, 2012), which is high in the morning and the 
evening and low in the afternoon; it thus contributes 
to existing peaks in electricity demand in the 
residential sector. 

PV technology can be part of the solution to 
problems relating with electricity and transport, 
since there are no emissions of greenhouse gasses 
during electricity production. If PV electricity is 
used to power EV’s, transport with EV will cause 
even less or zero GHG emissions. An important 
advantage of PV for the residential sector is its 
scalability; even single households can use this 
technology. 

However, the mismatched production and load 
curve for PV for domestic use poses a challenge. PV 
installations produce most electricity around noon, 
when solar insulation is high, while electricity 
demand is usually low then. In addition, solar power 
supply may be variable due to variations in cloud 
coverage.  
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Strategies to deal with these issues are for 
instance demand response (DR) and electricity 
storage (Castillo-Cagigal et al., 2011): in their paper 
DR is defined as shifting load demand in order to 
optimize electricity demand. Optimization goals are 
for instance peak-shifting (flattening load demand 
curve) or increasing self consumption (consumption 
of locally produced electricity behind the meter) .  

Smart grid technology combines the traditional 
electricity grid or microgrid (a local, low-voltage 
distritibution system) with information and 
communication technologies in order to add 
‘intelligence’ to the grid (Verbong et al., 2012). DR 
is an essential aspect of smart grids, and is achieved 
by turning appliances on and off within a certain 
timeframe.  

The main power grid can be used as virtual 
storage for electricity. When supply is higher than 
demand, electricity can be fed back and sold to the 
grid and vice versa. This is an interesting option, 
because in that case an expensive battery is not 
needed. However, with increasing numbers of PV-
installations this strategy can become problematic, 
because of the increased power transport over the 
electricity grid. This will cause the need for more 
investments in the grid in order to prevent overloads. 
In response to this threat, several countries in Europe 
have started implementing policies to stimulate self-
consumption (Castillo-Cagigal et al., 2011). 

PV electricity could also be stored in EV 
batteries. This way EVs can help increase self-
consumption.  Furthermore, by using PV electricity 
to power EVs GHG emissions for personal 
transportation are reduced.  

In this paper the potential of combining smart 
grid technology with electricity storage in EVs for 
increasing self-consumption in the residential sector 
is investigated. This is done by creating a model of a 
microgrid containing a household, solar panels and 
an EV and simulating the effect on self-consumption 
of PV-power of the system using smart grid 
technology. The baseline for the potential is the 
absence of a smart grid and is called “Uncontrolled 
Charging”. The strategies investigated are “Real-
time Controlled Charging”, “Real-time Controlled 
Charging and Discharging”, and “Linear 
Programming”. 

In section 2 the methodology is presented: it 
includes the structure of the microgrid (2.1), the 
proposed smart grid systems (2.2) and evaluation 
method (2.3). In section 3 the first simulation results 
are presented, analyzed and compared. Section 4 
concludes the paper. 

2 METHODOLOGY 

The potential of increasing self-consumption by 
storing PV energy in EVs is investigated by 
performing computer simulations and evaluating the 
results on performance indicators for self-
consumption and peak-reduction. 

The basic input for the model is the total 
electricity demand of households per time-step, the 
supplied PV power per time-step and the technical 
specifications and planned use (average trip 
duration, distance and number of trips per week) of 
the EVs. Based on these inputs the electricity 
distribution for each time-step t is decided. 

2.1 Micro-grid Model 

The micro-grid contains a PV-installation, a 
household with electricity demand, an EV and a 
connection to the main grid; all elements are 
connected. The PV-power and household electricity 
demand are considered uncontrollable, Demand Side 
Management is not taken into account here, while 
the EV loading pattern is partly controllable and 
partly uncontrollable (when energy is needed for 
trips). 

2.1.1 PV and Electricity Demand 

The PV-installation provides electricity to the 
microgrid. Data for PV-power profiles per time-step 
is provided by Robin Berg from the company 
LomboXnet. The dataset relates to a PV-installation 
of 10 kWp in Utrecht, the Netherlands and is 
available at hourly time resolution from July 6th 
2011 to December 31st 2012. For this paper it is 
assumed that the simulated household has 8 panels 
of 250 Wp available, which leads to an estimated 
annual yield of 1700 kWh assuming an annual yield 
of 850 kWh/kWp, typical for the Netherlands. 

The household has a certain electricity demand 
profile that must be met at all times. Data for 
household electricity demand is provided by Felix 
Claessen and is based on measurements by Liander 
(Claessen, 2012). The dataset relates to 400 
households in the Netherlands and is available per 
15 minutes for a week in February 2008. The weekly 
data is repeated for a year multiplied by a factor per 
week based on measurements from Liander in 2007. 
In this research only the households are selected that 
use 3500  20% kWh per year. 
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2.1.2 Electric Vehicle 

The battery of the EV is used as storage for excess 
PV-power and energy can be extracted from it when 
there is shortage of PV-power. The EV is also used 
to make trips; energy needed to make trips is 
considered inelastic demand and must be met at all 
times. When an EV is on a trip it is not available to 
exchange energy with the micro-grid. It is assumed 
that on average three trips per week are made with 
the EV, lasting between 4 and 8 hours, taking place 
between 8:00 and 22:00 and using between 20% and 
80% of the battery capacity. 

Without a smart grid program, the EV, if 
connected, will always charge until its full. This 
strategie is called “Uncontrolled Charging” and is 
represented by equation (1). 

If EEV t 1 CEV  t  tl

 PEV ,in t  PEV ,in,max  
(1)

With EEV(t) the energy contained in EV-battery, 
CEV the battery capacity, tl  the time-steps for which 
the EV is at the loading station, PEV,in(t) the EV 
charging power and PEV,in,max(t) the maximum EV 
charging power. 

One EV is simulated, with technical 
specifications based on Tesla Model S (Tesla, 2013). 
The technical specifications are presented in table 1. 

With EEV,min the minimum energy in EV-battery, 
PEV,out,max(t) the maximum EV discharging power 
and ηEV,in and ηEV,out

 the (dis-)charging efficiency. 

Table 1: Technical specifications of simulated EV. 

CEV (kWh) 85 
EEV,min 20% CEV

Energy consumption (kWh/km) 0.2 
Typical range (km) 340 
PEV,in,max and PEV,out,max (kW) 22 
EV,in and EV,out 80% 

2.2 Smart Grid Programs 

In this section several control algorithms for 
electricity distribution within the micro-grid are 
proposed. All control algorithms require trips to be 
planned in advance. The minimum amount of energy 
in the battery is 20% allowing for short emergency 
trips. 

2.2.1 Real-time Controlled Charging 

“Real-time controlled charging” uses the difference 
between PPV and Pload for every time-step t. Based 
on the energy content of the EV the loading pattern 

is decided. In this algorithm, it is not possible to 
extract energy from the EV in order to cover 
electricity demand of the households.  

First EEV,req, the minimum amount of energy in 
the EV taking into account energy needed for trips 
and maximum charging power, is defined in 
equation (2). 

If t  t 
EEV ,trip

PEV ,in,max

, ttrip









 EEV ,req 

EEV ,trip  PEV ,in,max  ttrip  t  EEV,min

If t  t 
EEV ,trip

PEV ,in,max

, ttrip









 EEV ,req  EEV,min

 
(2)

With EEV,trip the total energy used for the trip and 
ttrip the start-time of the trip. 

The loading pattern is then defined by equations 
(3), (4), (5) and (6). 

PEV ,in t   PEV ,in,PV t  PEV ,in ,grid t  (3)

If Pload t   PPV t  EEV t 1   CEV  t  tl

PEV ,in,PV t  EV ,in PPV t  Pload t  
 (4)

If EEV t 1 PEV ,in,PV t   EEV ,req t  t  tl

PEV ,grid t   EEV ,req t  EEV t 1 PEV ,in,PV t 
 (5)

PEV ,in t  PEV ,in ,max
 (6)

With PEV,in,PV(t) the PV-power used for charging 
the EV, PEV,in,grid(t) the power from the main grid 
used for charging the EV, PPV(t) the available PV-
power and Pload(t) the total load demand of the 
household. 

Equation (3) denotes that the EV is charged with 
power from the PV-installations and from the grid. If 
there is more PV-power than electricity demand, the 
EV starts to charge until it is full or until there is no 
more excess PV-power, see equation (4). The EV 
only extracts energy from the grid when there is 
shortage of PV-power in order to make a trip, see 
equation (5). Finally, equation (6) makes sure the 
total power into the EV cannot exceed the maximum 
charging power. 

2.2.2 Real-time Controlled Charging and 
Discharging 

This program uses the same equations as “real-time 
controlled charging”, but is also able to extract 
energy from the EV in order to cover electricity 
demand of households. The additional equations are 
presented in (7) and (8). 
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If Pload t  PPV t  EEV t 1  EEV ,req t  t  tl

 PEV ,out t  EV ,out
1 Pload t  PPV t  

 (7)

PEV ,out t  PEV ,out ,max
 (8)

2.2.3 Linear Programming 

Increasing self-consumption of PV-power by 
controlling the loading pattern of an EV can be 
described as a linear optimization problem and 
solved by using linear programming. Linear 
programming is a method to solve constrained 
optimization problems. Constrained optimization is 
a technique used often in research on smart grids. 
Recent examples are Guo et al. (2012), Silva et al. 
(2012), Tanaka et al. (2011), González Vayá and 
Andersson (2012). 

The variables used in the linear program are 
PEV,in,PV(t), PEV,grid(t), PEV,out(t), for every time-step t. 
In order to maximize self-consumption, the PV-
power used to charge the EV is maximized. This 
results in the following problem: 

max PEV ,in ,PV

t

 t  (9)

subject to the following constraints: 

   , , , , , , ,EV in PV EV in grid EV in max lP t P t P t t    (10)

 , , , ,EV out EV out max lP t P t t   (11)

EV ,in PEV ,in,PV t '  PEV ,in,grid t'  
t '1

t



 EV ,out
1 PEV ,out t' 

t '1

t


 EEV ,req t  EEV ,trip t  EEV 0 , t  tl

 

(12)

EV ,in PEV ,in,PV t '  PEV ,in,grid t'  
t '1

t



 EV ,out
1 PEV ,out t' 

t '1

t


CEV t  EEV ,trip t  EEV 0 , t  tl

 
(13)

PEV ,in,PV t  PPV t  Pload t , t  tl  (14)

PEVi ,out  Pload t PPV t , t  tl  (15)

With dummy variable t’. Constraints (10) and 
(11) ensure that the maximum (dis-)charging power 
is not exceeded. Constraints (12) and (13) ensure 
that the energy in the EV is sufficient for trips and 
does not exceed the battery capacity. Constraints 

(14) and (15) ensure that not more energy is (dis-
)charged then there is excess or shortage of PV-
power (when there is not enough PV-power for trips 
energy is extracted from the grid). Furthermore, all 
variables are non-negative. 

Contrary to the real-time programs linear 
programming is based on perfect information; all the 
constraints are known for all time-steps t. However, 
PV-supply and electricity demand are not known 
exactly in advance. In order to provide realistic 
prediction of how effective this program would be in 
reality, some assumptions have been made. In this 
paper, the method is called “realistic linear 
programming”. 

It is assumed that the calculations are made at 
midnight and are based on the load pattern from the 
previous day.  An exception is made for weekends, 
since weekend load demand differs significantly 
from weekdays. However, the data is only available 
for a week. Because of this predictions for Saturdays 
will be based on data for Sundays and vice-versa. 
The input for PV is based on PV-power predictions. 
It is assumed that prediction deviates from the real 
value with a standard deviation  of 10%. This 
results in the following equations: 

Pload ,prediction t  Pload ,real t  24h  (16)

PPV ,prediction t  PPV ,real t 10% (17)

The linear program is then executed with the 
predicted values, while it is evaluated with the real 
values. 

2.3 Evaluation 

All programs are simulated for each month of the 
year. Based on the simulations the potential of 
increasing self-consumption  (SC) is calculated. 
Self-consumption is defined as the relative amount 
of PV-power for period T, with starting point T0, 
used by either the households or the EV, see 
equation (18). 

SC T  
min PPV t ,Pload t  PEV t  

PPV t tT0

T

 (18)

A second indicator, relative peak reduction (RPR) is 
also used for evaluation. RPR compares the 
deviation from the average of the load demand for 
the main grid Pgrid,tot(t), defined in equation (19), 
with a control algorithm, denoted as Pgrid,tot,control(t), 
to “uncontrolled charging”, denoted as Pgrid,tot,no 

control(t),  and is defined in equation (20): 
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Pgrid ,tot t  Pload t  PEV t  PPV t  (19)

RPR T  
Pgrid ,tot,control t  Pgrid ,tot,control t 

tT0

T



Pgrid ,tot,no control t  Pgrid ,tot,no control t 
tT0

T

  
(20)

So for example, an RPR-score of 1 indicates no 
relative peak reduction compared to “uncontrolled 
charging”, a RPR-score of 0 means load demand is 
totally flat for that day and a RPR-score above 1 
would mean that there are higher peaks compared to 
“uncontrolled charging”. 

3 RESULTS 

In this section, the first results from simulations are 
shown. The results are based on 20 simulations per 
month for each smart grid program. In figure 1, 
examples of individual runs for each program are 
given. They are based on the same load and PV 
profile and EV-trip. 

In the case of “uncontrolled charging”, the EV 
arrives home in the evening and starts charging 
when there is no PV-power available. In the cases of 
“Controlled charging” and “Controlled charging and 
discharging” the EV only loads in times of excess 
PV-power, but there is still a large peak in the 
charging profile, since the EV needs to load much  
 

 
Figure 1: Results of an individual full day run for each control algorithm. The orange bar shows the period during which the 
EV is being used for a trip. 
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Figure 2: Mean self-consumption and standard deviation of 100 simulations of each control algorithm for each month. 

 

Figure 3: Mean peak reduction and standard deviation of 100 simulations of each control algorithm for each month. 

more than there is PV-power available. Note that the 
latter total load is very small outside the peak. 

For both programs using linear optimization the 
peaks in energy use are much smaller than for the 
other programs, since the EV never charges at full 
power, but at 20-25%. Because the requirements for 
the trip are still exactly planned in the realistic case, 
there are no problems for EV-use. However, it does 
not perform as well as the idealistic case, since 
electricity is fed back to the grid when it could by 
used to cover load demand. 

In figure 2, results from 100 24 hour simulations 
per month for each program evaluated for self-
consumption are shown.  It can be seen that even 
though all systems perform much better than a 
system without a smart grid, it is difficult to tell 

which system performs best for self-consumption. 
The differences between the programs are large 
when compared for peak reduction (figure 3), 
showing that “linear programming” flattens the load 
demand for the main grid significantly better than 
the real-time algorithms. 

4 CONCLUSIONS 

In this paper several control algorithms for 
increasing self-consumption of PV-power in the 
residential sector, using smart grid technology and 
electricity storage in an EV, were proposed. The first 
simulations show that all proposed systems could 
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significantly increase self-consumption. Though the 
systems have distinctive characteristics for the 
resulting EV charging profile, it is unclear which 
system performs best based on the proposed 
indicator for self-consumption. In order to 
investigate this issue, more simulations must be 
carried out. 

However, when evaluated on peak reduction, the 
differences are much more clear. “Linear 
programming” is superior to the real-time algorithms 
for peak reduction. 

As a follow-up of this paper, an extensive 
sensitivity analysis will be performed for the 
following parameters:  (a) amount of solar panels 
(kWp), (b) average yearly household electricity use, 
(c) technical specifications of the EV, (d) EV trips, 
and (e) the standard deviation in PV-power 
predictions. Nevertheless, based on our preliminary 
results, it is shown that a microgrid using smart grid 
technology and electricity storage in an EV could 
significantly increase self-consumption of PV-power 
in the residential sector. 
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