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Abstract: This paper describes a method of job shop scheduling and co-designing a multiprocessor system with the 
minimal number of processors. The program is represented with a direct acyclic graph, and there is a fixed 
real-time deadline as well as a restriction on the reliability of the system. The system is supposed to tolerate 
both hardware and software faults. A simulated annealing algorithm is proposed for the problem, and it is 
evaluated both experimentally and theoretically in terms of asymptotic convergence. The algorithm is also 
applied to a practical problem of scheduling in radiolocation systems. 

1 INTRODUCTION 

Real-time systems (RTS) often impose obligatory 
restrictions not only on the deadlines of the 
programs, but also on the reliability and other 
characteristics such as weight and volume. The co-
design problem of finding the minimal necessary 
number of processors and scheduling the set of tasks 
on it arises in this relation. The limitations on the 
time of execution and the reliability of the RTS must 
be satisfied. This paper describes an algorithm of 
solving this problem. The algorithm can be tuned for 
solving instances of the problem by adjusting 
various settings. The algorithm permits to employ 
various techniques of computing the reliability of the 
RTS and various simulation methods for estimating 
the time of execution of a schedule. Thanks to this it 
can be used on different stages of designing the RTS. 
The program being scheduled changes over the 
course of designing the system with additional 
details introduced gradually, so the need to 
reschedule it and to define the hardware architecture 
more precisely may arise. 

2 PROBLEM FORMULATION 

This paper considers only homogeneous hardware 
systems. Hence the system consists of a set of 
processors connected with a network device; all 

processors are identical, which means that they have 
equal reliability and the time of execution of any 
program is equal on all processors. The structure of 
the network, on the other hand, is not defined strictly, 
allowing various models (bus, switch, etc).  

The program to be scheduled is a set of 
interacting tasks. The program can be represented 
with its data flow graph G = {V, E} where V is the 
set of vertices and E is the set of edges. Let M 
denote the set of available processors. 

To improve reliability, two methods are used: 
processor redundancy and N-version programming. 

Processor redundancy implies adding a new 
processor to the system and using it to run the same 
tasks as on some existing processor. In this case the 
system fails if both processors fail. The additional 
processor is used as hot spare, i.e. it receives the 
same data and performs the same operations as the 
primary processor, but sends data only if the primary 
one fails. 

To use N-version programming (NVP, also 
known as multiversion programming), several 
versions (independent implementations) of a task are 
created. It is assumed that different versions written 
by different programmers will fail in different cases. 
The number of versions is always odd, and the 
execution of a task is deemed successful by majority 
vote, i.e. when more than a half of the versions 
produce the same output.  

The reliability of the system depends on the 
following variables: P(mi) is the reliability of a 
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processor, Vers(vi) is the set of available versions for 
the task vi, P(vi) is the reliability of vi counting all 
versions used. Formulae for P(vi) can be found in 
(Avizienis, 2004); (Eckhardt, 1985); (Laprie, 1990) 
and (Wattanapongsakorn, 2004). The reliability of 
the whole system is calculated as the product of the 
reliability of its elements. 

A schedule for the program is defined by task 
allocation, the correspondence of each task with one 
of the processors, and task order, the order of 
execution of the task on the processor. 

If N-version programming is employed, the 
number of version must be specified for each 
instance of each task. Allocation and order are 
defined not for individual tasks, but for pairs “task - 
version”. 

Formally, a schedule of a system with processor 
redundancy and multiversion programming is 
defined as a pair (S, D) where S is a set of 
quadruples (v, k, m, n) where v∈V,	 k	∈Vers(v),	 m	
∈M,	n	∈Գ,	so that  

∀v	 ∈V	 ∃k	 ∈Versሺvሻ:	 ∃sൌሺvi,	 ki,	 mi,	 niሻ	 ∈S:viൌv,	
kiൌk;	
∀siൌሺvi,	ki,	mi,	niሻ	∈S,	∀sjൌሺvj,	kj,	mj,	njሻ	∈S:	ሺviൌvj	
∧	kiൌkj	ሻ	⇒	siൌsj;	
∀siൌሺvi,	ki,	mi,	niሻ	∈S,	∀sjൌሺvj,	kj,	mj,	njሻ	∈S:	ሺsi്sj	∧	
miൌmj	ሻ	⇒	ni്nj.	

D is a multiset of elements of the set of processors, 
M. The number of reserves of processor m is equal 
to the number of instances of m in D. Substantially 
m and n denote the placement of the task on a 
processor and the order of execution for each 
version of each task. The multiset D denotes the 
spare processors. 

A schedule can be represented with a graph. The 
vertices of the graph are the elements of S. If the 
corresponding tasks are connected with an edge in 
the graph G, the same edge is added to the schedule 
graph. Additional edges are inserted for all pairs of 
tasks placed on the same processor right next to each 
other.  

According to the definition, there can be only 
one instance of each version of each task in the 
schedule, all tasks on any processor have different 
numbers and the schedule must contain at least one 
version of each task. Besides these, one more 
limitation must be introduced to guarantee that the 
program can be executed completely. A schedule S 
is correct by definition if its graph has no cycles. S is 
the space of all correct schedules. 

For every correct schedule the following 
functions are defined: t(S) – time of execution of the 
whole program, R(S) – reliability of the system, 

M(S) – the number of processors used. 
As mentioned before, the structure of the 

network is not fixed, so the time of execution 
depends on the actual model. Various models can be 
implemented (particularly, the algorithm was tested 
for bus, Ethernet switch and Fibre channel switch 
architectures), but all of them in the end have to 
build a time chart of the execution of the schedule. 
To calculate t(S), it is necessary to define the start 
and end time of each task and each data transfer. t(S) 
can be an analytic function, or it can be calculated 
with some algorithm, or it can even be estimated 
with simulation experiments with tools like the one  
described in (Antonenko, 2013). If the X axis 
indicates time, different processors are represented 
with lines parallel to the X axis, the start and end 
times of all the tasks and transfers can be drawn in a 
chart like the one shown on figures 1-2 in Section 3. 

Finally, the optimization problem can be 
formulated as follows. Given the program G, tdir, the 
hard deadline of the program, and Rdir , the required 
reliability of the system, the schedule S that satisfies 
both constraints and requires the minimal number of 
processors is to be found: 

 

minୗ∈ୗ MሺSሻ; 
t(S) < tdir, 
R(S) > Rdir. 

(1)

 

Theorem 1. Problem (1) is NP-hard. 

Proof. The NP-hardness can be proved by reducing 
problem (1) to the NP-hard subset sum problem: 
given the set of integers a1,…an, find out whether it 
can be split in two subsets with equal sums of its 
elements. 

Let B = ∑ a୧
୬
୧ୀଵ , Rdir=0, tdir=B/2. Graph G has n 

vertices and zero edges, E=Ø, so the tasks can be 
assigned to the processors in any order. The time of 
execution of each task vi is defined as constant ai. 
The time of execution of a task is defined in a 
natural way:  if s0 is assigned after s1,…sn , then it is 
executed in the interval ሺ∑ a୧,

୬
୧ୀଵ ∑ a୧ ൅ a଴ሻ

୬
୧ୀଵ .  

If the subset sum problem has a solution 
consisting of two subsets, X and Y, then the tasks 
corresponding to X can be assigned on the first 
processor, and the rest can be assigned to the second 
processor. Obviously the time of execution will be 
B/2, the deadline will be met, and the number of 
processors is minimal, so the corresponding 
scheduling problem is solvable. 

Similarly, if the subset sum problem has no 
solution, then for any of the possible divisions into 
two subsets the sum of one subset will exceed B/2, 
and thus the corresponding schedule will not meet 
the deadline. 
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This means that scheduling problem can be 
reduced to subset sum problem, and the reduction is 
obviously polynomial, because the only computation 
needed for the reduction is defining B which is a 
sum of n numbers. Therefore, the scheduling 
problem is NP-hard. 

3 PROPOSED PROBLEM 
SOLUTION 

3.1 Selecting the Method 

The problem as formulated in section 2 is unique, 
however, it is necessary to examine the solutions of 
similar problems. Out of all job shop scheduling 
problems we need to consider only those where the 
program is represented with a direct acyclic graph 
and the tasks cannot be interrupted. The definition of 
the schedule and the fault tolerance techniques can 
vary. Also we can ignore non-NP-hard scheduling 
problems, as their methods of solution are unlikely 
to be applicable to our problem. These limitations 
leave only the following possible methods of 
solution: exhaustive search, greedy strategies, 
simulated annealing and genetic strategies. 

Exhaustive search is impractical in this case 
simply because of the sheer size of the solution 
space (the number of all transpositions of the tasks 
on all processors is more than n!). The target 
function (the number of processors) is discrete and 
can yield a limited set of integer values which makes 
using limited search methods such as branch and 
bound method impossible. 

Greedy algorithms give an approximation of the 
optimal solution. The solution is constructed by 
scheduling tasks separately one after another 
according to a pre-defined strategy. For example, it 
is possible to select the position of the task so that 
the total execution time of all scheduled tasks is 
minimal. Such algorithm has polynomial complexity. 
This strategy can be called «do as soon as possible» 
strategy, it is discussed in (Qin, 2002). More 
complex strategies, both reliability and cost/time 
driven are discussed in (Qin, 2005). An approach 
that takes possible software and hardware faults into 
the account is discussed in (Balashov, 2010). 
Another solution is to do the exact opposite: first 
schedule all tasks on separate processors and then 
join processors while such operation is possible 
without breaking the deadlines (Kostenko, 2000). 

The main drawback of greedy algorithms is 
potential low accuracy. There is no theoretical 

guarantee that the solution is close to the optimal, in 
fact, it is possible to artificially construct examples 
where a greedy strategy gives a solution infinitely 
distant from the optimal one. This drawback can be 
partially fixed by adding a random operation to the 
algorithm and running it multiple times, however, 
this way the main advantage that is low complexity 
is lost.  

Simulated annealing algorithm (Kirkpatrick, 
1983) deals with a single solution on each step. It is 
mutated slightly to create a candidate solution. If the 
candidate is better, then it is accepted as the new 
approximation, otherwise it is accepted with a 
probability decreasing over time. So on the early 
steps the algorithm is likely to wander around the 
solution steps, and on the late steps the algorithm 
descends to the current local optimum.  Simulated 
annealing does not guarantee that the optimal 
solution will be found, however, there are proofs 
that if the number of iterations is infinite, the 
algorithm converges in probability to the optimal 
solution (Lundy, 1986). (Van Laarhoven, 1992) 
formulates the principal steps needed to apply 
simulated annealing to job shop scheduling problem. 
It is necessary to define the solution space; define 
the neighborhood of each solution, in other words, 
introduce the elementary operations on the solution 
space; define the target function of the algorithm. 
(Orsila, 2008) gives experimental proofs of the 
efficiency of simulated annealing for job shop 
scheduling. This work also suggests an improvement 
over the standard algorithm: heuristics. In the 
classical algorithm, the candidate solution is chosen 
from the neighborhood randomly, however, knowing 
the structure of the schedules, it is possible to direct 
the search by giving priority to specific neighbors. 
(Kalashnikov, 2008) also suggest the use of 
heuristics and gives an example of successful 
application of simulated annealing to scheduling. 

The widely known genetic algorithms give an 
approximation of the optimal solution, and there is a 
hypothesis about the asymptotical convergence 
(Goldberg, 1989). The first problem related to the 
application of genetic algorithm to scheduling is the 
encoding. If the tasks are independent, the schedule 
can be encoded simply by the list of processors 
where the corresponding tasks are assigned (Moore, 
2003). However, this is not viable for more complex 
models such as the one considered in this paper. For 
such cases, more sophisticated encoding is necessary, 
and the operations of crossover and mutations do not 
resemble the traditional operations with bit strings; 
schedules exchange whole parts that do not break 
the correctness conditions (Hou, 1990). 
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(Jedrzejowicz, 1999) shows an example of an 
evolutionary strategy resembling the genetic 
algorithm applied to scheduling problems. 

The main problem with genetic algorithms in 
regard to the discussed scheduling problem is low 
speed. As the algorithm has to allow using various 
models for time estimation, the time estimation can 
be complex and resource-consuming. It is 
impossible to avoid estimating time for all solutions 
of the population on each step. Therefore, if the 
population is substantially large, the algorithm can 
work very slowly as opposed to the simulated 
annealing algorithm that requires time estimation 
only once on each iteration. 

Summing up the survey of the scheduling 
methods, we can conclude that simulated annealing 
is the preferable method both in terms of potential 
accuracy (asymptotic convergence can be proved) 
and speed (lower than greedy algorithm but 
substantially higher than genetic algorithm). The 
actual algorithm is discussed in detail in the next 
subsection. 

3.2 Simulated Annealing Algorithm 
Description 

The proposed algorithm of solution is based on 
simulated annealing (Kalashnikov, 2008). Each 
iteration of the algorithm consists of the following 
steps: 

Step 1. Current approximation is evaluated and 
the operation to be performed is selected. 

Step 2. Parameters for the operation are selected 
and the operation is applied.  

Step 3. If the resulting schedule is better than the 
current one, it is accepted as the new approximation. 
If the resulting schedule is worse, it is accepted with 
a certain probability. 

Step 4. If the end condition is satisfied, the 
algorithm stops. 

The following operations on schedules are defined. 

Add Spare Processor. In the schedule (S, D) a new 
element is added to the multiset D. 

Delete Spare Processor. In the schedule (S, D) the 
element m is removed from the multiset D, if there is 
more than one instance of m in D. 

Move Vertex. This operation changes the order of 
tasks on a processor or moves a task on another 
processor. It has three parameters: the task to be 
moved, the processor where it is moved and the 
position on the target processor. The correctness of 
the resulting scheduled must always be checked 

during this operation. 
Let Trans(s) be the set of tasks transitively 

depending on s: the set of all si, such that the graph 
G contains a chain (v, vi). 

The set Succ(s) can be constructed with the 
following method. Let N0 ൌ Transሺsሻ . If Ni ൌ
ሼs1, s2, … , snሽ , and sn൅1, … , sn൅k  satisfy ∀l	 ∈
ሾ1. . kሿ: ∃i ∈ ሾ1. . nሿ:m୧ ് m	 ∧ m୧ ൌ m୬ା୪ ∧ n୧ ൏ n୪ . 
Then Ni ൌ Ni൅1 ∪ Transሺsn൅1ሻ ∪ Transሺsn൅2ሻ ∪
…∪ Transሺsn൅kሻ. If Niെ1 ൌ Ni, then Ni ൌ Succሺsሻ. 
Succ(s) is the set of tasks that depend on s indirectly.  

Finally we can formulate the correctness 
condition of Move vertex operation. The task to 
move is s1=( v1, k1, m1, n1), the target processor is 
m2 and the target number is n2, and the following 
condition must be true: 

∀s୧:m୧ ൌ mଶ: ൫n୧ ൏ nଶ ⇒ s୧ ∉ Succሺsଵሻ൯ ∧ ሺn୧ ൒
nଶ ⇒ sଵ ∉ Succሺs୧ሻሻ, 

Then the operation requires the following 
substitution: 

s1
′ ൌ ሺv1, k1, m2, n2ሻ, ∀si: mi ൌ m2: ni ൒ n2 ⇒

si
′ ൌ ሺvi, ki, mi, ni ൅ 1ሻ. 

Add versions. Versions can be added only in pairs 
because the total number of versions must be odd if 
NVP is used. Two new versions are added on a new 
empty processor. 

Delete versions. Versions are deleted in pairs. 
Two elements corresponding to two different 
versions of the same task are removed from the 
schedule. 

Theorem 2. The system of operations is complete: if 
(S1, D1), (S2, D2) are correct schedules, there exists a 
sequence of operations that transforms (S1, D1) to 
(S2, D2) such that all interim schedules are correct. 

Proof. Applying any operation results in a 
correct schedule by definition of  the operations. It is 
easy to see that each operation can be reversed 
(Kostenko, 2002), thus to prove the completeness of 
the system of operations it is enough to show how to 
transform both (S1, D1) and (S2, D2) to some 
schedule (S0, D0). 

First let us enumerate all tasks. As the graph G 
has no cycles, for each task v it is possible to define 
Level(v). Level(v)=1 if there are no edges 
terminating in v. Level(v)=n if all edges terminating 
in v start from vertices from levels below n. Assume 
that there are p1 tasks at level 1, they can be 
numbered from 1 to p1. Similarly, if there are p2 
tasks on level 2, they can be numbered from  p1+1 to 
p1+p2. In the end all tasks will be numbered from 1 
to N (where N is the total number of tasks). 
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The canonical schedule for program G is the 
schedule consisting of quadruples si=(vi,ki,m1,i), 
where {i} are the numbers defined above. In this 
schedule all tasks are located on one processor, and 
due to the definition of the indices {i} it has no 
cycles. Now let us show that any schedule can be 
transformed to the canonical schedule. 

First all reserve processors and additional 
versions are deleted. After that the number of 
elements in the schedule will be equal to the number 
of tasks in graph G. Then an empty processor m0 is 
selected, and the tasks are moved to it according to 
their respective numbers, each task is assigned the 
last position. This will be the canonical schedule, 
and now we need to prove, that all operations in this 
procedure were correct. 

It can be proved with induction. The first 
operation is always correct, because the first task 
doesn’t depend on any other (as it is on level 1), and 
since it is moved to the first position, no edges in the 
schedule graph terminate in it, hence cycles cannot 
appear. 

No assuming that tasks 1…p have been moved, 
let us examine the move of the task number p+1. By 
definition, the operation is correct if 

∀s୧:m୧ ൌ mଶ: ൫n୧ ൏ nଶ ⇒ s୧ ∉ Succሺsଵሻ൯ ∧
ሺn୧ ൒ nଶ ⇒ sଵ ∉ Succሺs୧ሻሻ. 

Since the task vp+1 becomes the last one on the new 
processor, the latter part of the equation is always 
true, so the condition is reduced to ∀i: i ൑ p ⇒ s୧ ∉
Succሺs୮ାଵሻ. 

Let us analyse the set Succ(sp+1). On the first 
iteration of its construction, it will contain 
quadruples from Trans(sp+1). Due to the definition of 
the enumerations, none of the elements of 
Trans(sp+1) can have a number lower than p+1, 
because their level is higher. So, none of them is 
already assigned to processor m0, so on the next 
iteration of constructing Succ(sp+1) only tasks from 
Trans(sj), j > p will be added. Accordingly, none of 
the elements of Succ(sp+1) has a number lower than p, 
and it means that the correctness condition is 
satisfied. 

Summing up, any two schedules (S1, D1) and (S2, 
D2) can be transformed to the canonical form with a 
sequence of correct operations. Using the reverse 
operations, the canonical form can be transformed to 
any of these tow schedules, Q.E.D. 

The selection of the operation on each step of the 
algorithm is simple: if reliability requirements are 
not satisfied, either adding processors or adding 
versions is done with equal probability. Otherwise 
the operation is chosen from the remaining three 

operations, of course, if the operation is possible at 
all (i.e. for deleting versions some extra versions 
must already be present in the schedule). When the 
operation is selected, its respective parameters are 
chosen. 

If the reliability of the system is lower that 
required, spare processors and versions should be 
added, otherwise they can be deleted. If the time of 
execution exceeds the deadline the possible 
solutions are deleting versions or moving vertices.  

The selection of the operation is not 
deterministic so that the algorithm can avoid endless 
loops. Probability of selecting each operation, 
possibly zero, is defined for each of the four possible 
situations. These probabilities are given before the 
start of the algorithm as its settings.  

Some operations cannot be applied in some 
cases. For example, if none of the processors have 
spare copies it is impossible to delete processors and 
if all versions are already used it is impossible to add 
more versions. Such cases can be detected before 
selecting the operation, so impossible operations are 
not considered. 

When the operation is selected, its parameters 
have to be chosen according to the following rules. 

Add Versions. Among the tasks that have available 
versions one is selected randomly. Tasks with more 
versions already added to the schedule have lower 
probability of being selected.  

Delete Versions. The task is selected randomly. 
Tasks with more versions have higher probability of 
being selected.  

Add Spare Processor. Similar to the addition of 
versions, processors with fewer spares have higher 
probability of being selected for this operation.  

Delete Spare Processor. A spare of a random 
processor is deleted. The probability is proportional 
to the number of spare processors.  

The probabilities for these four operations are set 
with the intention to keep balance between the 
reliability of all components of the system.  

Move Vertex. If t < tdir the main objective is to 
reduce the number of processors. The following 
operation is performed: the processor with the least 
tasks is selected and all tasks assigned to it are 
moved to other processors.  

If t > tdir it is necessary to reduce the time of 
execution of the schedule. It can be achieved by 
reallocating some tasks, and we suggest three 
different heuristics to assist finding tasks that need 
to be moved: delay reduction, idle time reduction or 
mixed strategy.  

Delay Reduction Strategy (shortened to S1). The 
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idea of this strategy emerges from the assumption 
that if the time of the start of each task is equal to the 
length of the critical path to this task in graph G, the 
schedule is optimal. The length of the critical path is 
the sum of the lengths of all the tasks forming the 
path and it represents the earliest time when the 
execution of the task can begin.  

For each element s it is possible to calculate the 
earliest time when s can start, i.e. when all the tasks 
that are origins of the edges terminating in s are 
completed. The difference between this time and the 
moment when the execution of s actually starts 
according to the current schedule is called the delay 
of task s. Since the cause of big delays is the 
execution of other tasks before the delayed one, the 
task before the task with the highest delay is selected 
for Move Vertex operation. If the operation is not 
accepted, on the next iteration the task before the 
task with the second highest delay is selected, and so 
on. If all tasks with non-zero delay have been tested, 
the task to move is selected randomly. The position 
(pair (m, n) from the triplet) is selected randomly 
among the positions where the task can be moved 
without breaking the correctness condition, and the 
selected task is moved to this position. 

Figure 1 gives an example of delay reduction. 
Task 3 does not depend on task 4, so moving task 4 
to the first processor reduces the delay of task 3, and 
the total time decreases accordingly. 

 

Figure 1: Delay reduction strategy example. 

Idle Time Reduction Strategy (strategy S2). This 
strategy is based on the assumption that in the best 
schedule the total time when the processors are idle 
and no tasks are executed due to waiting for data 
transfer to end is minimal.  

For each position (m, n) the idle time is defined 
as follows. If n=1 then its idle time is the time 
between the beginning of the work and the start of 
the execution of the task in the position (m, 1). If the 
position (m, n) denotes the place after the end of the 
last task on the processor m, then its idle time is the 
time between the end of the execution of the last 
task on m and the end of the whole program. 

Otherwise, the idle time of the position (m, n)  is the 
interval between the end of the task in (m, n-1)  and 
the beginning of the task in (m, n). 

The task to move is selected randomly with 
higher probability assigned to the tasks executed 
later. Among all positions where it is possible to 
move the selected task, the position with the highest 
idle time is selected. If the operation is not accepted, 
the position with the second highest idle time is 
selected, and so on. 

The idle time reduction strategy is illustrated in 
Figure 2. The idle time between tasks 1 and 4 is 
large and thus moving task 3 allows reducing the 
total execution time. 

 

Figure 2: Idle time reduction strategy example. 

Mixed Strategy (Strategy S3). As the name suggests, 
the mixed strategy is a combination of the two 
previous strategies. One of the two strategies is 
selected randomly on each iteration. The aim of this 
strategy is to find parts of the schedule where some 
processor is idle for a long period and to try moving 
a task with a big delay there, prioritizing earlier 
positions to reduce the delay as much as possible. 
This strategy has the benefits of both idle time 
reduction and delay reduction, however, more 
iterations may be required to reach the solution. 

After performing the operation a new schedule is 
created and time, reliability and number of 
processors are calculated for it. Depending on the 
values of these three functions the new schedule can 
be accepted as the new approximation for the next 
iteration of the algorithm. The probability to accept a 
worse schedule on step 3 depends on the parameter 
called temperature. This probability decreases along 
with the temperature over time. Temperature 
functions such as Boltzmann and Cauchy laws 
(Wasserman, 1989) can be used as in most simulated 
annealing algorithms. 

The correctness of the algorithm can be inferred 
from the fact that on all iterations the schedule is 
modified only by operations introduced in this 
section, and according to theorem 2, each operation 
leads to a correct schedule. 
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Theorem 3 (Asymptotic Convergence). Assume that 
the temperature values decrease at logarithmic rate 
or slower: t୩ ൒ 		Г/log	ሺk ൅ k଴	ሻ	, 	Г ൐ 0, 	k଴ ൐ 2 . 
Then the simulated annealing algorithm converges 
in probability to the stationary distribution where the 
probability to reach an optimal solution is q୧ ൌ
ଵ

|Ա|
χԱሺiሻ, where Ա is the set of optimal solutions. 

Proof. As shown in (Lundy, 1986), the simulated 
annealing algorithm can be represented with an 
inhomogeneous Markov chain. The stationary 
distribution exists if the Markov chain is strongly 
ergodic. The necessary conditions of strong 
ergodicity are (1) weak ergodicity, (2) the matrix 
Pሺkሻ୘ has an eigenvalue equal to 1 for each k, (3) 
for its eigenvectors q(k) the series ∑ ሺ݇ሻݍ‖ െஶ

௞ୀଵ
ሺ݇ݍ ൅ 1ሻ‖ଵ converges (Van Laarhoven, 1992). First 
we need to prove that the Markov chain is strongly 
ergodic. Condition (2) means that there exists an 
eigenvector q such that Pሺkሻ୘ ⋅ q ൌ q, or for each 
row of the matrix, q୧ ൌ ∑ q୨ ⋅ P୨୧୨∈୍ , which is exactly 
equivalent to the detailed balance equations. It is 
possible to check that 

q୧ ൌ
|εሺiሻ|

∑ ሺ|εሺjሻ| ⋅
mi n ቆ1, e

୤ሺ୧ሻି୤ሺ୨ሻ
୲౤ ቇ

mi n ቆ1, e
୤ሺ୨ሻି୤ሺ୧ሻ

୲౤ ቇ
ሻ୨

 

Is the solution of this set of equations.  

Let min ൬1, e
౜ሺ౟ሻష౜ሺౠሻ

౪౤ ൰ ൌ A୧୨ . Notice that the 

following equation holds: A୧୨ ⋅ A୨୩ ൌ A୧୩. 
Now it is easy to check the detailed balance 

equations. 

|εሺiሻ|

∑ ሺ|εሺjሻ| ⋅
A୧୨
A୨୧
ሻ୨

G୧୨ ⋅ A୧୨ ൌ
|εሺjሻ|

∑ ൬|εሺkሻ| ⋅
A୨୩
A୩୨

൰୩

G୨୧ ⋅ A୨୧ 

1

∑ ሺ|εሺjሻ| ⋅
A୧୨
A୨୧
ሻ୨

ൌ
1

∑ ൬|εሺkሻ| ⋅
A୨୩
A୩୨

൰୩

⋅
A୨୧
A୧୨
	 

1

∑ ሺ|εሺjሻ| ⋅
A୧୨
A୨୧
ሻ୨

ൌ
1

∑ ൬|εሺkሻ| ⋅
A୨୩
A୩୨

⋅
A୧୨
A୨୧
൰୩

 

1

∑ ሺ|εሺjሻ| ⋅
A୧୨
A୨୧
ሻ୨

ൌ
1

∑ ቀ|εሺkሻ| ⋅
A୧୩
A୩୧

ቁ୩

 

The last equation is obviously correct. 
To check condition (3) the following calculations 

can be performed. 

෍‖qሺkሻ െ qሺk ൅ 1ሻ‖ଵ

ஶ

୩ୀଵ

ൌ෍෍|q୧ሺkሻ െ q୧ሺk ൅ 1ሻ|
୧

ஶ

୩ୀଵ

ൌ 

ൌ෍෍ተ
ተ |εሺiሻ|

∑ ቆ|εሺjሻ| ⋅
A୧୨ሺkሻ
A୨୧ሺkሻ

ቇ୨

െ
|εሺiሻ|

∑ ቆ|εሺjሻ| ⋅
A୧୨ሺk ൅ 1ሻ
A୨୧ሺk ൅ 1ሻቇ୨

ተ
ተ ൑	

୧

ஶ

୩ୀଵ

 

൑ 	C ⋅෍෍ቤ
1

∑ ሺA୧୨ሺkሻ/A୨୧ሺkሻሻ୨
െ

1
∑ ሺA୧୨ሺk ൅ 1ሻ/A୨୧ሺk ൅ 1ሻሻ୨

ቤ ൌ	
୧

ஶ

୩ୀଵ

 

ൌ ܥ	 ⋅෍ቤ
1

∑ ሺA୧୨ሺ1ሻ/A୨୧ሺ1ሻሻ୨
െ

1
∑ ሺA୧୨ሺkሻ/A୨୧ሺkሻሻ୨

ቤ .
୧

 

Considering the conditions of the theorem, the last 
item is proportional to 1/k, and thus it converges to 
0. 

To check condition (1) it is possible to use the 
necessary condition of weak ergodicity (Van 
Laarhoven, 1992): prove that the series ∑ ሺ1 െஶ

୩ୀଵ
τଵሺPሺkሻ୒ౡሻሻ diverges. Let us find a lower bound for 
P(k). 

Pሺkሻ ൒ ൬min
୧,୨

G୧୨൰ ⋅ exp ቆെ
min൫1, fሺiሻ െ fሺjሻ൯

t୩
ቇ

ൌ Cଵeିେమ/୲ౡ  

෍ቀ1െ τଵሺPሺkሻ୒ౡሻቁ ൒ ෍Cଵ
୒ౡ

ஶ

୩ୀଵ

eିେమ୒ౡ/୲ౡ

ஶ

୩ୀଵ

 

Considering that t୩ ൒ 	
Г

୪୭୥ሺ୩ା୩బሻ
, we have a series 

like C ⋅ ∑
ଵ

୩
ஶ
୩ୀଵ , that diverges. 

Finally it is necessary to find the limit of the 
vector q when the temperature approaches 0. Let us 
examine the limit of the expression in the 
denominator. 

lim
୬→ஶ

෍ሺ
mi n ቆ1, e

୤ሺ୧ሻି୤ሺ୨ሻ
୲౤ ቇ

mi n ቆ1, e
୤ሺ୨ሻି୤ሺ୧ሻ

୲౤ ቇ

ሻ
୨

 

If solution i is optimal, then the denominator is 
always equal to 1 regardless of j. The numerator will 
be equal to 1 is j is also an optimal solution, i.e. 

f(i)=f(j), otherwise, if f(i)<f(j), then e
౜ሺ౟ሻష౜ሺౠሻ

౪౤ → 0. So, 
the item in the sum converges to 1 if it corresponds 
to an optimal solution j, and converges to 0 

otherwise. Therefore the limit is |Ա|, and q୧ ൌ
ଵ

|Ա|
. 

If solution i is not optimal, then in one of the 
denominators contains f(j)-f(i)>0, and so the 

sequence e
౜ሺ౟ሻష౜ሺౠሻ

౪౤ → ∞ , and the corresponding 
q୧ → 0. 

Finally we can conclude that q୧ ൌ
ଵ

|Ա|
χԱሺiሻ , 

Q.E.D. 

Theorem 5. The computational complexity of one 
iteration is O(N(N+E)), where N is the number of 
vertices of the program graph G and E is the number 
of its edges (Zorin, 2012). 
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4 EXPERIMENTS 

The algorithm was tested both on artificial and 
practical examples. Artificial tests are necessary to 
examine the behavior of the algorithm on a wide 
range of examples. As the general convergence is 
theoretically proved, the aim of the experiments is to 
find the actual speed of the algorithm and to 
compare different strategies among each other. 

 

Figure 3: Comparison of the strategies. 

Graph on figure 3 shows the results of the 
comparison of three strategies. We generated 
random program graphs with a pre-defined number 
of vertices and the number of edges proportional to 
the number of vertices. The number of vertices 
varies from 5 to 225 with step 5. For each example 
the algorithm was run 300 times, 100 times for each 
strategy, to make the results statistically important. 
The number of iterations of the algorithm was set 
fixed. 

Figure 3 shows the average value of the target 
function (number of processors) depending on the 
number of vertices. The functions are not 
monotonous because of the random nature of the 
examples: it is not possible to guarantee that a 
solution with some number of processors exists, so a 
program of n tasks might require more processors 
than a program of n+5 tasks. The idle time reduction 
strategy works worse than the other two, which is a 
sharp contrast with the previous version of the 
algorithm as shown in (Zorin, 2012). 

The following statistical hypotheses (Sprinthall, 
2006) hold for the conducted sample of experiments. 

1. Strategy S2 gives worse results than S1 and S3 

2. Strategy S3 gives a result that is worse by not 
more than one processor, equal or better that the 
result of S1. 

3. The results given by the algorithm are locally 
optimal. 

Figure 4 shows the number of iterations required to 
reach the best result found for the corresponding 
problem. In each experiment, the algorithm 
conducted 10N operations, where N is the number of 
tasks, however, after some point the continuing 
iteration stopped improving the result. Experiments 
show that the speed of the mixed strategy is 
practically equal to the speed of the delay reduction 
strategy, with S3 being slightly faster. Idle time 
reduction strategy is significantly faster, but it can be 
explained with the low quality of its results, hence 
fewer steps are needed to reach such results. 

 

Figure 4: Comparison of the speed of the strategies. 

The practical problem we solved with the 
proposed algorithm is related to the design of 
radiolocation systems and is described in detail in 
(Kostenko, 1994) and (Zorin, 2013, SYRCoSE). 
Briefly, the problem is to find the minimal number 
of processors needed to conduct the computation of 
the source of radio signals. The signals are received 
by an antenna array and then a special parallel 
method is used computes the results. The method is 
based on splitting the whole frequency diapason into 
L intervals and calculating the data for each interval 
separately, preferably on parallel processors. Each of 
L threads is split into M subthreads as well. 

 

 

Figure 5: Optimization rate (X axis shows the values of L, 
Y axis shows the optimization rate). 

In real systems the size of the array is a power of 
2, usually between 256 and 1024 and the number of 
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frequency intervals (L) is also power of 2, usually 32 
or 64. M is a small number, usually between 2 and 5. 
As the vast majority of complex computations are 
done after splitting to frequency intervals, L is the 
main characteristic of the system that influences the 
overall performance.  Therefore, the quality of the 
algorithm can be estimated by comparing the 
number of processors in the result with the default 
system configuration where L*M processors are 
used. Figure 5 shows the quotient of these two 
numbers, depending on L, for radiolocation problem. 
Lower quotient means better result of the algorithm. 

As we can see, the algorithm optimizes the 
multiprocessor system by at least 25% in harder 
examples with many parallel tasks, and by more than 
a half in simpler cases. 

5 CONCLUSIONS 

In this paper we formulate a combinatorial 
optimization problem arising from the problem of 
co-design of real-time systems. We suggest a 
heuristic algorithm based on simulated annealing, 
provide its description and prove the basic features, 
including asymptotic convergence. 

Experimental evaluation of the different 
heuristic strategies within the discussed algorithm 
showed that one of the strategies was lacking 
compared to the other two. Mixed and delay 
reduction strategies have equal quality, while the 
mixed strategy converges slightly faster. 
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