
Job Shop Scheduling and Co-Design of Real-Time Systems with
Simulated Annealing

Daniil A. Zorin and Valery A. Kostenko
Lomonosov Moscow State University, Moscow, Russia

Keywords: Systems Design, Job Shop Scheduling, Scheduling Algorithms, Reliability, Multiprocessor Systems,
Optimization Problems, Real-Time Systems.

Abstract: This paper describes a method of job shop scheduling and co-designing a multiprocessor system with the
minimal number of processors. The program is represented with a direct acyclic graph, and there is a fixed
real-time deadline as well as a restriction on the reliability of the system. The system is supposed to tolerate
both hardware and software faults. A simulated annealing algorithm is proposed for the problem, and it is
evaluated both experimentally and theoretically in terms of asymptotic convergence. The algorithm is also
applied to a practical problem of scheduling in radiolocation systems.

1 INTRODUCTION

Real-time systems (RTS) often impose obligatory
restrictions not only on the deadlines of the
programs, but also on the reliability and other
characteristics such as weight and volume. The co-
design problem of finding the minimal necessary
number of processors and scheduling the set of tasks
on it arises in this relation. The limitations on the
time of execution and the reliability of the RTS must
be satisfied. This paper describes an algorithm of
solving this problem. The algorithm can be tuned for
solving instances of the problem by adjusting
various settings. The algorithm permits to employ
various techniques of computing the reliability of the
RTS and various simulation methods for estimating
the time of execution of a schedule. Thanks to this it
can be used on different stages of designing the RTS.
The program being scheduled changes over the
course of designing the system with additional
details introduced gradually, so the need to
reschedule it and to define the hardware architecture
more precisely may arise.

2 PROBLEM FORMULATION

This paper considers only homogeneous hardware
systems. Hence the system consists of a set of
processors connected with a network device; all

processors are identical, which means that they have
equal reliability and the time of execution of any
program is equal on all processors. The structure of
the network, on the other hand, is not defined strictly,
allowing various models (bus, switch, etc).

The program to be scheduled is a set of
interacting tasks. The program can be represented
with its data flow graph G = {V, E} where V is the
set of vertices and E is the set of edges. Let M
denote the set of available processors.

To improve reliability, two methods are used:
processor redundancy and N-version programming.

Processor redundancy implies adding a new
processor to the system and using it to run the same
tasks as on some existing processor. In this case the
system fails if both processors fail. The additional
processor is used as hot spare, i.e. it receives the
same data and performs the same operations as the
primary processor, but sends data only if the primary
one fails.

To use N-version programming (NVP, also
known as multiversion programming), several
versions (independent implementations) of a task are
created. It is assumed that different versions written
by different programmers will fail in different cases.
The number of versions is always odd, and the
execution of a task is deemed successful by majority
vote, i.e. when more than a half of the versions
produce the same output.

The reliability of the system depends on the
following variables: P(mi) is the reliability of a

17A. Zorin D. and A. Kostenko V..
Job Shop Scheduling and Co-Design of Real-Time Systems with Simulated Annealing.
DOI: 10.5220/0004765000170026
In Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems (ICORES-2014), pages 17-26
ISBN: 978-989-758-017-8
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

processor, Vers(vi) is the set of available versions for
the task vi, P(vi) is the reliability of vi counting all
versions used. Formulae for P(vi) can be found in
(Avizienis, 2004); (Eckhardt, 1985); (Laprie, 1990)
and (Wattanapongsakorn, 2004). The reliability of
the whole system is calculated as the product of the
reliability of its elements.

A schedule for the program is defined by task
allocation, the correspondence of each task with one
of the processors, and task order, the order of
execution of the task on the processor.

If N-version programming is employed, the
number of version must be specified for each
instance of each task. Allocation and order are
defined not for individual tasks, but for pairs “task -
version”.

Formally, a schedule of a system with processor
redundancy and multiversion programming is
defined as a pair (S, D) where S is a set of
quadruples (v, k, m, n) where v∈V,	 k	∈Vers(v),	 m	
∈M,	n	∈Գ,	so that

∀v	 ∈V	 ∃k	 ∈Versሺvሻ:	 ∃sൌሺvi,	 ki,	 mi,	 niሻ	 ∈S:viൌv,	
kiൌk;	
∀siൌሺvi,	ki,	mi,	niሻ	∈S,	∀sjൌሺvj,	kj,	mj,	njሻ	∈S:	ሺviൌvj	
∧	kiൌkj	ሻ	⇒	siൌsj;	
∀siൌሺvi,	ki,	mi,	niሻ	∈S,	∀sjൌሺvj,	kj,	mj,	njሻ	∈S:	ሺsi്sj	∧	
miൌmj	ሻ	⇒	ni്nj.	

D is a multiset of elements of the set of processors,
M. The number of reserves of processor m is equal
to the number of instances of m in D. Substantially
m and n denote the placement of the task on a
processor and the order of execution for each
version of each task. The multiset D denotes the
spare processors.

A schedule can be represented with a graph. The
vertices of the graph are the elements of S. If the
corresponding tasks are connected with an edge in
the graph G, the same edge is added to the schedule
graph. Additional edges are inserted for all pairs of
tasks placed on the same processor right next to each
other.

According to the definition, there can be only
one instance of each version of each task in the
schedule, all tasks on any processor have different
numbers and the schedule must contain at least one
version of each task. Besides these, one more
limitation must be introduced to guarantee that the
program can be executed completely. A schedule S
is correct by definition if its graph has no cycles. S is
the space of all correct schedules.

For every correct schedule the following
functions are defined: t(S) – time of execution of the
whole program, R(S) – reliability of the system,

M(S) – the number of processors used.
As mentioned before, the structure of the

network is not fixed, so the time of execution
depends on the actual model. Various models can be
implemented (particularly, the algorithm was tested
for bus, Ethernet switch and Fibre channel switch
architectures), but all of them in the end have to
build a time chart of the execution of the schedule.
To calculate t(S), it is necessary to define the start
and end time of each task and each data transfer. t(S)
can be an analytic function, or it can be calculated
with some algorithm, or it can even be estimated
with simulation experiments with tools like the one
described in (Antonenko, 2013). If the X axis
indicates time, different processors are represented
with lines parallel to the X axis, the start and end
times of all the tasks and transfers can be drawn in a
chart like the one shown on figures 1-2 in Section 3.

Finally, the optimization problem can be
formulated as follows. Given the program G, tdir, the
hard deadline of the program, and Rdir , the required
reliability of the system, the schedule S that satisfies
both constraints and requires the minimal number of
processors is to be found:

minୗ∈ୗ MሺSሻ;
t(S) < tdir,
R(S) > Rdir.

(1)

Theorem 1. Problem (1) is NP-hard.

Proof. The NP-hardness can be proved by reducing
problem (1) to the NP-hard subset sum problem:
given the set of integers a1,…an, find out whether it
can be split in two subsets with equal sums of its
elements.

Let B = ∑ a୧
୬
୧ୀଵ , Rdir=0, tdir=B/2. Graph G has n

vertices and zero edges, E=Ø, so the tasks can be
assigned to the processors in any order. The time of
execution of each task vi is defined as constant ai.
The time of execution of a task is defined in a
natural way: if s0 is assigned after s1,…sn , then it is
executed in the interval ሺ∑ a୧,

୬
୧ୀଵ ∑ a୧ ൅ a଴ሻ

୬
୧ୀଵ .

If the subset sum problem has a solution
consisting of two subsets, X and Y, then the tasks
corresponding to X can be assigned on the first
processor, and the rest can be assigned to the second
processor. Obviously the time of execution will be
B/2, the deadline will be met, and the number of
processors is minimal, so the corresponding
scheduling problem is solvable.

Similarly, if the subset sum problem has no
solution, then for any of the possible divisions into
two subsets the sum of one subset will exceed B/2,
and thus the corresponding schedule will not meet
the deadline.

ICORES�2014�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

18

This means that scheduling problem can be
reduced to subset sum problem, and the reduction is
obviously polynomial, because the only computation
needed for the reduction is defining B which is a
sum of n numbers. Therefore, the scheduling
problem is NP-hard.

3 PROPOSED PROBLEM
SOLUTION

3.1 Selecting the Method

The problem as formulated in section 2 is unique,
however, it is necessary to examine the solutions of
similar problems. Out of all job shop scheduling
problems we need to consider only those where the
program is represented with a direct acyclic graph
and the tasks cannot be interrupted. The definition of
the schedule and the fault tolerance techniques can
vary. Also we can ignore non-NP-hard scheduling
problems, as their methods of solution are unlikely
to be applicable to our problem. These limitations
leave only the following possible methods of
solution: exhaustive search, greedy strategies,
simulated annealing and genetic strategies.

Exhaustive search is impractical in this case
simply because of the sheer size of the solution
space (the number of all transpositions of the tasks
on all processors is more than n!). The target
function (the number of processors) is discrete and
can yield a limited set of integer values which makes
using limited search methods such as branch and
bound method impossible.

Greedy algorithms give an approximation of the
optimal solution. The solution is constructed by
scheduling tasks separately one after another
according to a pre-defined strategy. For example, it
is possible to select the position of the task so that
the total execution time of all scheduled tasks is
minimal. Such algorithm has polynomial complexity.
This strategy can be called «do as soon as possible»
strategy, it is discussed in (Qin, 2002). More
complex strategies, both reliability and cost/time
driven are discussed in (Qin, 2005). An approach
that takes possible software and hardware faults into
the account is discussed in (Balashov, 2010).
Another solution is to do the exact opposite: first
schedule all tasks on separate processors and then
join processors while such operation is possible
without breaking the deadlines (Kostenko, 2000).

The main drawback of greedy algorithms is
potential low accuracy. There is no theoretical

guarantee that the solution is close to the optimal, in
fact, it is possible to artificially construct examples
where a greedy strategy gives a solution infinitely
distant from the optimal one. This drawback can be
partially fixed by adding a random operation to the
algorithm and running it multiple times, however,
this way the main advantage that is low complexity
is lost.

Simulated annealing algorithm (Kirkpatrick,
1983) deals with a single solution on each step. It is
mutated slightly to create a candidate solution. If the
candidate is better, then it is accepted as the new
approximation, otherwise it is accepted with a
probability decreasing over time. So on the early
steps the algorithm is likely to wander around the
solution steps, and on the late steps the algorithm
descends to the current local optimum. Simulated
annealing does not guarantee that the optimal
solution will be found, however, there are proofs
that if the number of iterations is infinite, the
algorithm converges in probability to the optimal
solution (Lundy, 1986). (Van Laarhoven, 1992)
formulates the principal steps needed to apply
simulated annealing to job shop scheduling problem.
It is necessary to define the solution space; define
the neighborhood of each solution, in other words,
introduce the elementary operations on the solution
space; define the target function of the algorithm.
(Orsila, 2008) gives experimental proofs of the
efficiency of simulated annealing for job shop
scheduling. This work also suggests an improvement
over the standard algorithm: heuristics. In the
classical algorithm, the candidate solution is chosen
from the neighborhood randomly, however, knowing
the structure of the schedules, it is possible to direct
the search by giving priority to specific neighbors.
(Kalashnikov, 2008) also suggest the use of
heuristics and gives an example of successful
application of simulated annealing to scheduling.

The widely known genetic algorithms give an
approximation of the optimal solution, and there is a
hypothesis about the asymptotical convergence
(Goldberg, 1989). The first problem related to the
application of genetic algorithm to scheduling is the
encoding. If the tasks are independent, the schedule
can be encoded simply by the list of processors
where the corresponding tasks are assigned (Moore,
2003). However, this is not viable for more complex
models such as the one considered in this paper. For
such cases, more sophisticated encoding is necessary,
and the operations of crossover and mutations do not
resemble the traditional operations with bit strings;
schedules exchange whole parts that do not break
the correctness conditions (Hou, 1990).

Job�Shop�Scheduling�and�Co-Design�of�Real-Time�Systems�with�Simulated�Annealing

19

(Jedrzejowicz, 1999) shows an example of an
evolutionary strategy resembling the genetic
algorithm applied to scheduling problems.

The main problem with genetic algorithms in
regard to the discussed scheduling problem is low
speed. As the algorithm has to allow using various
models for time estimation, the time estimation can
be complex and resource-consuming. It is
impossible to avoid estimating time for all solutions
of the population on each step. Therefore, if the
population is substantially large, the algorithm can
work very slowly as opposed to the simulated
annealing algorithm that requires time estimation
only once on each iteration.

Summing up the survey of the scheduling
methods, we can conclude that simulated annealing
is the preferable method both in terms of potential
accuracy (asymptotic convergence can be proved)
and speed (lower than greedy algorithm but
substantially higher than genetic algorithm). The
actual algorithm is discussed in detail in the next
subsection.

3.2 Simulated Annealing Algorithm
Description

The proposed algorithm of solution is based on
simulated annealing (Kalashnikov, 2008). Each
iteration of the algorithm consists of the following
steps:

Step 1. Current approximation is evaluated and
the operation to be performed is selected.

Step 2. Parameters for the operation are selected
and the operation is applied.

Step 3. If the resulting schedule is better than the
current one, it is accepted as the new approximation.
If the resulting schedule is worse, it is accepted with
a certain probability.

Step 4. If the end condition is satisfied, the
algorithm stops.

The following operations on schedules are defined.

Add Spare Processor. In the schedule (S, D) a new
element is added to the multiset D.

Delete Spare Processor. In the schedule (S, D) the
element m is removed from the multiset D, if there is
more than one instance of m in D.

Move Vertex. This operation changes the order of
tasks on a processor or moves a task on another
processor. It has three parameters: the task to be
moved, the processor where it is moved and the
position on the target processor. The correctness of
the resulting scheduled must always be checked

during this operation.
Let Trans(s) be the set of tasks transitively

depending on s: the set of all si, such that the graph
G contains a chain (v, vi).

The set Succ(s) can be constructed with the
following method. Let N0 ൌ Transሺsሻ . If Ni ൌ
ሼs1, s2, … , snሽ , and sn൅1, … , sn൅k satisfy ∀l	 ∈
ሾ1. . kሿ: ∃i ∈ ሾ1. . nሿ:m୧ ് m	 ∧ m୧ ൌ m୬ା୪ ∧ n୧ ൏ n୪ .
Then Ni ൌ Ni൅1 ∪ Transሺsn൅1ሻ ∪ Transሺsn൅2ሻ ∪
…∪ Transሺsn൅kሻ. If Niെ1 ൌ Ni, then Ni ൌ Succሺsሻ.
Succ(s) is the set of tasks that depend on s indirectly.

Finally we can formulate the correctness
condition of Move vertex operation. The task to
move is s1=(v1, k1, m1, n1), the target processor is
m2 and the target number is n2, and the following
condition must be true:

∀s୧:m୧ ൌ mଶ: ൫n୧ ൏ nଶ ⇒ s୧ ∉ Succሺsଵሻ൯ ∧ ሺn୧ ൒
nଶ ⇒ sଵ ∉ Succሺs୧ሻሻ,

Then the operation requires the following
substitution:

s1
′ ൌ ሺv1, k1, m2, n2ሻ, ∀si: mi ൌ m2: ni ൒ n2 ⇒

si
′ ൌ ሺvi, ki, mi, ni ൅ 1ሻ.

Add versions. Versions can be added only in pairs
because the total number of versions must be odd if
NVP is used. Two new versions are added on a new
empty processor.

Delete versions. Versions are deleted in pairs.
Two elements corresponding to two different
versions of the same task are removed from the
schedule.

Theorem 2. The system of operations is complete: if
(S1, D1), (S2, D2) are correct schedules, there exists a
sequence of operations that transforms (S1, D1) to
(S2, D2) such that all interim schedules are correct.

Proof. Applying any operation results in a
correct schedule by definition of the operations. It is
easy to see that each operation can be reversed
(Kostenko, 2002), thus to prove the completeness of
the system of operations it is enough to show how to
transform both (S1, D1) and (S2, D2) to some
schedule (S0, D0).

First let us enumerate all tasks. As the graph G
has no cycles, for each task v it is possible to define
Level(v). Level(v)=1 if there are no edges
terminating in v. Level(v)=n if all edges terminating
in v start from vertices from levels below n. Assume
that there are p1 tasks at level 1, they can be
numbered from 1 to p1. Similarly, if there are p2
tasks on level 2, they can be numbered from p1+1 to
p1+p2. In the end all tasks will be numbered from 1
to N (where N is the total number of tasks).

ICORES�2014�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

20

The canonical schedule for program G is the
schedule consisting of quadruples si=(vi,ki,m1,i),
where {i} are the numbers defined above. In this
schedule all tasks are located on one processor, and
due to the definition of the indices {i} it has no
cycles. Now let us show that any schedule can be
transformed to the canonical schedule.

First all reserve processors and additional
versions are deleted. After that the number of
elements in the schedule will be equal to the number
of tasks in graph G. Then an empty processor m0 is
selected, and the tasks are moved to it according to
their respective numbers, each task is assigned the
last position. This will be the canonical schedule,
and now we need to prove, that all operations in this
procedure were correct.

It can be proved with induction. The first
operation is always correct, because the first task
doesn’t depend on any other (as it is on level 1), and
since it is moved to the first position, no edges in the
schedule graph terminate in it, hence cycles cannot
appear.

No assuming that tasks 1…p have been moved,
let us examine the move of the task number p+1. By
definition, the operation is correct if

∀s୧:m୧ ൌ mଶ: ൫n୧ ൏ nଶ ⇒ s୧ ∉ Succሺsଵሻ൯ ∧
ሺn୧ ൒ nଶ ⇒ sଵ ∉ Succሺs୧ሻሻ.

Since the task vp+1 becomes the last one on the new
processor, the latter part of the equation is always
true, so the condition is reduced to ∀i: i ൑ p ⇒ s୧ ∉
Succሺs୮ାଵሻ.

Let us analyse the set Succ(sp+1). On the first
iteration of its construction, it will contain
quadruples from Trans(sp+1). Due to the definition of
the enumerations, none of the elements of
Trans(sp+1) can have a number lower than p+1,
because their level is higher. So, none of them is
already assigned to processor m0, so on the next
iteration of constructing Succ(sp+1) only tasks from
Trans(sj), j > p will be added. Accordingly, none of
the elements of Succ(sp+1) has a number lower than p,
and it means that the correctness condition is
satisfied.

Summing up, any two schedules (S1, D1) and (S2,
D2) can be transformed to the canonical form with a
sequence of correct operations. Using the reverse
operations, the canonical form can be transformed to
any of these tow schedules, Q.E.D.

The selection of the operation on each step of the
algorithm is simple: if reliability requirements are
not satisfied, either adding processors or adding
versions is done with equal probability. Otherwise
the operation is chosen from the remaining three

operations, of course, if the operation is possible at
all (i.e. for deleting versions some extra versions
must already be present in the schedule). When the
operation is selected, its respective parameters are
chosen.

If the reliability of the system is lower that
required, spare processors and versions should be
added, otherwise they can be deleted. If the time of
execution exceeds the deadline the possible
solutions are deleting versions or moving vertices.

The selection of the operation is not
deterministic so that the algorithm can avoid endless
loops. Probability of selecting each operation,
possibly zero, is defined for each of the four possible
situations. These probabilities are given before the
start of the algorithm as its settings.

Some operations cannot be applied in some
cases. For example, if none of the processors have
spare copies it is impossible to delete processors and
if all versions are already used it is impossible to add
more versions. Such cases can be detected before
selecting the operation, so impossible operations are
not considered.

When the operation is selected, its parameters
have to be chosen according to the following rules.

Add Versions. Among the tasks that have available
versions one is selected randomly. Tasks with more
versions already added to the schedule have lower
probability of being selected.

Delete Versions. The task is selected randomly.
Tasks with more versions have higher probability of
being selected.

Add Spare Processor. Similar to the addition of
versions, processors with fewer spares have higher
probability of being selected for this operation.

Delete Spare Processor. A spare of a random
processor is deleted. The probability is proportional
to the number of spare processors.

The probabilities for these four operations are set
with the intention to keep balance between the
reliability of all components of the system.

Move Vertex. If t < tdir the main objective is to
reduce the number of processors. The following
operation is performed: the processor with the least
tasks is selected and all tasks assigned to it are
moved to other processors.

If t > tdir it is necessary to reduce the time of
execution of the schedule. It can be achieved by
reallocating some tasks, and we suggest three
different heuristics to assist finding tasks that need
to be moved: delay reduction, idle time reduction or
mixed strategy.

Delay Reduction Strategy (shortened to S1). The

Job�Shop�Scheduling�and�Co-Design�of�Real-Time�Systems�with�Simulated�Annealing

21

idea of this strategy emerges from the assumption
that if the time of the start of each task is equal to the
length of the critical path to this task in graph G, the
schedule is optimal. The length of the critical path is
the sum of the lengths of all the tasks forming the
path and it represents the earliest time when the
execution of the task can begin.

For each element s it is possible to calculate the
earliest time when s can start, i.e. when all the tasks
that are origins of the edges terminating in s are
completed. The difference between this time and the
moment when the execution of s actually starts
according to the current schedule is called the delay
of task s. Since the cause of big delays is the
execution of other tasks before the delayed one, the
task before the task with the highest delay is selected
for Move Vertex operation. If the operation is not
accepted, on the next iteration the task before the
task with the second highest delay is selected, and so
on. If all tasks with non-zero delay have been tested,
the task to move is selected randomly. The position
(pair (m, n) from the triplet) is selected randomly
among the positions where the task can be moved
without breaking the correctness condition, and the
selected task is moved to this position.

Figure 1 gives an example of delay reduction.
Task 3 does not depend on task 4, so moving task 4
to the first processor reduces the delay of task 3, and
the total time decreases accordingly.

Figure 1: Delay reduction strategy example.

Idle Time Reduction Strategy (strategy S2). This
strategy is based on the assumption that in the best
schedule the total time when the processors are idle
and no tasks are executed due to waiting for data
transfer to end is minimal.

For each position (m, n) the idle time is defined
as follows. If n=1 then its idle time is the time
between the beginning of the work and the start of
the execution of the task in the position (m, 1). If the
position (m, n) denotes the place after the end of the
last task on the processor m, then its idle time is the
time between the end of the execution of the last
task on m and the end of the whole program.

Otherwise, the idle time of the position (m, n) is the
interval between the end of the task in (m, n-1) and
the beginning of the task in (m, n).

The task to move is selected randomly with
higher probability assigned to the tasks executed
later. Among all positions where it is possible to
move the selected task, the position with the highest
idle time is selected. If the operation is not accepted,
the position with the second highest idle time is
selected, and so on.

The idle time reduction strategy is illustrated in
Figure 2. The idle time between tasks 1 and 4 is
large and thus moving task 3 allows reducing the
total execution time.

Figure 2: Idle time reduction strategy example.

Mixed Strategy (Strategy S3). As the name suggests,
the mixed strategy is a combination of the two
previous strategies. One of the two strategies is
selected randomly on each iteration. The aim of this
strategy is to find parts of the schedule where some
processor is idle for a long period and to try moving
a task with a big delay there, prioritizing earlier
positions to reduce the delay as much as possible.
This strategy has the benefits of both idle time
reduction and delay reduction, however, more
iterations may be required to reach the solution.

After performing the operation a new schedule is
created and time, reliability and number of
processors are calculated for it. Depending on the
values of these three functions the new schedule can
be accepted as the new approximation for the next
iteration of the algorithm. The probability to accept a
worse schedule on step 3 depends on the parameter
called temperature. This probability decreases along
with the temperature over time. Temperature
functions such as Boltzmann and Cauchy laws
(Wasserman, 1989) can be used as in most simulated
annealing algorithms.

The correctness of the algorithm can be inferred
from the fact that on all iterations the schedule is
modified only by operations introduced in this
section, and according to theorem 2, each operation
leads to a correct schedule.

ICORES�2014�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

22

Theorem 3 (Asymptotic Convergence). Assume that
the temperature values decrease at logarithmic rate
or slower: t୩ ൒ 		Г/log	ሺk ൅ k଴	ሻ	, 	Г ൐ 0, 	k଴ ൐ 2 .
Then the simulated annealing algorithm converges
in probability to the stationary distribution where the
probability to reach an optimal solution is q୧ ൌ
ଵ

|Ա|
χԱሺiሻ, where Ա is the set of optimal solutions.

Proof. As shown in (Lundy, 1986), the simulated
annealing algorithm can be represented with an
inhomogeneous Markov chain. The stationary
distribution exists if the Markov chain is strongly
ergodic. The necessary conditions of strong
ergodicity are (1) weak ergodicity, (2) the matrix
Pሺkሻ୘ has an eigenvalue equal to 1 for each k, (3)
for its eigenvectors q(k) the series ∑ ሺ݇ሻݍ‖ െஶ

௞ୀଵ
ሺ݇ݍ ൅ 1ሻ‖ଵ converges (Van Laarhoven, 1992). First
we need to prove that the Markov chain is strongly
ergodic. Condition (2) means that there exists an
eigenvector q such that Pሺkሻ୘ ⋅ q ൌ q, or for each
row of the matrix, q୧ ൌ ∑ q୨ ⋅ P୨୧୨∈୍ , which is exactly
equivalent to the detailed balance equations. It is
possible to check that

q୧ ൌ
|εሺiሻ|

∑ ሺ|εሺjሻ| ⋅
mi n ቆ1, e

୤ሺ୧ሻି୤ሺ୨ሻ
୲౤ ቇ

mi n ቆ1, e
୤ሺ୨ሻି୤ሺ୧ሻ

୲౤ ቇ
ሻ୨

Is the solution of this set of equations.

Let min ൬1, e
౜ሺ౟ሻష౜ሺౠሻ

౪౤ ൰ ൌ A୧୨ . Notice that the

following equation holds: A୧୨ ⋅ A୨୩ ൌ A୧୩.
Now it is easy to check the detailed balance

equations.

|εሺiሻ|

∑ ሺ|εሺjሻ| ⋅
A୧୨
A୨୧
ሻ୨

G୧୨ ⋅ A୧୨ ൌ
|εሺjሻ|

∑ ൬|εሺkሻ| ⋅
A୨୩
A୩୨

൰୩

G୨୧ ⋅ A୨୧

1

∑ ሺ|εሺjሻ| ⋅
A୧୨
A୨୧
ሻ୨

ൌ
1

∑ ൬|εሺkሻ| ⋅
A୨୩
A୩୨

൰୩

⋅
A୨୧
A୧୨
	

1

∑ ሺ|εሺjሻ| ⋅
A୧୨
A୨୧
ሻ୨

ൌ
1

∑ ൬|εሺkሻ| ⋅
A୨୩
A୩୨

⋅
A୧୨
A୨୧
൰୩

1

∑ ሺ|εሺjሻ| ⋅
A୧୨
A୨୧
ሻ୨

ൌ
1

∑ ቀ|εሺkሻ| ⋅
A୧୩
A୩୧

ቁ୩

The last equation is obviously correct.
To check condition (3) the following calculations

can be performed.

෍‖qሺkሻ െ qሺk ൅ 1ሻ‖ଵ

ஶ

୩ୀଵ

ൌ෍෍|q୧ሺkሻ െ q୧ሺk ൅ 1ሻ|
୧

ஶ

୩ୀଵ

ൌ

ൌ෍෍ተ
ተ |εሺiሻ|

∑ ቆ|εሺjሻ| ⋅
A୧୨ሺkሻ
A୨୧ሺkሻ

ቇ୨

െ
|εሺiሻ|

∑ ቆ|εሺjሻ| ⋅
A୧୨ሺk ൅ 1ሻ
A୨୧ሺk ൅ 1ሻቇ୨

ተ
ተ ൑	

୧

ஶ

୩ୀଵ

൑ 	C ⋅෍෍ቤ
1

∑ ሺA୧୨ሺkሻ/A୨୧ሺkሻሻ୨
െ

1
∑ ሺA୧୨ሺk ൅ 1ሻ/A୨୧ሺk ൅ 1ሻሻ୨

ቤ ൌ	
୧

ஶ

୩ୀଵ

ൌ ܥ	 ⋅෍ቤ
1

∑ ሺA୧୨ሺ1ሻ/A୨୧ሺ1ሻሻ୨
െ

1
∑ ሺA୧୨ሺkሻ/A୨୧ሺkሻሻ୨

ቤ .
୧

Considering the conditions of the theorem, the last
item is proportional to 1/k, and thus it converges to
0.

To check condition (1) it is possible to use the
necessary condition of weak ergodicity (Van
Laarhoven, 1992): prove that the series ∑ ሺ1 െஶ

୩ୀଵ
τଵሺPሺkሻ୒ౡሻሻ diverges. Let us find a lower bound for
P(k).

Pሺkሻ ൒ ൬min
୧,୨

G୧୨൰ ⋅ exp ቆെ
min൫1, fሺiሻ െ fሺjሻ൯

t୩
ቇ

ൌ Cଵeିେమ/୲ౡ

෍ቀ1െ τଵሺPሺkሻ୒ౡሻቁ ൒ ෍Cଵ
୒ౡ

ஶ

୩ୀଵ

eିେమ୒ౡ/୲ౡ

ஶ

୩ୀଵ

Considering that t୩ ൒ 	
Г

୪୭୥ሺ୩ା୩బሻ
, we have a series

like C ⋅ ∑
ଵ

୩
ஶ
୩ୀଵ , that diverges.

Finally it is necessary to find the limit of the
vector q when the temperature approaches 0. Let us
examine the limit of the expression in the
denominator.

lim
୬→ஶ

෍ሺ
mi n ቆ1, e

୤ሺ୧ሻି୤ሺ୨ሻ
୲౤ ቇ

mi n ቆ1, e
୤ሺ୨ሻି୤ሺ୧ሻ

୲౤ ቇ

ሻ
୨

If solution i is optimal, then the denominator is
always equal to 1 regardless of j. The numerator will
be equal to 1 is j is also an optimal solution, i.e.

f(i)=f(j), otherwise, if f(i)<f(j), then e
౜ሺ౟ሻష౜ሺౠሻ

౪౤ → 0. So,
the item in the sum converges to 1 if it corresponds
to an optimal solution j, and converges to 0

otherwise. Therefore the limit is |Ա|, and q୧ ൌ
ଵ

|Ա|
.

If solution i is not optimal, then in one of the
denominators contains f(j)-f(i)>0, and so the

sequence e
౜ሺ౟ሻష౜ሺౠሻ

౪౤ → ∞ , and the corresponding
q୧ → 0.

Finally we can conclude that q୧ ൌ
ଵ

|Ա|
χԱሺiሻ ,

Q.E.D.

Theorem 5. The computational complexity of one
iteration is O(N(N+E)), where N is the number of
vertices of the program graph G and E is the number
of its edges (Zorin, 2012).

Job�Shop�Scheduling�and�Co-Design�of�Real-Time�Systems�with�Simulated�Annealing

23

4 EXPERIMENTS

The algorithm was tested both on artificial and
practical examples. Artificial tests are necessary to
examine the behavior of the algorithm on a wide
range of examples. As the general convergence is
theoretically proved, the aim of the experiments is to
find the actual speed of the algorithm and to
compare different strategies among each other.

Figure 3: Comparison of the strategies.

Graph on figure 3 shows the results of the
comparison of three strategies. We generated
random program graphs with a pre-defined number
of vertices and the number of edges proportional to
the number of vertices. The number of vertices
varies from 5 to 225 with step 5. For each example
the algorithm was run 300 times, 100 times for each
strategy, to make the results statistically important.
The number of iterations of the algorithm was set
fixed.

Figure 3 shows the average value of the target
function (number of processors) depending on the
number of vertices. The functions are not
monotonous because of the random nature of the
examples: it is not possible to guarantee that a
solution with some number of processors exists, so a
program of n tasks might require more processors
than a program of n+5 tasks. The idle time reduction
strategy works worse than the other two, which is a
sharp contrast with the previous version of the
algorithm as shown in (Zorin, 2012).

The following statistical hypotheses (Sprinthall,
2006) hold for the conducted sample of experiments.

1. Strategy S2 gives worse results than S1 and S3

2. Strategy S3 gives a result that is worse by not
more than one processor, equal or better that the
result of S1.

3. The results given by the algorithm are locally
optimal.

Figure 4 shows the number of iterations required to
reach the best result found for the corresponding
problem. In each experiment, the algorithm
conducted 10N operations, where N is the number of
tasks, however, after some point the continuing
iteration stopped improving the result. Experiments
show that the speed of the mixed strategy is
practically equal to the speed of the delay reduction
strategy, with S3 being slightly faster. Idle time
reduction strategy is significantly faster, but it can be
explained with the low quality of its results, hence
fewer steps are needed to reach such results.

Figure 4: Comparison of the speed of the strategies.

The practical problem we solved with the
proposed algorithm is related to the design of
radiolocation systems and is described in detail in
(Kostenko, 1994) and (Zorin, 2013, SYRCoSE).
Briefly, the problem is to find the minimal number
of processors needed to conduct the computation of
the source of radio signals. The signals are received
by an antenna array and then a special parallel
method is used computes the results. The method is
based on splitting the whole frequency diapason into
L intervals and calculating the data for each interval
separately, preferably on parallel processors. Each of
L threads is split into M subthreads as well.

Figure 5: Optimization rate (X axis shows the values of L,
Y axis shows the optimization rate).

In real systems the size of the array is a power of
2, usually between 256 and 1024 and the number of

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
100

105
110

115
120

125
130

135
140

145
150

155
160

165
170

175
180

185
190

195
200

205
210

215
220

225

0

2

4

6

8

10

12

14

16

18

S1

S2

S3

Number of tasks

N
u

m
b

e
r

o
f p

ro
ce

s
s

o
rs

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
100

105
110

115
120

125
130

135
140

145
150

155
160

165
170

175
180

185
190

195
200

205
210

215
220

225

0

100

200

300

400

500

600

700

800

900

1000

S1

S2

S3

Number of tasks

N
u

m
b

e
r

o
f i

te
ra

tio
n

s

ICORES�2014�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

24

frequency intervals (L) is also power of 2, usually 32
or 64. M is a small number, usually between 2 and 5.
As the vast majority of complex computations are
done after splitting to frequency intervals, L is the
main characteristic of the system that influences the
overall performance. Therefore, the quality of the
algorithm can be estimated by comparing the
number of processors in the result with the default
system configuration where L*M processors are
used. Figure 5 shows the quotient of these two
numbers, depending on L, for radiolocation problem.
Lower quotient means better result of the algorithm.

As we can see, the algorithm optimizes the
multiprocessor system by at least 25% in harder
examples with many parallel tasks, and by more than
a half in simpler cases.

5 CONCLUSIONS

In this paper we formulate a combinatorial
optimization problem arising from the problem of
co-design of real-time systems. We suggest a
heuristic algorithm based on simulated annealing,
provide its description and prove the basic features,
including asymptotic convergence.

Experimental evaluation of the different
heuristic strategies within the discussed algorithm
showed that one of the strategies was lacking
compared to the other two. Mixed and delay
reduction strategies have equal quality, while the
mixed strategy converges slightly faster.

REFERENCES

Antonenko V. A., E. V. Chemeritsky, A. B. Glonina, I. V.
Konnov, V. N. Pashkov, V. V. Podymov, K. O.
Savenkov, R. L. Smelyansky, P. M. Vdovin, D. Yu.
Volkanov, V. A. Zakharov, D. A. Zorin (2013)
DYANA: an integrated development environment for
simulation and verification of real-time avionics
systems. Munich: European Conference for
Aeronautics and Space Sciences (EUCASS).

Avizienis, A., Laprie, J.C. and Randell, B. (2004).
Dependability and its threats: a taxonomy. Toulouse:
Building the Information Society Proc IFIP 18th
World Computer Congress, 91-120.

Balashov V. V., Balakhanov V. A., Kostenko V. A.,
Smelyansky R. L., Kokarev V. A., Shestov P. E.
(2010) A technology for scheduling of data exchange
over bus with centralized control in onboard avionics
systems. Proc. Institute of Mechanical Engineering,
Part G: Journal of Aerospace Engineering, 224, No. 9,
993–1004.

Eckhardt, D. E. and Lee, L.D. (1985). A theoretical basis
for the analysis of multiversion software subject to
coincident errors. IEEE Transactions on Software
Engineering, 11, 1511-1517.

Goldberg, D. E. (1989). Genetic algorithms in search,
optimization, and machine learning. Addison Wesley.

Hou, E. S., Hong, R., & Ansari, N. (1990, November).
Efficient multiprocessor scheduling based on genetic
algorithms. In Industrial Electronics Society, 1990.
IECON'90., 16th Annual Conference of IEEE (pp.
1239-1243). IEEE.

Jedrzejowicz, P., Czarnowski, I., Szreder, H., &
Skakowski, A. (1999). Evolution-based scheduling of
fault-tolerant programs on multiple processors. In
Parallel and Distributed Processing (pp. 210-219).
Springer Berlin Heidelberg.

Laprie J.-C., Arlat J., Beounes C. and Kanoun K. (1990).
Definition and analysis of hardware- and software-
fault-tolerant architectures. Computer, 23, 39-51.

Kalashnikov, A. V. and Kostenko, V. A. (2008). A
Parallel Algorithm of Simulated Annealing for
Multiprocessor Scheduling. Journal of Computer and
Systems Sciences International, 47, No. 3, 455-463.

Kirkpatrick, S., Jr., D. G., & Vecchi, M. P. (1983).
Optimization by simulated annealing. Science,
220(4598), 671-680.

Kostenko, V. A. (1994). Design of computer systems for
digital signal processing based on the concept of
“open” architecture. Avtomatika i Telemekhanika,
(12), 151-162.

Kostenko V. A., Romanov V. G., Smelyansky R. L.
(2000). Algorithms of minimization of hardware
resources. Artificial Intelligence, 2, 383-388

Kostenko V. A. (2002). The Problem of Schedule
Construction in the Joint Design of Hardware and
Software. Programming and Computer Software, 28,
No. 3, 162–173.

Lundy, M., & Mees, A. (1986). Convergence of an
annealing algorithm. Mathematical programming,
34(1), 111-124.

Moore, M. (2003). An accurate and efficient parallel
genetic algorithm to schedule tasks on a cluster. In
Parallel and Distributed Processing Symposium,
2003. Proceedings. International (pp. 5-pp). IEEE.

Orsila, H., Salminen, E., & Hämäläinen, T. D. (2008).
Best practices for simulated annealing in
multiprocessor task distribution problems. Simulated
Annealing, 321-342.

Qin, X., Jiang, H., & Swanson, D. R. (2002). An efficient
fault-tolerant scheduling algorithm for real-time tasks
with precedence constraints in heterogeneous systems.
In Parallel Processing, 2002. Proceedings.
International Conference on(pp. 360-368). IEEE.

Qin, X., & Jiang, H. (2005). A dynamic and reliability-
driven scheduling algorithm for parallel real-time jobs
executing on heterogeneous clusters. Journal of
Parallel and Distributed Computing, 65(8), 885-900.

Smelyansky R. L., Bakhmurov A. G., Volkanov D. Yu.,
Chemeritskii E. V. (2013) Integrated Environment for
the Analysis and Design of Distributed Real-Time

Job�Shop�Scheduling�and�Co-Design�of�Real-Time�Systems�with�Simulated�Annealing

25

Embedded Computing Systems. Programming and
Computer Software, 39, No. 5, 242-254

Sprinthall, R. C. (2006). Basic Statistical Analysis. Allyn
& Bacon

Van Laarhoven, P. J., Aarts, E. H., & Lenstra, J. K.
(1992). Job shop scheduling by simulated annealing.
Operations research, 40(1), 113-125.

Wasserman, P. D. (1989). Neural computing: theory and
practice. Van Nostrand Reinhold Co..

Wattanapongsakorn, N. and Levitan, S.P. (2004).
Reliability optimization models for embedded systems
with multiple applications. IEEE Transactions on
Reliability, 53, 406-416.

Zorin D.A. (2012) Comparison of different operation
application strategies in simulated annealing algorithm
for scheduling on multiprocessors. Moscow: Parallel
Computing (PACO-2012), V.1, 278-291

Zorin D.A. (2013) Scheduling Signal Processing Tasks for
Antenna Arrays with Simulated Annealing. Kazan:
Proceedings of the 7th Spring/Summer Young
Researchers’ Colloquium on Software Engineering
(SYRCoSE), 122-127.

ICORES�2014�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

26

