
Portable Green Cloud Services

Stephan Ulbricht1, Wolfram Amme1, Thomas Heinze1, Simon Moser2 and Hans-Dieter Wehle2

1Friedrich-Schiller-University Jena, Jena, Germany
2IBM Germany Research & Development GmbH, Böblingen, Germany

Keywords: Cloud Computing, TOSCA, Green IT, Policy, Energy Efficiency, Standardized Cloud Services.

Abstract: The areas of cloud computing and green IT are amongst the fastest growing markets in the IT industry, until
now there are very few opportunities to combine the potential of both. In this paper, we present a method
to combine the advantages of both to create standardized and energy efficient cloud services. For their de-
scription, we will use the cloud computing standard TOSCA(OASIS, 2013). Thereby, it is possible to create
standardized and model-based cloud applications which can be deployed in many cloud environments. We
will further show how it is feasible to combine policies with TOSCA to realize energy-efficient management
of cloud services. To accomplish this, we will provide ideas on how to extend the TOSCA language as well
as the cloud operating environment to achieve the goal of portable, energy-efficient cloud services. The core
of this work is the identification and integration of the underlying system architecture for a common solution
concept. For this, the architectures and necessary adjustments are explained.

1 INTRODUCTION

In times of climate change and rising energy costs,
even IT companies (who are traditionally not in the
spotlight when it comes to naming the biggest pol-
luters) start to think about improving their energy ef-
ficiency. While moving a traditional IT application
from an data center to a modern, energy-efficient vir-
tualized cloud implementation already has a positive
impact on the energy bill, such a step also allows
to improve the automated energy-management of the
application. In practice, there are two concerns: a.)
for the consumer, moving an application to the cloud
practically means committing to one cloud provider,
as there is no standardized description format that
helps to avoid a provider lock-in, and b.) in terms of
energy-efficiency, there is no way for a cloud service
provider to formally describe the energy guidelines
that he would like to have followed. So neither the
consumer nor the provider of a cloud service have the
possibility to influence the environmental friendliness
of an IT service - they are dependent on what the data
center or cloud provider offers, both in terms of the
infrastructure and the energy sources that get used as
well as during the actual operation of the service.

This a huge opportunity to give both cloud
service-consumers and -providers a choice: For a
cloud service consumer to state that he wants to

use ”green” cloud services, and for cloud service
providers to model the service with a ”green” mind-
set as well as to influence or define the operation of an
actual service instance. The first thing that is needed
to address this challenge is an accurate model of the
service. With model-based cloud services, the depen-
dency on a specific data center or cloud provider can
be reduced (since they are portable), and if these cloud
services contain energy guidelines, such guidelines
could even be reflected when the service is operated.
Chapter 3 introduces TOSCA(OASIS, 2013), a stan-
dard for describing such model-based cloud services.

2 RELATED WORK

The efforts regarding energy-efficient and environ-
mental sustainable IT solutions have increased signif-
icantly in recent years and many different approaches
and techniques have been developed. There are three
categories where energy improvement actions can be
undertaken: Hardware, Software and IT environment.

On the hardware side the simplest method for a re-
duction of energy consumption is the shutdown of un-
used devices. Such techniques are shown in (Hwang
and Wu, 2000, Sueur and Heiser, 2010, Dargie, 2012).
In the software category it is possible for multiple
users to work simultaneously on the same hardware,

53Ulbricht S., Amme W., Heinze T., Moser S. and Wehle H..
Portable Green Cloud Services.
DOI: 10.5220/0004787300530059
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 53-59
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

through virtualization of computing resources. Re-
search showed different approaches how environmen-
tal sustainability can be achieved by process schedul-
ing - c.f. (Duy et al., 2010, Wang et al., 2010). The
IT-Environment includes a number of components and
characteristics, ranging from the power supply via the
used cooling system to the layout of the components.
Various papers have dealt with the subject of reducing
fossil energy sources (Zhang et al., 2011, Liu et al.,
2011). These approaches propose to allocate IT re-
quests depending on available energy sources (wind,
solar, etc.) or the overall energy costs.

To achieve a sustainable energy improvement of
data centers, a holistic solution spanning hardware,
software and IT-environment is required. Analo-
gous to our solution, there is other research in this
field, presenting frameworks and architectures to re-
alize green enhancements in cloud computing envi-
ronments - c.f. (Younge et al., 2010, Buyya et al.,
2010, Beloglazov et al., 2012, Berl et al., 2010). To
create a powerful and widely used solution concept, it
is necessary to provide a standardized approach. This
is the prerequisite for the acceptance and dissemina-
tion in the economy. In the remainder of this paper
we’ll show how this can be achieved with the help of
cloud standards and policy languages.

3 CLOUD STANDARD: TOSCA

Chapter 1 already outlined the need for standardized,
model-based cloud services. To ensure the interoper-
ability and portability of cloud services, the standards
body OASIS has started the standardization initiative
TOSCA (Topology and Orchestration Specification
for Cloud Applications) (OASIS, 2013). TOSCA is
a meta-language for the model-based description of
cloud services. This language not only allows the def-
inition of the topology of an application, but also of
its management behavior by requiring business pro-
cesses which are operating directly on the application
topology and thus define the operational semantics.
The aim of TOSCA is to create standardized cloud
services and simplify exchangeability. These stan-
dardized cloud services then get executed by a run-
time entity called a ”TOSCA container”, which e.g.
interacts with a hypervisor to install the topology and
interprets the management plans to manage an ac-
tual service instance. As Figure 1 shows, a TOSCA-
based cloud service is described by a service template,
which is made up of a topology template and a (set
of) plan(s). The topology template defines the struc-
ture of the service, i.e., the base components and their
relationships. A component can be a VM, an OS, a

Figure 1: TOSCA service template.

network connection, etc.
Build- and Management Plans define the business

process models which control the operational man-
agement behavior of the service, operating on the
topology. If modeled correctly, the operational man-
agement behavior spans the complete life cycle of
a service: A build plan for setting up the service,
plans for any operation during its lifetime (e.g., trig-
ger backups, install patches, elastic scaling, ...), as
well as a termination plan when the service gets de-
provisioned. The scope and the implementation of the
plans are specific to the service and determined by the
service modeler. When finished, the service modeler
creates a Cloud Service Archive (CSAR), a package
that contains the topology template, the plans and all
other required artifacts (e.g., image files, scripts, etc.).
These CSAR files can then be exchanged between
different IT environments. More precisely, a topol-
ogy template can be represented by a graph, where
the nodes are the base components (e.g. a VM) and
the edges are the relationships between the compo-
nents. Both nodes and relationships are first defined
outside of a concrete service, as they usually repre-
sent reusable building blocks. They are called Node
Types and Relationship Types. A Node Type is a node
of the type ”VM” when used outside of a topology,
but once added to a template (potentially with some
properties attached), it becomes a node template. The
same is true for the edges of the graph: Relationship
Types define abstract relationships (like ”hosted on”
or ”connected to”), but when used in a topology tem-
plate they become relationship templates, describing
the relationship between the node templates and also
defining the potential states of a service instance.

The structure and functionality of service tem-
plates will be shown by example of an LAMP-
infrastructure. The corresponding topology template

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

54

has the elements ”Linux OS”, ”Apache Web Server”,
”MySQL Database” and ”PHP Module”. The web
server and the database are connected via the relation-
ship ”hosted on” with the operating system, and so is
the PHP module with the web server. The underlying
relationship template ”hosted on type” is character-
ized by the source and destination element. The sec-
ond type of relationship (connects to) exists between
the PHP module and the database. The description of
a node type, e.g. the Web Server, defines properties
such as the IP address of an instance.

Another feature of TOSCA is the fact that it al-
lows policies for certain elements, e.g. for Service
Templates and Node Templates. Policies enable the
dynamic control of the behavior, i.e. rules can be de-
fined for access control (authorization policy) or to
specify requirements on a system (obligations poli-
cies). Such a mechanism is useful for the combination
with the topic of Green IT. Policies have advantages
like reusability, higher efficiency, expandability and
better conflict management (Tonti et al., 2003) when
it comes to managing large services or systems. Poli-
cies consist of rules that control the behavior of com-
puter systems, derived from overarching goals such
as company policy, service level agreements or safety
requirements or for describing and enforcing e.g. en-
ergy efficiency requirements.

4 GREEN CLOUD SERVICES:
SYSTEM AND ARCHITECTURE

To create a holistic solution that brings together
model-based cloud services with Green IT policies
end-to-end, we need to examine three things: ser-
vice lifecycle, architectures of Cloud Management
Platform and Policy Management Systems and their
descriptor formats. The lifecycle of a model-based
cloud service can be divided into four phases: mod-
eling, deployment, instantiation and runtime. In
the modeling phase, the TOSCA-modeler creates the
topology template, plans, scripts, images and all other
required artifacts required for the execution of the ser-
vice and packages them into an archive (CSAR). In
the next phase, the service definition and all related
artifacts are stored in a database component, where
they are made accessible by the public through e.g.
a service catalog. Once published, the cloud service
consumer can select a service from the service cat-
alog - this triggers the instantiation of the service.
The core component during the instantiation phase is
the TOSCA-container, as it orchestrates the genera-
tion of the service, e.g. generating the virtual ma-
chines, installing the needed software, setting up the

Figure 2: Overview of the components involved in a
TOSCA Cloud Management Platform.

network connections etc. by running the associated
plans which operate directly on the topology. Figure
2 gives an overview of the involved components.

The next step to create a holistic solution is to map
the components from the Cloud Management Plat-
form to key architectural components of a policy man-
agement system (IETF, 2001, OASIS, 2005). For il-
lustration, we use the architecture model provided by
the Internet Engineering Task Force (IETF, 2001). In
this model, the basic components of a policy system
are described - Figure 3 gives an overview.

The responsibility of the Policy Management Tool
is the creation, modification and deployment of poli-
cies, the transformation from abstract to concrete
policies as well as error handling. The Policy Reposi-
tory provides a storage for the policies, as well as pro-
vides the policies when they should be provisioned.
Finally, the Policy Decision Point interprets policies,
receives events and determines the appropriate ac-
tions. These components match nicely to the pieces
of a TOSCA cloud management platform. To illus-
trate and motivate the combination into a holistic sys-
tem, we examine each lifecycle phase: In the Model-
ing phase, the TOSCA specification allows for the in-
jection of policies at different points within a topology
template. The policy is part of the topology template
description and is stored within the CSAR. The mod-
eler can either directly specify the policy code inside
the topology template or refer to it by a reference (c.f.

Figure 3: Overview of the components involved in a Policy
System, according to (IETF, 2001).

Portable�Green�Cloud�Services

55

section 5). The reference allows for the integration of
externally defined policies. Thus, the TOSCA mod-
eling supports creating and changing policies. Dur-
ing the modeling phase, all attributes of the policy tag
have to be defined. The actual content of a policy is
described within the tag. In the Deployment phase,
the policy management tool component of the IETF-
architecture is also responsible for the distribution of
policies. In TOSCA, all artifacts including policies
are grouped into an archive and stored in a service cat-
alog, which is a implementation of the policy reposi-
tory. When a service has been requested by a user, we
enter the Instantiation phase. The CSAR archive with
the artifacts is loaded into the TOSCA-container. In
the receiving environment, the package is parsed and
the individual artifacts are analyzed by a topology en-
gine, a part of the TOSCA Container, which also real-
izes the order of the elements. The engine implements
the topology template with the help of provisioning
mechanisms into the production system.

Figure 4: TOSCA- and Policy System Architectures com-
bined.

To create an instance of an application, a build
plan is executed. For the interpretation and execu-
tion of the plan, the TOSCA container uses a process
engine which communicates with the hypervisor and
triggers e.g., the creation of virtual machines. Addi-
tional software is installed on the virtual machines by
starting installation scripts. The TOSCA Container
picks the policy implementation based on the URI of
the policy definition, but for the processing of the in-
coming events and to determine the actions to be per-
formed, an additional policy engine is needed. It has
to be able to afford all functions of the policy deci-
sion point. To respond to events, the policy engine
includes an event handler component. The task of the

event handler is to relate the events to the correspond-
ing policies. Afterwards, the policies are interpreted,
i.e., conditions are evaluated and the resulting instruc-
tions are determined. In the Runtime phase, the man-
agement and control of virtual machines is done by
the hypervisor. The instructions, determined by the
policy engine, will also be implemented by the hyper-
visor (policy enforcement point). Since virtual envi-
ronments are very complex and include many prop-
erties, special monitoring agents are used to ensure a
flexible and comprehensive monitoring. They are in-
stalled on the servers to monitor all relevant metrics.
The considerations in this section have shown that it
is possible to map the IETF- to the TOSCA- model.
In Figure 4, the TOSCA-components and their equiv-
alents are shown.

5 GREEN CLOUD SERVICES:
METADATA FORMAT

After the combination of a TOSCA cloud manage-
ment platform with a policy system has been outlined,� �

1 <S e r v i c e T e m p l a t e . . . >

2 <Im po r t . . . />
3 <TopologyTempla te>
4 <NodeTemplate i d =”VmApache” name=”VM f o r

Apache ” t y p e =” ns1 : V i r t u a l M a c h i n e ”>
5 <P r o p e r t i e s> . . . </ P r o p e r t i e s>
6 <P o l i c i e s>
7 <P o l i c y
8 name=” LowWorkloadPolicy ”
9 p o l i c y R e f =” lamp : LowWorkloadPolicy�VmApache”

10 p o l i c y T y p e =” ns1 : LowWorkloadPol icy ” />
11 </ P o l i c i e s>
12 </ NodeTemplate>
13 <NodeTemplate i d =”VmMySQL” name=”VM f o r

MySQL” t y p e =” ns1 : V i r t u a l M a c h i n e ”>
14 <P r o p e r t i e s> . . . </ P r o p e r t i e s>
15 </ NodeTemplate>
16 </ TopologyTempla te>
17 <P o l i c y T y p e s>
18 <P o l i c y T y p e
19 name=” LowWorkloadPolicy ”
20 t a r g e t N a m e s p a c e =” . . . ”>
21 <P r o p e r t i e s D e f i n i t i o n e l e m e n t =” ns1 :

LowWorkloadPolicy ” />
22 <Appl ie sTo>
23 <NodeTypeReference t y p e R e f =” ns1 :

V i r t u a l M a c h i n e ” />
24 </ App l i e sTo>
25 </ P o l i c y T y p e>
26 </ P o l i c y T y p e s>
27 </ S e r v i c e T e m p l a t e>� �
Figure 5: Excerpt of a service template describing an
energy-efficient LAMP service.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

56

let’s illustrate input to such a holistic system based on
the LAMP service template.

In TOSCA, a policy also follows the type / tem-
plate pattern previously introduced: The Policy Type
defines the properties of policy (e.g. the data needed
to influence a behaviour), whereas Policy Templates
provide actual values for the properties in a concrete
scenario.

Figure 5 shows an excerpt from a Service Tem-
plate for the LAMP service: In lines 4 and 13, two
node templates have been defined, representing a
WebServer and a Database. To emphasize our point,
think of them as a Web Server Cluster and a Database
Cluster. In line 19, a LowWorkloadShutdownPolicy
has been attached to the Web Server Cluster. In Line
22, the payload of this policy is referenced.

The payload just defines the properties that an
event is required to carry, in order for the policy def-
inition point to evaluate the policy and trigger an ap-
propriate action. In our example of shutting down a
cluster member when the workload becomes too low,
we need only two properties: the old and the new
workload value. So far we did not define an action
that needs to be taken, nor did we define a concrete
policy language. Policies in TOSCA can be defined
independently of a policy language. While this sup-
ports portability, it requires adaption to a specific lan-
guage for every cloud provider. But TOSCA allows
us also to provide a policy in a specific language:� �
1 <P o l i c y T y p e name=” LowWorkloadPol icy ”
2 p o l i c y L a n g u a g e =” xs : h t t p : / / www. ponder2 . n e t / ”
3 t a r g e t N a m e s p a c e =” . . . ”>

5 <P r o p e r t i e s D e f i n i t i o n e l e m e n t =” ns1 :
LowWorkloadPol icy ” />

6 <Appl ie sTo>
7 <NodeTypeReference t y p e R e f =” ns1 :

V i r t u a l M a c h i n e ” />
8 </ App l i e sTo>
9 </ P o l i c y T y p e>� �
Figure 6: PolicyType from Figure 5 with a Policy Type de-
fined in the language Ponder2.

In our prototype, we have chosen a policy lan-
guage called Ponder2 (PONDER, 2013). Ponder2
is a declarative, object-oriented language that allows
for the definition of both, obligation and authoriza-
tion policies. Ponder2 can be used in a wide range
of different devices ranging from ad-hoc networks to
distributed systems. A Ponder2 system provides the
ability to manage a variety of objects such as sen-
sors, alarm systems, routers, etc. These basic ele-
ments are called managed objects. They are created in
Java and their provided functionalities can be adapted

to the requirements of an environment and expanded
accordingly. The standard distribution of Ponder2 in-
cludes three predefined object types: domains, events
and policies. Additional functionality can be added to
a system by means of new managed objects. To al-
low a dynamic interaction between heterogeneous IT-
Environments, Ponder2 utilizes so called Self Man-
aged Cells (SMC). SMCs represent independent sys-
tems, i.e. a set of hardware and software components
that are able to manage themselves. The communica-
tion between the different components occurs through
an content-based event bus. For the message ex-
change, the proprietary language PonderTalk is used.
The Java objects implement an interface (Managed
Object) that enables the mapping from PonderTalk to
Java methods. For the communication between differ-
ent systems, the Ponder2-Framework offers the possi-
bility to access external Managed Objects. Thus, ob-
jects can be exported and imported between different
SMCs.

To make the holistic system work, leveraging the
Ponder2 technology, several steps are necessary: a.)
An event emitter has to be installed on the virtual ma-
chines - in our example, both on the mySQL VM
and on the WebServer VM. Conceptually, it is an
agent that monitors relevant metrics from the VMs
(e.g., the CPU load) and triggers respective events.
This design is very much in line with industrial cloud
management systems, where a set of agents (for var-
ious purposes) are installed on top of the provisioned
VMs. b.) The produced event has to be send to the
TOSCA-container where an obligation policy inter-
preter receives the event and looks for applicable poli-
cies. This requires c.) correlating the event to a run-
ning instance and then identifying the model where
this instance was derived from to get the policy. The
policy then evaluate their conditions and invoke the
corresponding actions (Keoh et al., 2007). Figure 7
illustrates how the concrete Ponder2 code looks like:� �
1 e v e n t := r o o t / f a c t o r y / e v e n t c r e a t e : # (”name” ”

new” ” o l d ”) .
2 r o o t / e v e n t a t : ” g r e e n E v e n t ” p u t : e v e n t .
3 p o l i c y := r o o t / f a c t o r y / e c a p o l i c y c r e a t e .
4 p o l i c y e v e n t : r o o t / e v e n t / g r e e n E v e n t .
5 p o l i c y c o n d i t i o n : [: name : o l d V a l u e : newValue

j
6 name == ” Workload ” & (new < 30) & (o l d >= 30)

] .
7 p o l i c y a c t i o n : [
8 / / Execu te shutdownClus te rMember P l an t o

shutdown a c l u s t e r member] .
9 r o o t / p o l i c y a t : ” workloadLow ” p u t : p o l i c y .

10 p o l i c y a c t i v e : t r u e .� �
Figure 7: Concrete LowWorkloadPolicy in PONDER2.

Portable�Green�Cloud�Services

57

In Figure 7, a management plan called shutdown-
ClusterMember is triggered by the policy, following
the event-condition-action (ECA) rule used in policy
systems. Figure 8 illustrates the plan: First the plan
has to check whether the cluster manager is available
- obviously, this is a safety measure. If successful, the
plan issues a request against the cluster member to
shut down. This step might require more detail, e.g.,
if it is a database we might want to stop the datasource
first, to avoid data inconsistencies, but conceptually
this is the step that needs to be taken. Once stopped,
the cluster member can be removed from the cluster
manager and thus will no longer consume energy.

Figure 8: The shutdownClusterMember Plan.

A policy-based mechanism to shut down a clus-
ter member to save energy is just one example how
policies can be used to realize energy-efficient cloud
services. Other use cases can be imaged: If clouds
would have an energy certification, i.e. the data center
is operated on renewable energy, a cloud service could
declare a policy requiring such a certification, and if
not fulfilled the service model is not allowed to be in-
stantiated. Furthermore, policy-based scheduling or
workload planning or other energy-saving, cloud ser-
vice specific measures can be imagined.

6 CONCLUSION

In this paper, we have shown how to design, develop
and run standardized, energy-efficient cloud services.
We extended a TOSCA cloud management platform
with policy handling parts. We showed how to com-
bine TOSCA models with policies (in the policy lan-
guage Ponder2). Thereby we realized description and
execution of portable green cloud services. Ponder2
has been chosen as our policy language because of its
dynamicity and versatility. We believe this work to be
the foundation to combine two of the most important
future markets of the IT industry. To our knowledge
there is no work conducted to combine cloud services
with Green IT aspects so far, so this work to com-
bine cloud services with ecological aspects promises
extraordinary potential for cloud service providers.
With cloud computing in general becoming more and
more a commodity, the offering of energy efficient

services will become a competitive advantage as well
as it will serve the environment.

This work was partially funded by the BMWi
project Migrate! (01ME11055).

REFERENCES

Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-
aware resource allocation heuristics for efficient man-
agement of data centers for cloud computing.

Berl, A., Gelenbe, E., Girolamo, M. D., Giuliani, G., Meer,
H. D., Dang, M. Q., and Pentikousis, K. (2010).
Energy-efficient cloud computing.

Buyya, R., Beloglazov, A., and Abawajy, J. (2010). Energy-
efficient management of data center resources for
cloud computing: A vision, architectural elements,
and open challenges. In Int. Conf. on Parallel and
Distributed Processing Techniques and Applications.

Dargie, W. (2012). Analysis of the power consumption of
a multimedia server under different dvfs policies. In
CLOUD. IEEE.

Duy, T. V. T., Sato, Y., and Inoguchi, Y. (2010). Perfor-
mance evaluation of a green scheduling algorithm for
energy savings in cloud computing. In Parallel & Dis-
tributed Processing, Workshops and Phd Forum.

Hwang, C.-H. and Wu, A. (2000). A predictive system shut-
down method for energy saving of event-driven com-
putation.

IETF (2001). Ietf policy model. http://tools.
ietf.org/html/rfc3060.

Keoh, S. L., Twidle, K., Pryce, N., Schaeffer-Filho, A. E.,
Lupu, E., Dulay, N., Sloman, M., Heeps, S., Strowes,
S., Sventek, J., and Katsiri, E. (2007). Policy-based
management for body-sensor networks. In 4th Int.
Workshop on Wearable and Implantable Body Sensor
Networks. Springer Berlin Heidelberg.

Liu, Z., Lin, M., Wierman, A., Low, S., and Andrew, L.
(2011). Geographical load balancing with renewables.

OASIS (2005). Xacml policy model extensible access con-
trol markup language (xacml) version 2.0, pp. 16-18.

OASIS (2013). Tosca - topology and orchestration specifi-
cation for cloud application.

PONDER (2013). http://www.ponder2.net.
Sueur, E. L. and Heiser, G. (2010). Dynamic voltage and

frequency scaling: The laws of diminishing returns. In
Proc. of the 2010 int. conf. on Power aware computing
and systems. USENIX Association.

Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri,
N., and Uszok, A. (2003). Semantic web languages
for policy representation and reasoning: A compari-
son of kaos, rei, and ponder. In The Semantic Web-
ISWC 2003. Springer Berlin Heidelberg.

Wang, L., von Laszewski, G., Dayal, J., and Wang, F.
(2010). Towards energy aware scheduling for prece-
dence constrained parallel tasks in a cluster with dvfs.
In CCGrid. IEEE/ACM.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

58

Younge, A. J., von Laszewski, G., Wang, L., Lopez-
Alarcon, S., and Carithers, W. (2010). Efficient
resource management for cloud computing environ-
ments. In Green Computing Conf. IEEE.

Zhang, Y., Wang, Y., and Wang, X. (2011). Greenware:
Greening cloud-scale data centers to maximize the use
of renewable energy. In Middleware 2011.

Portable�Green�Cloud�Services

59

