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Abstract: The Serial Position Effect (SPE) is a well-studied phenomenon in experimental psychology. SPE captures 
the idea that, when subjects are asked to recall list items, they are more likely to remember the first items 
and the last items, whether those items are numbers, non-words or elements of a story. Until recently, SPE 
has been generally considered to rely upon a two-store memory model, i.e., primacy (remembering initial 
items) and recency (remembering latter items) were thought to be the work of long term memory and short 
term memory, respectively. This paper reports the results of a basic hippocampus simulation study using the 
Leabra algorithm within the Emergent Neural Network Simulation System to model the SPE. Simulation 
results demonstrate that both primacy and recency of the SPE in a serial recall task can be replicated using 
only the hippocampus, suggesting that a one-store model of memory for this recall task is sufficient. It 
remains to be seen if this simulation mirrors the actual biological mechanism utilized. 

1 INTRODUCTION 

In the process of investigating memory and learning, 
neuroscientists and their predecessors have 
discovered a number of memory biases that offer 
clues as to the biological functioning of our brains 
during memory and learning tasks. One such 
memory bias is the Serial Position Effect (SPE), first 
documented by Hermann Ebbinghaus in his seminal 
work, Memory (1885/1913). SPE is a memory bias 
for remembering early and late items in a list, and a 
bias against recall of items from the middle. The 
SPE is well-documented, with behavioural data 
relating to remembering non-words (Gupta, 2005), 
number sequences (Golob and Starr, 2004), and even 
stories (Brodsky et al., 2003). The SPE has been 
well-studied among healthy adults, and has also 
been used to better understand child development 
(Lehmann & Hasselhorn, 2010), aphasia (Brodsky et 
al., 2003) and Alzheimer’s Disease (Bayley et al., 
2000). 

The classic graph of serial position data has the 
U-shape shown in Figure 1. The early and late 
effects are usually handled separately as primacy 
and recency, as depicted in Figure 1. Some 
researchers, dating back to at least Murdock (1962), 
assign separate biological mechanisms for primacy  

and recency, rather than one overall mechanism for 
the SPE. 

Figure 1: The Serial Position Effect Classic U Shape. 

The two-store memory model has different 
variations, but generally assigns primacy to a long-
term memory mechanism and recency to a short-
term memory mechanism. Gradually, short-term 
memory has been replaced by the more complete 
term working memory, referring to both the short-
term memory (storage) of information and the 
manipulation of that information, which is required 
by tasks such as serial recall, used to test SPE 
(Baddeley & Hitch, 2010). 
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Differences in how well human subjects recall 
items under various conditions, e.g., lag time 
between training and testing, appear to support the 
two-store models, since the variable conditions 
affected primacy and recency to varying degrees. A 
common argument for long-term memory being the 
mechanism for primacy is the idea of rehearsal. As 
subjects learn each item in the list, there may be the 
opportunity to mentally repeat, or rehearse, the early 
items in the list, making them more likely to be 
committed to long term memory. (In fact, some 
studies have required subjects to rehearse items 
aloud.) Rehearsal is believed to transfer the items 
into long term memory.  

Recency, in terms of the SPE, is often argued to 
be a result of the quick recall possible from working 
memory, but this does not account for long-term 
recency – that is, better recall of ending items in a 
list after hours or even days (Howard & Kahana, 
1999), or the various effects involving the ratio rule, 
which “relates the recency effect in free recall to the 
ratio of the duration of the inter-item presentation 
interval (IPI) and the retention interval (RI)” 
(Nairne, et al., 1997). 

Newer understanding of the role of contextual 
cues in memory tasks has strengthened support for a 
one-store memory model, which can account for 
both primacy and recency in the SPE (Polyn & 
Kahana, 2008). Researchers are refining 
computational models to explore these possible 
mechanisms. For example, Sederberg et al. (2011) 
explore the memory phenomenon of reconsolidation 
using a “Temporal Context Model,” including 
predictions regarding the SPE (p. 466). However, as 
recently as 2008, there was still debate as to what, 
exactly, these computational models represent. For 
example, Usher, Davelaar, Haarmann, and Goshen-
Gottstein  (2008) disputed Polyn and Kahana’s 
results, to which Kahana, Sederberg, & Howard 
(2008) replied, reasserting the validity of these 
results. 

To test these ideas, we developed a basic 
hippocampus simulation study using the Emergent 
Neural Network Simulation System to model the 
SPE. The remainder of this paper describes this 
experiment and its results. We observed that both 
primacy and recency of the SPE in a serial recall 
task can be replicated using only the hippocampus, 
suggesting that a one-store model of memory for this 
recall task is sufficient. 
 
 
 
 

2 METHODOLOGY 

2.1 General Approach 

We tested the one-memory vs. two-memory SPE 
theory using the Emergent neural modeling system. 
Emergent is “a powerful tool for the simulation of 
biologically plausible, complex neural systems” 
(Aisa, Mingus, & O’Reilly, 2008, p. 1146), making 
it a good tool for exploring the biological 
mechanisms conjectured for various phenomena, 
including SPE. 

Biologically, working memory is associated with 
active maintenance in the Prefrontal Cortex (PFC), 
while encoding long term memories is more closely 
associated with the hippocampus (O’Reilly et al., 
2012). We used the basic hippocampus simulation in 
Emergent, and looked for differences in primacy and 
recency effects that might suggest a difference in 
underlying memory mechanisms. If primacy and 
recency have similar biological mechanisms (such as 
a one-store memory model would suggest), we 
predicted that using only the hippocampus would 
show both effects, while finding only one effect 
(likely primacy) would tend to support the two-store 
model. 

2.1.1 Using Emergent 

The Emergent Neural Network Simulation System 
(Emergent) is “a powerful tool for the simulation of 
biologically plausible, complex neural systems” 
(Aisa, Mingus, & O’Reilly, 2008, p. 1146), making 
it a useful tool for exploring the biological 
mechanisms conjectured for various phenomena, 
including SPE. 

Emergent is a computational tool for modeling 
the human brain and cognitive processes, intended 
for use in both research and teaching. It is based in 
part on its predecessors PDP and PDP++ (Parallel 
Distributed Processing). 

Using neural networks, Emergent allows users to 
develop complex, layered system models, such as 
those that might represent the human cognitive 
processes, in order to test different theories about 
how the brain functions. This process generally 
involves training the network on sets of data, and 
then testing the network on that data. The Emergent 
graphical interface allows users to see each layer of 
the model, in which “units” (colored squares 
representing neurons or groups of neurons) are 
activated, as well as projections between layers. 

In Emergent, biologically-based models can be 
built relatively quickly and tested against data from 
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experimental psychology. For example, O’Reilly et 
al. (2013) developed an object recognition model 
within Emergent with layers and projections based 
upon the relevant visual pathways in the brain. This 
model, using biologically plausible learning 
mechanisms, consistently recognizes 100 different 
object categories, each with around 9 exemplars, 
even with variations in lighting, location in the field 
of vision, size, and rotation. This particular model 
was also able to recognize partially occluded 
objects. 

For the purposes of teaching, the Emergent 
website features a wikibook called Computational 
Cognitive Neuroscience, that includes sample 
simulations for each chapter (O’Reilly et al.,  2012),  
in the form of project files (*.proj). The research 
reported here utilizes the available hippocampus 
model, hipp.proj. 

2.1.2 Leabra 

The default algorithm in Emergent is called Leabra, 
or local error-driven and biologically realistic 
algorithm, initially developed by O’Reilly (1997). 
This algorithm balances Hebbian and error-driven 
learning. Leabra uses a variant of Hebbian learning 
called self-organized learning, which is sometimes 
characterized as ‘what fires together, wires 
together,’ referring to the ability to learn 
generalities. Error-driven learning in Leabra is based 
upon the eXtended Contrastive Attractor Learning 
(XCAL) rule that communicates error signals 
through the network bidirectionally (O’Reilly et al., 
2012). 

These two types of learning are layered over “a 
biologically-based point-neuron activation function 
with inhibitory competition dynamics” (O’Reilly et 
al., 2012). These competition dynamics can be 
implemented with kWTA (k-Winners-Take-All) 
approximations or through inhibitory interneurons. 
We utilized the kWTA approximations in this 
project. 

2.2 Methodology  

We employed Emergent Version 6.1.0 and the basic 
version of the hippocampus simulation that 
accompanied the software (O’Reilly et al., 2012). 
Figure 2 shows the layout of this simulation with 
inputs from the Entorhinal Cortex (EC) going to the 
Dentate Gyrus (DG) and to the different layers of the 
cornu ammonis or CA, with outputs going to the EC 
Output layer. A full list of the connections is 
provided in Table 1. 

Table 1: Connections Between the Layers in the 
Hippocampus Simulation. 

Layer Sends To Receives From

Input EC_in (none) 

EC_in DG,CA1, CA3  Input, EC_out

DG CA3 EC_in 

CA3 CA1, DG EC_in, DG

CA1 EC_out EC_in, CA3

EC_out EC_in CA1, EC_in

2.3 Design of the Baseline Simulation  

Our experiments began with the hippocampus 
simulation (hipp.proj). This basic simulation is 
designed to train the network on the classic AB-AC 
paired associate list learning task.  This task is 
particularly useful because it has been well-studied 
in human experimentation (e.g. Barnes & 
Underwood, 1959), and it caused difficulties for 
early neural network models. As McCloskey and 
Cohen showed, neural networks relying on back-
propagation experience catastrophic interference on 
the AB-AC learning task (1989). 

 

Figure 2: The basic hippocampus simulation within 
Emergent. The Input Layer feeds directly into the 
Entorhinal input layer (EC_in), which is encoded by the 
Dentate Gryus (DG), the cornu ammonis area 3 (CA3), 
and CA1. Memory retrieval is driven by connections from 
CA1 back to the EC_out. 

As initially designed, the simulation is trained on a 
list of ten AB pairs (labeled ab_0 through ab_9) in 

BIOINFORMATICS�2014�-�International�Conference�on�Bioinformatics�Models,�Methods�and�Algorithms

166



three sets of trials, then tested on those pairs by 
removing the B units and allowing the network to 
attempt to fill them in (see Figure 3). 

That test is followed by the AC list and set of 
novel lure items, to verify that the network is still 
reacting as expected to new inputs. This full cycle 
(three sets of training trials, one set of tests each for 
AB, AC, and lure) is considered an epoch. For the 
purposes of our experiments, time tested on the AC 
list and lure items represented a time lag between 
training on the AB list and recall of that list. 

Because of that time lag and because the A items 
are always presented in the original order, these 
experiments mimic the serial delayed recall task, in 
contrast to free recall and immediate recall. Weights 
were initialized before starting each experiment. The 
simulation was run for ten epochs. 

Data sets for subsequent experiments were 
manipulated by exporting the original dataset into a 
spreadsheet, manually editing the AB context sets, 
and importing the changed file into the model. 

 

Figure 3: A single input AB pair within Emergent. A items 
are circled in red; B items are circled in blue. During 
memory retrieval, B items will be blank, and recalled (if 
possible) from CA1 via EC_out . The top six groups of 
units (circled in purple) are context. During baseline trials, 
these were unique for each AB pair. Experiment 1 made 
the context identical for all pairs except ab_0 and ab_9. 
Experiment 2 made the context identical for sets of pairs, 
while context for ab_0 and ab_9 remained unique. 

2.4 Baseline – Unique Contexts 

The simulation was run using the input data 
“Train_AB” available within the simulation. After 
opening the project file within Emergent, the 
network weights were initialized. We used the 
Step:Epoch function so that we could note results 

after each epoch. On the third epoch, the network 
had learned the AB list. We ran a total of ten epochs 
to have a fair basis of comparison across 
experiments.  

2.5 Experiment 1 – Full Overlap 
of Middle Contexts 

The Train_AB input data file was copied from the 
project file. Leaving the A and B inputs untouched, 
the groups of context units were altered such that 
ab_1 through ab_8 had the same context. Items ab_0 
and ab_9 were unaltered. After uploading the new 
data table into the project, the weights were 
initialized, and we used the Step: Epoch function as 
before for ten epochs. 

2.6 Experiment 2 – Partial Overlap 
of Middle Contexts 

The Train_AB input data file was copied from the 
project file. Leaving the A and B inputs untouched, 
the context units were altered such that pairs of trials 
now had the same context. For example, ab_1 and 
ab_2 had the same context, ab_3 and ab_4 had the 
same context, and so on. Items ab_0 and ab_9 were 
unaltered. After uploading the new data table into 
the project, the weights were initialized, and we used 
the Step: Epoch function as before for ten epochs. 

2.7 Experiment 3 – Full Overlap 
of First Eight Contexts 

At this point, we wanted to see if the order of the 
items during testing was having any effect on the 
results, or if results were from the uniqueness of the 
contexts alone. In order to test whether being first 
and last was truly having an effect in the network, 
we took the data from Experiment 1, and simply 
moved ab_0 to the end of the data set, relabeling the 
items to match their new position. Thus, ab_0 
through ab_7 now had identical contexts, ab_8 and 
ab_9 were unique. As before, we initialized the 
activation weights in the network and used the 
Step:Epoch function to run ten epochs. 

2.8 Experiment 4 – Permuted Full 
Overlap 

Finally, for comparison, we ran the same data as in 
Experiment 1, with the data loop order parameter 
changed from sequential to permuted. That is, during 
testing trials, the items would be presented in a 
different  order  from that of the training  trials,  thus 
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Table 2: For each experiment, the first column represents how well the network learned the AB list overall. Subsequent 
columns show how often the network remembered the B portion of the AB pair out of 10 epochs (trials). Shaded cells 
represent items with unique context. In Experiment 2, dark outlines group the items with duplicate context. 

  Best  Epoch 

Score 

ab_0  ab_1  ab_2  ab_3  ab_4  ab_5  ab_6  ab_7  ab_8  ab_9 

Baseline  100%  9  10  10  9  9  9  10  10  10  8 

Exp. 1  50%  9  3  0  5  10  0  0  0  0  10 

Exp. 2  70%  9  8  2  10  0  9  1  7  6  8 

Exp. 3  70%  9  8  2  6  3  4  0  0  0  10 

Exp. 4  50%  9  3  2  3  10  0  0  0  0  10 

 
simulating a free recall task. As before, we 
initialized the activation weights in the network and 
used the Step:Epoch function to run ten epochs. 

3 RESULTS 

Results are summarized in Table 2. The baseline 
version of the simulation was able to perfectly 
remember the AB list by the third epoch. The last 
list item (ab_9) was the last item learned. The graph 
is almost the inverse of the classic SPE U-shape (see 
Figure 4). 

 
Figure 4: Results by list item pair for baseline simulation, 
percent recalled. Each ab had unique context. Note that 
ab_9 was the last item learned. 

In Experiment 1, the simulation ran for ten epochs. 
The highest percentage remembered correctly for 
any given epoch was 50%, so at no time did it 
achieve perfect recall, which the baseline simulation 
did in three epochs. However, far more important in 
understanding the SPE, were the results by list item 
(see Figure 5). Here we see that the first and last 
items (which had unique context) are more often 
remembered than any item, with exception of ab_4.  
Both primacy and recency effects were replicated by 
this experiment. 

In Experiment 2, the simulation ran for ten 
epochs. The highest percentage remembered 

correctly for any given epoch was 70%, an 
improvement over Experiment 1, perhaps due to the 
lower overlap in contexts. In terms of understanding 
the SPE, the pairs sharing context exhibited an 
interesting pattern (see Figure 6). Again, ab_0 and 
ab_9 were recalled significantly more than the 
overall average, 9/10 and 8/10 respectively, in 
contrast to 5.4/10. Also, the initial trial in each pair 
of identical-context trials outperformed the second 
in every case. In the most extreme case, ab_3 was 
recalled correctly in all 10 epochs, whereas ab_4 
was never recalled. Again, primacy and recency 
effects were replicated here, albeit complicated by 
the strong results from each initial item in the same-
context paired trials. 

 
Figure 5: Percent recalled by list item pair for Experiment 
1, with all middle items having identical context. 

In Experiment 3, the highest percentage remembered 
correctly for any of the ten epochs was 70%, the 
same result as Experiment 2. Once again ab_0 and 
ab_9 were recalled better than other items, 9/10 and 
10/10, in contrast to the overall average of 4.2/10 
(See Figure 7.) As the first of the group of context-
overlapping items, recall of ab_0 appeared to 
correspond with the results of Experiment 2, where 
the first of each pair was recalled more often than 
the second. What was unexpected was the network’s 
complete failure to recall item ab_8 (which had a 
unique context).  Again, primacy and recency effects 
were replicated, but the effect of unique context was 
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contradicted by the failure to recall uniquely-
contexted item ab_8. 

 
Figure 6: Percentage of times recalled, by item for 
Experiment 2, with context identical for pairs of trials. 
Notice that the first of each pair is remembered more 
easily than the second. For instance, ab_3 and ab_4 have 
identical contexts; ab_3 was recalled in every epoch; ab_4 
was never recalled. 

 
Figure 7: Percent recalled in Experiment 3. Items ab_0 – 
ab_7 had identical context. Notice that ab_8, with unique 
context, is never recalled. 

 
Figure 8: Percent recalled in the permuted order – 
Experiment 4, simulating free recall. Only ab_0 and ab_9 
had unique context. 

In Experiment 4, the simulation ran for ten epochs. 
Similar to Experiment 1, ab_0 and ab_9 had unique 
contexts while ab-1 though ab_8 had identical 
contexts. In contrast to the other experiments, 
Experiment 4 had permuted testing order to simulate 
free recall (see Figure 8). The highest percentage 

remembered correctly for any given epoch was 50%, 
making it similar to Experiment 1. The three best 
recalled items were ab_0 (9/10), ab_4 (10/10) and 
ab_9 (10/10), with the overall average as 3.7/10.  
This suggests that uniqueness of contexts did 
improve recall, in contrast to the results of 
Experiment 3. 

4 DISCUSSION 

These results demonstrate that both primacy and 
recency of the SPE in a serial recall task can be 
replicated using only the hippocampus simulation, a 
result suggesting that a one-store model of memory 
for this recall task is sufficient. It remains to be seen 
if this simulated model mirrors the actual biological 
mechanisms utilized. 

The results also suggest that both unique context 
and order have impacts on recall in the network. 
Certainly in Experiments 1 and 2, both primacy and 
recency occurred, but the odd results in Experiment 
3, where a unique-context item was never corrected 
recalled (ab_8), and strong recall of a non-unique 
item (ab_4) deserve closer examination.  

At first we conjectured that the particular pattern 
in ab_4 of Experiment 3 was distinctive in some way 
not immediately apparent, similar to a human 
subject finding pre-existing meaning in a random 
string of numbers (such as a date), making it more 
memorable.  However, a comparison of the patterns 
of each individual item against each of the others did 
not reveal any outliers. In fact, if this sort of 
“distinctiveness” of the A and B portions of the item 
could have predicted the more “memorable” items, 
ab_5 in Experiment 3 should have been successfully 
recalled, as it has the least similarities with other 
items.  

We also compared each A portion of the item 
against its own B portion. If a high similarity 
between the two portions of each item were a 
predictor of successful recall, then ab_6 and ab_7 
should have been the most recalled items in 
Experiment 3.  

It could be argued that uniqueness (or 
distinctiveness) and position are related. In trials 
with human subjects, the first and last items in a list 
have the distinction of being the “book ends”; their 
context is unique by virtue of their positions. 
Distinctive items are more easily remembered. That 
is, in some sense, what the context represents in 
these experiments. In the simulations, we sought to 
recreate that distinctiveness by altering the groups of 
context units for each list pair. However, recreating 
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context analogous to the human perception of 
context within the model is the big challenge. In 
behavioural studies of context, the strongest cues are 
often emotional ones such as fear (e.g. Rudy, 
Barrientos & O’Reilly, 2002), and how to replicate 
that neurobiological effect in the computational 
models is not clear.  

5 CONCLUSIONS 

The Serial Position Effect has historically been 
explained using a two-store memory model. Primacy 
and recency were thought to be the work of long 
term memory and working (short term) memory, 
respectively. This paper has used simulation to 
explore the theory that a one-store model of memory 
can account fully for SPE. Simulation results 
demonstrate that both primacy and recency of the 
SPE in a serial recall task can be replicated using 
only the hippocampus simulation, a result suggesting 
that a one-store model of memory for this recall task 
is sufficient. 

While we deliberately restricted this work to the 
hippocampus-only simulation in order to test the 
one-store memory model of the SPE, future 
computational simulations for the SPE should be 
expanded to use the prefrontal cortex/hippocampus 
combined simulation. As outlined in Atallah, Frank, 
and O’Reilly (2004), memory encoding is 
distributed, and memories are not “located” in either 
the hippocampus or the cortex, but in both. A 
connected PFC-hippocampus simulation would 
allow this distributed model of memory to be more 
thoroughly tested. The fact that the Serial Position 
Effect is so thoroughly studied in experimental 
psychology suggests that further investigation along 
these lines will improve our understanding of the 
biological mechanisms of memory. 
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