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Abstract: Structural property of the tissue can be quantified by its optical scattering properties. Since a tumor is 
differentiated from healthy tissue based on morphological analysis, model-based approach to cancer 
diagnosis is developed. The scattering property is measured using Optical Coherence Tomography. The 
structural subsurface images from the measurements are described quantitatively. A parametric model is 
developed to classify tissue as healthy or cancerous. A statistical model-based imaging method is created to 
distinguish healthy vs. cancerous soft tissue using the example of human Normal Fat vs. Well-
Differentiated- (WD-), and De-Differentiated Liposarcoma (DDLS). 

1 INTRODUCTION 

Characteristics of tissue structural properties are 
studied non-invasively with different imaging 
modalities (Magnetic Resonance Imaging, 
Computed Tomography, Ultrasound, Optical 
Coherence Tomography …) (Rembielak, 2011; 
Morris, 2012). Each works at different scale 
depending on interest based on different physical 
principles using specific frequency range of the 
electromagnetic spectrum (radio frequency-, X-ray, 
sound-, light wave…). These techniques can be 
coupled for multidisciplinary analysis of the tissue 
providing different information detected from 
backscattered waves from the internal structure. The 
outputs of these backscattered signals are grayscale 
images with different resolution and imaging depth 
revealing the subsurface structure (Rembielak, 2011; 
Morris, 2012).  

We chose Optical Coherence Tomography 
(OCT) to analyze tissue structural properties. OCT 
records images based on near infrared (NIR) laser 
light scattered back from the tissue (Drexler, 2008, 
Brezinski, 2006). Instead of subjective image 
analysis, we approach the diagnosis from 

mathematical point of view in order to quantify 
topological changes. We develop a simple statistical 
model based on the images analyzing the scattering 
properties distinguishing various tissue types. The 
tissue example is Normal Fat tissue vs. Well-
differentiated and De-differentiated Liposarcoma, 
but the idea can be broadened toward the analysis of 
other type of cancer since the diagnosis is based on 
morphology. This model based imaging can become 
a clinical tool to provide a second opinion for 
physiologists. 

In the literature, some approaches have been 
elaborated that could differentiate quantitatively 
between the various tissue types and specifically 
between healthy and cancerous tissue recorded with 
OCT. The attenuation of backscattered laser light in 
function of depth (z) in the biological material 
theoretically follows an exponential function 
(Drexler, 2008; Brezinski, 2006):  

Iሺzሻ ൌ Ieି୳౪ (1)

defined by the scattering coefficient ݑ௧ 
characterizing different tissue types, calculating 
from the slope of the intensity attenuation in dB 
scale. This implies the abstraction of the tissue 
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structure. For inhomogeneous material the slope is 
calculated by averaging or filtering, and the analysis 
of the deviation from the slope characterizes well the 
tissue (Lev, 2011, Yang, 2011, McLaughlin, 2010, 
Mujat, 2009, Goldberg, 2008). 

Morphological pattern of breast cancer in OCT 
images has been studied by fractal analysis using 
box-counting algorithm (Sullivan, 2011). The 
periodicity analysis based on the scattering effect 
due at the cell boundaries distinguishes healthy vs. 
cancerous breast tissue (Zysk, 2006; Mujat, 2009; 
Goldberg, 2008). A similar method based on cell 
counting is already applied on OCT images of 
Liposarcoma (Carbajal, 2011). 

Speckle phenomena are a random scattering 
effect, called texture, which analysis reveals the 
tissue types in case of inadequate structural 
resolution (Gossage, 2003; Gossage, 2006). 

2 TISSUE STRUCTURE 
RECORDED WITH OPTICAL 
COHERENCE TOMOGRAPHY  

Optical Coherence Tomography (OCT) is a well-
known structural imaging method applied on 
biological material, in particular for cancer diagnosis 
(Drexler, 2008, Brezinski, 2006). OCT has a better 
resolution (3-10 μm) compared to other diagnostic 
methods, revealing the subsurface structure in a 1-3 
mm deep region under the surface, and has proved to 
be the most suitable imaging method applied on 
Liposarcoma (Carbajal, 2011; Lahat, 2009; Lev, 
2011). 

According to the WHO report on Soft tissue 
tumors, Liposarcoma is part of the Adipocytic 
Tumors. In this study we differentiate Normal Fat 
from Intermediate (locally agressive) tumor, so 
called Well-Differentiated Liposarcoma (WDLS) 
and from one type of Malignant tumor (having risk 
to metastasize), called De-Differentiated 
Liposarcoma (DDLS) (Fletcher, 2006). 

Tissue samples were excised from human 
patients’ abdomen/retroperitoneum at the University 
of Texas M. D. Anderson Cancer Center 
(UTMDACC). Protocols for tissue processing were 
approved by the UTMDACC and University of 
Houston Biosafety Committees. Histological 
diagnosis and classification of samples was 
performed by a UTMDACC sarcoma pathologist. 
The tissue was put in sterile phosphate buffered 
saline then stored in refrigerator until imaged with 
the OCT system. 

We record the tissue on a Spectral-Domain (SD) 
OCT measuring rig in the BioOptics Laboratory at 
the University of Houston. A supraluminescent laser 
diode (Superlum, S840-B-I-20) generates a 
broadband laser signal with center wavelength at λ0 
= 840 nm, spectral bandwidth at Δλ = 50 nm and 
output power at 20 mW (Carbajal, 2011) (Figure1).  

 

 

 

Figure 1: a) Normal Fat Tissue cross-section OCT image 
(mature fat, adipose cells), logarithmic response. b) Well-
differentiated Fat Tissue cross-section OCT image (WDLS 
with extensive myxoid change), logarithmic response. c) 
De-differentiated Fat Tissue cross-section OCT image 
(Highly fibrotic DDLS), logarithmic response. 

The above images show the cross-section of 
Human Normal Fat tissue (Figure 1a), WDLS 
(Figure 1b) and DDLS (Figure 1c). This 2D cross-
section called B-scan is composed of 500 adjacent 
A-lines. One A-line (1D) shows the backscattered 
intensity variation in function of depth from a laser 
footprint of 8 μm in focal plane. The region is 3mm 
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wide scanned with a galvanometer mirror, with 
backscattered light collected from a region of up to 
~1 mm in depth. 

The internal structure is revealed. We can see the 
differences of the different tissue types on the gray-
scale images. We intend to transform the qualitative 
information from the images to a quantitative 
statistical parametric description of the tissue. The 
statistical model is based on the variability of the A-
lines in the cross-section at a given region. One A-
line of the different tissue types is seen on Figure 2. 

 

 

 

Figure 2: OCT A-line of a) Normal Fat b) WDLS c) 
DDLS. The intensity of the input laser light and the path-
length difference between the reference mirror and the 
tissue surface differ in each case. 

1D imaging (Intensity as a function of depth at a 
single point) is obtained by applying Digital Signal 
Processing methods on the data detected on a line 
scan camera (Basler Sprint L104K-2k, 2048 pixel 
resolution, 29.2 kHz line rate), -with a resolution of 

2k, and a 10x10 μm2 pixel size, detecting 2048 
wavelength intensity values between 800-890 nm. 
The signal is digitized using an analog-to-digital 
converter (NI-IMAQ PCI-1428). The intensity 
detected on the line-scan camera is the cross-
correlation of the broadband laser light electric field 
split in a Michelson interferometer and scattered 
back from a reference mirror and from the sample 
layers at each frequency component (Carbajal, 2011, 
Drexler, 2008, Brezinski, 2006). The broadband 
laser light is decomposed into its spectral 
components in passing through a diffraction grating 
(Wasatch Photonics, 1200 grooves/mm). The 
measurement setting and DSP is computed in 
Labview, whence the intensity functions as function 
of depth are analyzed in Matlab. 

3 DATA ANALYSIS 

The post-processing steps to determine the model on 
the Fourier-domain signatures derived from OCT 
data will be explained here. Human Normal Fat, 
WDLS and DDLS tissue samples will be analyzed. 
We will focus on the statistical properties of the 
backscattered intensity signals. 

For the computation, the tissue surface should 
first be numerically straightened. We apply the 
canny edge detector implemented in Matlab Image 
Processing Toolbox on the B-scans after median 
filtering the images. This can be used to align the 
scans, but does not yield the absolute position of the 
surface with respect to common origin. Before 
further analysis we screen all the B-scans to verify 
that each one is straightened properly. 

At each depth position the mean and standard 
deviation of the intensity signals will be calculated. 
Then, attenuation effects are removed from the data 
by dividing the Intensity Values or the standard 
deviation of the A-lines by the mean from each 
backscattered intensity response, so as to normalize 
every scan line. 

The images are corrected according to the 
normalized camera sensitivity curve, to eliminate the 
errors coming from the intensity variations because 
of the oblique tissue surface. It is due to the camera 
feature recording the same sample point at lower 
intensity from farther path-length differences 
following a Gaussian decay (Bajraszewski, 2008). 

3.1 Standard Deviation over Mean 

In the first case the tissue characterization will be 
defined from the Probability Density Functions 
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(PDF) of the STD/MEAN curves. The three-
parameter Generalized Extreme Value (GEV) 
Distribution fits the histograms well due to its high 
flexibility: 

y ൌ fሺx|k, μ, σሻ ൌ 	 ቀ
ଵ


ቁ expቆെቀ1  k
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(2)

where x is the std/mean of the intemsity values, y is 
the distribution, k is the shape-, σ is the scale-, μ is 
the location parameter. 

To find the tissue surface on the straightened 
images the mean of the A-lines in one B-scan, and 
the first derivatives of the mean are calculated from 
the uncorrected images. The tissue surface is defined 
at the highest derivative point. 

After the tissue surface is defined, 150 pixel = 
0.659 mm is considered for analysis because the 
most dense tissue (DDLS) does not reflect light from 
deeper region at this wavelength range and camera 
settings (Figures 3a). 

 

 

Figure 3: a) Averaged B-scan, mean intensity value at 
each depth position on Normal Fat, WDLS, DDLS; (150 
pixels from the tissue surface) The curves here are 
normalized according to maximum value only for 
representation. b) Standard Deviation over Mean at each 
depth position in the same region. 

The next step will be to define the Region of Interest 
(ROI) on the curves for analysis. This analysis relies 
on the use of a windowing scheme, in which 

sections of the intensities as function of depth are 
evaluated separately. 

After evaluation of the data in each window 
region at each B-scan via the parameters of the GEV 
distribution, a window size of 40 pixel = 0.1758 mm 
is chosen, beginning from the tissue surface. Our 
method turned out to be independent on the surface 
scattering effect. 

To depict the accuracy of the results, 160 WDLS 
or DDLS and 200 Normal Fat B-scans were 
analyzed. Figure 4 shows the mean and STD of the 
GEV parameters on the Gaussian corrected curves. 
It characterizes well the different tissue types. 

 

Figure 4: Histogram, GEV Distribution (k, σ, μ) calculated 
from the STD/mean ratio of the intensity values at each 
depth position in ROI, mean and standard deviation on 
200 B-scans of Normal Fat, and 160 B-scans of WDLS 
and DDLS. 

The curve coefficients well differentiate between 
the healthy and cancerous tissues, but there is less 
distinction between the grades of the cancer (Table 
1). 

Table 1: GEV parameters calculated from the STD/MEAN 
ratio of the intensity values at each depth position, mean 
and standard deviation on 200 B-scans of Normal Fat, and 
160 B-scans of WDLS and DDLS. 

STD/MEAN k σ μ 
Baseline 

(Normal Fat) 
0.0007 

+0.2347 
0.2151 

+0.0579 
1.2796 

+0.0659 
Deviation1 

(WDLS) 
-0.0128 
+0.2443 

0.0529 
+0.0120 

0.7093 
+0.0359 

Deviation2 
(DDLS) 

0.0857 
+0.1673 

0.0493 
+0.0128 

0.6502 
+0.0584 

To draw the deviation from the baseline tissue 
the next parameters are calculated, where b is the 
Baseline tissue parameter, d is the Deviated tissue 
parameter.  

BIOIMAGING�2014�-�International�Conference�on�Bioimaging

22



Table 2: Comparison of the GEV parameters calculated 
from the STD/mean ratio of the intensity values at each 
depth position, mean and standard deviation on 200 B-
scans of Baseline Tissue and 160 B-scans of Deviation 
1&2. 

STD/MEAN ∆ ൌ
ࢊ െ ࢈
࢈

࣌∆  ൌ
ࢊ࣌ െ ࢈࣌
࢈࣌

ࣆ∆  ൌ
ࢊࣆ െ ࢈ࣆ
࢈ࣆ

 

Baseline 
(Normal Fat) 

0 
+335.2857 

0 
+0.2692 

0 
+0.0515 

Deviation 1 
(WDLS) 

-19.2857 
[-368.2857; 
329.7143] 

-0.7541 
[-0.8099; 
-0.6983] 

-0.4457 
[-0.4737; 
-0.4176] 

Deviation 2 
(DDLS) 

121.4286 
[-117.5714; 
360.4286] 

-0.7708 
[-0.8303; 
-0.7113] 

-0.4919 
[-0.5375; 
-0.4462] 

The next figure represents the coefficient 
differences on the axes of a 3D coordinate system. It 
is clear, that there is a relevant separation between 
the healthy and cancerous tissue in each projection 
plane. 

3.2 Normalized Intensity Variation 

A second method is developed to analyze the same 
data set. Instead of calculating the STD/MEAN, all 
the measured intensity values are now considered, 
and also normalized by the mean intensity at each 
depth position. The same windowing process was 
applied on the A-lines and B-scans, and the optimal 
window size of 40 pixels beginning from the surface 
has been proved. Figure 6 and Table 3 shows the 
mean and STD of the GEV parameters 
characterizing the different tissue types. 

 

Figure 6: Histogram, GEV Distribution (k, σ, μ) calculated 
from the mean-normalized intensity values in ROI, mean 
and standard deviation on 200 B-scans of Normal Fat, and 
160 B-scans of WDLS and DDLS. 

 

 

 

 

 

Figure 5: Comparison of the GEV parameters represented 
at each axe of the 3D coordinate system calculated from 
the STD/mean ratio of the intensity values at each depth 
position, mean and standard deviation on 200 B-scans of 
Baseline Tissue and 160 B-scans of Deviation 1&2. 
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Similarly to the first method the curve coefficients 
characterize well the healthy and cancerous tissue 
but WDLS and DDLS coefficients are not 
sufficiently distinguished. 

Table 3: GEV parameters calculated from the mean-
normalized intensity values in ROI, mean and standard 
deviation on 200 B-scans of Normal Fat, and 160 B-scans 
of WDLS and DDLS. 

I/MEAN k σ μ 
Baseline 

(Normal Fat) 
0.8209 

+0.0647 
0.3532 

+0.0181 
0.3191 

+0.0254 
Deviation1 

(WDLS) 
0.1905 

+0.0358 
0.4561 

+0.0100 
0.6381 

+0.0229 
Deviation2 

(DDLS) 
0.1447 

+0.0684 
0.4462 

+0.0044 
0.6700 

+0.0364 

The next table shows the deviation from the 
baseline tissue, where b is the Baseline tissue 
parameter, d is the Deviated tissue parameter. 

Table 4: Comparison of the GEV parameters calculated 
from the mean-normalized intensity values in ROI, mean 
and standard deviation on 200 B-scans of Baseline Tissue 
and 160 B-scans of Deviation 1&2. 

ΣI /MEAN 
∆

ൌ
ࢊ െ ࢈
࢈

 

࣌∆

ൌ
ࢊ࣌ െ ࢈࣌
࢈࣌

 

ࣆ∆

ൌ
ࢊࣆ െ ࢈ࣆ
࢈ࣆ

 

Baseline 
(Normal 

Fat) 

0 
+0.0788 

0 
+0.0512 

0 
+0.0796 

Deviation1 
(WDLS) 

-0.7679 
[-0.8115; 
-0.7243] 

0.2913 
[0.2630; 
0.3196] 

0.9997 
[0.9279; 
1.0715] 

Deviation2 
(DDLS) 

-0.8237 
[-0.9071; 
-0.7404] 

0.2633 
[0.2508; 
0.2758] 

1.0997 
[0.9856; 
1.2137] 

The next figure shows similar results then the 
first method representing the coefficient differences 
in the 3D coordinate system and separating well the 
healthy and cancerous tissue in each projection 
plane, however the different cancer tissues are 
overlapped. 

4 DISCUSSION 

We can deduce that both statistical analyses are a 
viable method to differentiate tissue types with a 
good accuracy. The method is independent on the 
measurement settings as the results are normalized 
by the mean of the intensity values at each depth 
position, and errors due to path-length differences 
are corrected. For comparison the data analysis was 
also  applied  on  the  images  without this correction 

 

 

 
Figure 7: Comparison of the GEV parameters represented 
at each axe of the 3D coordinate system calculated from 
the mean-normalized intensity values in ROI, mean and 
standard deviation on 200 B-scans of Baseline Tissue and 
160 B-scans of Deviation 1&2. 
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revealing that only the shape parameter (k) is 
affected in a non-negligible way in the case the 
STD/MEAN ratio is calculated. This analysis is 
more sensitive also to the way how we find the 
surface of the tissue since the data points from 
which the histogram is drawn is deduced calculating 
the STD/MEAN from each depth position (40 
pixels), comparing to the second method where the 
histogram is drawn from the data points contained in 
all the Region of Interest (40x200 or 40x160 pixel 
points). In case we want to get absolute parameters, 
which describe tissue type, the correction is needed.  

The method could be developed to distinguish 
better the different grade of cancer implementing 
with additional factors, e.g. the mean intensity 
values at each depth position. The weak point of the 
measurements is that setting the position of the 
tissue under the laser light to get a visible subsurface 
structure is controlled manually. The measurements 
revealed that the focus position does not affect 
significantly the quantitative results, but some 
saturated intensity points can also affect the 
statistics.  

It has already been proved that this non-invasive 
measurement technique shows good similarities with 
stained histology (Figure 8) (Lev, 2011). The 
novelty of our study was to develop a mathematical 
model-based approach instead of visual grading of 
the structure to be able to differentiate tissue types. 

The structure is detected from the scattering 
properties of the tissue types. The laser clearly 
reveals the adipose cells seen in Normal Fat. WDLS 
has extensive myxoid change including vasculature, 
but still has some adipose cells with varying size, 
which is a diagnostic of WDLS. The part of DDLS 
imaged here resembles fibrotic tissue. 

Cancerous tissue is much denser than healthy 
tissue. Since light scattering occurs chiefly at 
interfaces, scattering is much stronger in cancerous 
tissue. The inhomogeneous Normal Fat is 
distinguished with periodic scattering at the cell 
boundaries. The attenuation of light is higher in the 
dense tissue, detectable with the attenuation 
coefficient ݑ௧, and the back reflection loses the 
periodicity as the adipose cells dedifferentiate in the 
cancerous tissue. The optical properties show the 
morphology of the tissues, the scattering effects 
reveal the cellular structure at a good resolution for 
our analysis. 

For medium grade sarcoma (WDLS), there is 
much larger cell size dispersion than in healthy 
tissue. An analysis of the structure’s periodicities is 
sensitive to this, as well as speckle analysis. Cell 
counting analysis can  reveal the difference  between 

 

 

 

Figure 8: Histological images (Magnification 10x) of a) 
Normal Fat b) Well-Differentiated Liposarcoma with 
extensive mitotic change c) Highly Fibrotic De-
Differentiated Liposarcoma. 

healthy tissue and high grade of cancer (DDLS), the 
size of the variable adipose cells should be included 
in the algorithm to distinguish between normal fat 
and medium grade of cancer (WDLS). It can be 
improved using artificial network analysis already 
calculated on histological data (Sjöström, 1999). 
There is a certain degree of order (on a given length 
scale) in healthy tissue. On the contrary, in sarcoma, 
many scales are present, which is revealed by fractal 
analysis. 

The techniques proposed in literature have not 
been applied in clinical practice yet and there are 
some shortcomings in the analysis. The slope 
analysis discards all structural information; the 
fractal analysis is too complicated and subject to 
erroneous or ambiguous interpretation due to 
experimental errors. The speckle analysis discards 
information on loss of intensity due to multiple 
scattering events. Finally it seems likely that 
completely automated, practicable cell counting 
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analysis will not be achieved using traditional image 
analysis software. 

The aim of our study is to develop a simple 
analysis technique based on a parametric method 
that captures the structural features from the strength 
of scattering. Here only one histological subtype of 
WDLS and DDLS is described, however they can 
represent several patterns (Miettinen, 2003, 
Miettinen, 2010) The comparison of the different 
histological subtypes and the ability to differentiate 
from Normal Fat and Lipoma, benign adipose tissue 
is a future study. 

5 CONCLUSIONS 

Our objective was to study the response of tissue to 
a near infrared laser excitation, and, specifically, to 
characterize differences between healthy and 
cancerous tissue. The morphology of the subsurface 
is depicted based on the backscattered near infrared 
light. Parametric models of these backscattered 
signal characteristics are derived and linked 
statistically to the optical properties of Normal Fat, 
Well-Differentiated Liposarcoma and De-
Differentiated Liposarcoma. 

The accurate diagnosis at early stage of cancer, 
as well as the recognition of the tumor boundary in 
tissue is highly important. However OCT has been 
well-recognized as a powerful method for cancer 
detection from tissue morphology, the diagnosis 
from these images is subjective and not obvious. We 
intend to fill the need for an objective means of data 
analysis. The goal of the current study was to 
develop a quantitative diagnostic method 
differentiating between healthy and cancerous tissue. 

The data analysis is developed on images 
recorded on human Normal Fat Tissue vs. Well-
differentiated (WD) and De-differentiated 
Liposarcoma (DDLS). Further refinement will allow 
to detect tumor boundary, diagnose other type of 
cancer (e.g. breast cancer) where structural analysis 
is required for diagnosis, or to monitor quantitatively 
tumor progression during cancer therapy. 

As a demonstration of these methods, statistical 
analysis was developed to evaluate OCT images of 
human fat specimens. An accurate result was found 
to quantify healthy vs. cancerous tissue. The analysis 
can be applied in real-time for diagnosis, and it is 
much simpler comparing to other quantifying 
method. This practical advantage gives a good 
possibility to use in surgical evaluation. 

We describe first time a model-based tissue-
characterization method based on structural 

properties of healthy vs. cancerous tissue. Further 
statistical validation, sensitivity/specificity analysis 
and classification methods have to be performed on 
other measurements to prove the efficacy of the 
developed method. 
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