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Abstract: Recent progress in high-throughput technology has resulted in a significant data overload. Determining how 
to obtain valuable knowledge from such massive raw data has become one of the most challenging issues in 
biomedical research. As a result, bioinformatics researchers continue to look for advanced data analysis 
tools to analysis and mine the available data. Correlation network models obtained from various biological 
assays, such as those measuring gene expression levels, are a powerful method for representing correlated 
expression. Although correlation does not always imply causation, the correlation network has been shown 
to be effective in identifying elements of interest in various bioinformatics applications. While these models 
have found success, little to no investigation has been made into the robustness of relationships in the 
correlation network with regard to vulnerability of the model according to manipulation of sample values. 
Particularly, reservations about the correlation network model stem from a lack of testing on the reliability 
of the model. In this work, we probe the robustness of the model by manipulating samples to create six 
different expression networks and find a slight inverse relationship between sample count and network 
size/density. When samples are iteratively removed during model creation, the results suggest that network 
edges may or may not remain within the statistical parameters of the model, suggesting that there is room 
for improvement in the filtering of these networks. A cursory investigation into a secondary robustness 
threshold using these measures confirms the existence of a positive relationship between sample size and 
edge robustness. This work represents an important step toward better understanding of the critical noise 
versus signal issue in the correlation network model. 

1 INTRODUCTION 

The correlation network model has been used for 
data modelling in multiple research studies 
(Halappanavar et al., 2012); (Dempsey et al., 2011); 
(Song et al., 2012); (Opgen-Rhein and Strimmer, 
2007); (Horvath and Dong, 2008); (Verbitsky et al., 
2004); (Bender et al., 2008) that harness the power 
of a network model to identify biological function. 
While these studies have found great success in 
identifying biological function (high degree nodes 
can reflect essentiality (Halappanavar et al., 2012); 
(Dempsey et al., 2011), clusters of nodes can 
regulate or execute common cellular mechanisms1,2, 
graph theoretic filters can remove noise from the 
model while enhancing signal (Halappanavar et al., 
2012); (Dempsey et al., 2011); (Song et al., 2012); 
(Opgen-Rhein and Strimmer, 2007)), the robustness 
of the correlations used in the network model have 
not been thoroughly examined. 

Briefly, the correlation network model is 
described as thus: a node represents a gene product 

or probe from a high-throughput assay, such as a 
DNA microarray or RNA-seq experiment. Each 
experiment has some number of samples, n. For 
each pair of genes or probes in the dataset, some 
measure of correlation is applied. This correlation 
assumes that there are at least three samples for each 
gene/probe, and that none of the sample expression 
values are missing, otherwise the correlation cannot 
be performed for that pair. In cases where sample 
size is small or experimental results are poor, a 
majority of correlations may be rendered invalid, but 
with improvement in current technologies this 
becomes a much smaller issue.  

For each pairwise comparison, a correlation 
measure is used. Typically, this is the Pearson 
correlation coefficient (which measure linear 
relationships), but it can also include partial 
correlation (where statistically calculated random 
samples are not used in the correlation), Spearman 
correlation (measuring relationships that are non-
linear using some function f), or other statistical 
measures such as mutual information (measures the 
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dependence of behaviour of one variable based on 
another’s behaviour). After the correlation is 
computed, some hypothesis testing is done to filter 
out only significant correlations. In addition to 
significance filtering, filtering via correlation 
threshold is typically performed to reduce network 
size and remove non-meaningful correlations (such 
as those around 0.00). 

There are two main ways to filter a network: 
hard thresholding or soft thresholding. Hard 
thresholding removes edges based on a firm cut-off 
value; typically this value falls between the ranges 
of -1.00 ≤ ρ ≤ -0.70 and 0.70 ≤ ρ ≤ 1.00. This 
threshold is typically chosen as it captures only 
relationships that are descriptive of the behaviour of 
two genes. For example, a correlation of 0.70 has a 
coefficient of determination (R2 which is equivalent 
to ρ2) of 49%, meaning that if the correlation reflects 
a true relationship, 49% of a given gene’s behaviour 
can be attributed to the other gene, and vice versa.  

Soft thresholding, popularized by Horvath and 
Dong (2008) (called WGCNA), involves identifying 
the threshold at which the network exhibits scale-
free properties which some particular networks are 
expected to have, and extracting the subnetwork of 
the original network such that the filtered network is 
scale-free. Thus, comparing two sets of expression 
data from the same model and cell line but under 
different environmental conditions might involve 
using different correlation values based on the soft 
thresholding approach. 

While many studies have used iterations of the 
correlation network model with success, few studies 
in network systems in biology have delved into the 
robustness of correlations, and how that might affect 
network structure. For example, if a sample is 
removed from the network, does the correlation that 
results remain the same value or does it change 
significantly? The correlation, if originally had 
fallen within the proposed threshold and after 
sample removal failed to fall within the threshold, 
might not be representative of a true relationship in 
the data. This begs the question: How many samples 
are sufficient to assume a robust network? These and 
other questions, if answered, can lead to insights 
about how to remove noise from a correlation 
network, and which relationships can be trusted, 
without having to integrate extraneous biological 
information. The novelty of this work lies in the lack 
of understanding of the stability or by contrast, 
vulnerability of the correlation network model. 
While correlation does not imply causative 
relationship, the measure is still able to capture those 
relationships that are causative; in capturing 
everything the measure is prone to noise. This 

research investigates the possibility of using the 
strength of correlation to remove some of that noise 
and also can be used as evidence to suggest the 
beginning of data-driven experimental studies. 
Bioinformatics deals largely with publicly available 
data; however, the results of the research here 
suggest that we can improve the requirements of 
those studies (i.e. increasing sample number) for use 
in systems biology. 

2 METHODS 

Briefly, this work describes a cursory review of the 
effect that single sample removal has on Pearson 
correlation coefficient in a hard-thresholded setting. 
To investigate, networks were created, thresholded, 
and then samples were iteratively removed to 
determine effect on correlation value.  

2.1 Network Creation 

Three datasets were chosen to highlight the 
difference in sample number; all datasets had 9 or 
less samples, reflecting the current state of high-
throughput technology where most expression 
experiments contain samples, at minimum, in 
triplicate. The datasets chosen were: 
 

 GSE5078 (Verbitsky et al., 2004) – Mus 
musculus hippocampus mRNA, compared at 2 
months and 15 months (Young and Middle-
Aged, respectively). Young dataset contains 9 
samples and Middle-Aged dataset contains 9 
samples. 

 GSE5140 (Bender et al., 2008) – Mus musculus 
whole brain mRNA, compared at untreated and 
creatine-treatment (Untreated and Creatine, 
respectively). The Untreated dataset contains 6 
samples, and the Creatine dataset contains 6 
samples. 

 GSE46384 (Ikushima and Misaizu) – 
Saccharomyces cerevisiae untreated or exposed 
to 40g/l of isopropanol, (0IPA and 40IPA, 
respectively). The 0IPA dataset contains 4 
samples, and the 40IPA dataset contains 4 
samples. 

 

A threshold of 0.70 ≤ ρ ≤ 1.00 using Pearson 
correlation coefficients was used to find correlated 
expression relationships, and p-values were 
computing using the Student’s T-test with a 
threshold of p-value <0.0005 significance. Network 
sizes for each are contained below in Table 1. The 
GSE5140 networks were the largest by node count. 
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Figure 1: The process of removing samples to test robustness. The top rows (Orig) are the original correlation calculation 
between five samples between Gene 1 and Gene 2. Samples 1-5 represent the expression values for each sample (can be 
tissue, cell, etc.) In test 1, correlation is calculated between Samples 2-5, with Sample 1 removed for both Gene 1 and Gene 
2. This results in a very slightly decreased correlation from the original (0.76 to 0.73) and a slightly increased p-value (0.11 
to 0.16) meaning the correlation has less confidence. This occurs iteratively for each sample. If the correlation threshold 
was 0.75 ≤ ρ ≤ 1.00 and a p-value <0.15, only the correlation for test 3 would pass the significance test, and its correlation 
would pass the threshold test as well at 0.99. For this example, the PSC would be equal to 1/5 = 20%, the PTC would be 1/1 
= 100%, and the PST would be 1/5, or 20%. 

Despite being the smallest networks by node count, 
the yeast GSE46384 networks were the densest at 8-
10% density. The GSE5078 networks were the 
middle of the road in terms of node counts but had 
the lowest density, meaning that these networks 
were very sparse compared to total possible edges. 
So, by density, there appears to be an inverse 
relationship between sample size and resulting 
network density. This is to be expected – using such 
low sample counts to identify correlations means 
that as more information becomes available, more 
evidence is there to confirm or deny an actual 
correlation. For example, it is easier to find a 100% 
correlation of two probes with 3 samples than it is to 
find a 100% correlation of two probes with 10 
samples. (This does not, however, examine 
significance). The GSE46384 networks had the 
smallest amount of samples but the highest number 
of edges per node on average. The GSE5140 
network contained 6 samples and the middle of the 
road density results; it should be noted that these 
datasets contained the entire genome-wide set of 
probes then available for mouse models. Finally, the 

network with the most samples, GSE5078 at 9 
samples results in the sparsest networks. 

Table 1: Network edge counts. Column 1: GEO Series 
number, Column 2: network name, Column 3: # nodes in 
the thresholded/filtered network, Column 4: # edges in the 
thresholded/filtered network, and Column 5: density of the 
network, which is equal to Edge Count / (Node Count * 
(Node Count -1)/2). We find that the lower the sample 
count, the higher the density. 

Dataset Name Nodes Edges Density 

GSE 
5078 

Young 12,390 923,794 1.2036% 

Middle-
Aged 

12,378 1,013,130 1.3226% 

GSE 
5140 

Untreated 45,000 32,075,094 3.1679% 

Creatine 45,004 33,349,407 3.2932% 

GSE 
46384 

IPA0 6,301 1,616,710 8.1453% 

IPA40 6,304 2,000,931 10.0716% 

 

These types of results are typical of what is the 
current standard in correlation networks. The more 
samples there are, the more confident and strong the 
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correlation. Therefore, more noise can be removed 
as sample number increases. We expect that the 
GSE46384 network would be naturally filtered by 
the addition of more samples, which would 
strengthen relationships that actually exist via 
strengthening correlations and their significance. 

2.2 Robustness Testing 

In datasets where sample size is small, there needs to 
be some measure that limits the impact of errors or 
outliers in the data. To accommodate potential error 
and noise, we define robustness to determine the 
reliability of the network model itself. Robustness of 
a correlation is defined, in this particular study, as 
the likelihood of a correlation to remain at or above 
some threshold t after random sample removal. If a 
correlation between two probes originally is 100%, 
and falls to 90% after iterative sample removal, we 
can say it is robust because it still falls within our 
threshold of 0.70 ≤ ρ ≤ 1.00 (assuming both 
correlations are also significant). If a correlation 
between two probes originally is 100% and falls to 
50% after individual sample removal, it would not 
be considered a robust relationship. To test the 
robustness of correlations according to sample 
removal, a simple method was deduced. As per 
normal network creation standards, networks were 
made by pairwise computation of Pearson 
Correlation between two probes and if the threshold 
was met (0.70 ≤ ρ ≤ 1.00), hypothesis testing was 
performed. If p-value was less than 0.0005, the edge 
was considered for robustness testing. 

To test robustness, samples were iteratively 
removed from the gene pair vectors as shown in 
Figure 1. For example, for two genes, each with five 
samples, values of expression for sample 1 in both 
probes were removed and correlation and 
significance were calculated. If the correlation 
between the manipulated probes was significant, the 
correlation was kept. Next, sample 2 was removed, 
and the correlation was again kept if it was 
significant.  

After all correlations and sample removal 
correlations were reported, it was also necessary to 
determine if the correlations found after sample 
removal were also above or within the threshold 
(within the bounds of the threshold = robust or 
outside the bounds of the threshold  = not robust). 
To measure this, the following metrics were devised: 

 Percentage of Significant Correlations (PSC): the 
number of significant correlations versus the 
total possible significant correlations (sample 
number). This measures the percentage of 

significant correlations that result when a 
sample is removed – the higher the better. 100% 
is optimal. 

 Percentage of Threshold Correlations (PTC): the 
number of correlations above some threshold t 
versus the number of significant correlations. 
This measures the percentage of significant 
correlations that are above the threshold 
required by the user. 100% again is optimal. 

 Percentage of Significant Threshold Correlations 
(PST): the number of correlations that are 
significant and above some threshold t versus the 
total possible significant correlations. This 
measures the percentage of significant 
correlations that are above the threshold when 
some sample is removed. 100% is optimal. 

 

Also computed was the standard deviation for each 
set of significant correlations. The following 
equations (Equations 1-3, below) define how PSC, 
PTC, and PST were computed, where n is equal to 
sample number, t is the threshold given, scorr is equal 
to the count of significant correlations, and tcorr is 
equal to the count of significant correlations above 
the threshold t. 

ܥܵܲ		:1	݊݅ݐܽݑݍܧ ൌ 	
ݏ
݊

 
 

:2	݊݅ݐܽݑݍܧ ܥܶܲ ൌ 	
ݐ
ݏ

 
 

:3	݊݅ݐܽݑݍܧ ܲܵܶ ൌ 	
ݐ
݊

 

Informally, PSC tells us the percentage of 
correlations that remain statistically significant per 
sample count, PTC tells us the percentage of 
significant correlations that fall within the threshold, 
and PST tells us the percentage of significant 
correlations that fall within the threshold per sample 
count.  

2.3 Clustering and Enrichment 

To test the biological function of normal versus 
robustness tested networks, the top 5 clusters (based 
on MCODE (Bader and Hogue, 2003) ranking) were 
tested for biological function using the Gene Set 
Enrichment Analysis tool via the Gene Trail (Backes 
et al., 2007) tool (http://genetrail.bioinf.uni-sb.de/). 
Clustering was performed using MCODE v.1.2 
using the parameters: Degree cut-off of 10, Node 
Score Cut-off of 0.2, Haircut set to True, K-core set 
to 10, and Max Depth set to 10. The top 5 clusters 
according to MCODE’s proprietary scoring method 
(score = density * node count) and GSEA was 
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performed on node lists from each. GeneTrail 
parameters used were: Only manually curated GO 
annotations and a significance value of 0.05. 

3 RESULTS 

Comparing the scores of each network in terms of 
PSC, PTC, and PST allows for characterization of 
correlation robustness in a general way. In an ideal 
network, all correlations are robust and sample size 
is optimal for robustness. The goal of this research is 
to address the robustness issue to determine the 
ability of the correlation network model to represent 
accurate biological information. 

3.1 Non-optimal Correlations 

To give a first insight into robustness, the original 
network sizes were compared to network size when 
correlations with no significant above-threshold 
correlations are observed (Table 2). Here we 
highlight the % Non-Robust Edges, which is the 
percentage of edges in the original network that are 
not robust, or those edges that do not fall within the 
threshold t when a sample is removed. As sample 
count increases, the level of non-robust edges 
decreases.  

Table 2: Insignificant, non-threshold robustness. Column 
1: GEO Series #, Column 2: network name, Column 3: 
edge # in the thresholded network, Column 4: edge # in 
the thresholded network when non-robust, insignificant 
edges are removed, Column 5:  percentage of the original 
network representing non-robust edges, 100% - (Robust 
Edge Count/Original Edges). The number of removed 
non-robust edges for any network is minimal, meaning 
that significance of correlation at any sample size is trivial. 

D
at

as
et

 

Name 
Original 

Edges 

Robust 
Edge 
Count 

% Non-
Robust 
Edges 

G
S

E
50

78
 

Young 923,794 922,394 0.1515% 

Middle- 
Aged 

1,013,130 1,011,586 0.1524% 

G
S

E
51

40
 

Untreated 32,075,094 31,902,640 0.5377% 

Creatine 33,349,407 33,121,663 0.6829% 

G
S

E
46

38
4 

IPA0 1,616,710 1,573,416 2.6779% 

IPA40 2,000,931 1,930,502 3.5198% 

 
However, the overall number of absolutely non-

robust edges overall is low, representing 0.1-3.5% of 
the entire network edges. This means that the large 
portion of edges in correlation networks are robust 
to sample removal. 

3.2 Variance in Robustness via PSC 

To examine the distribution of robustness of 
correlations, the PSC, PTC, and PST were calculated 
for each correlation and mapped. These results for 
PSC are contained in Figure 2. This figure highlights 
the number of significant correlations versus the 
sample number (x-axis) and the log of the count of 
PSC scores at that point (y-axis). For example, the 
green triangle in the topmost right corner of Figure 2 
represents a PSC score of 100% with a very high log 
(count), meaning that a large majority of the 
correlations in the Untreated network are significant 
when a sample is removed. All networks except for 
the Untreated network find an increase in PSC from 
0-50% and then a decrease or stabilization in PSC 
from 50-100%. This indicates that there are many 
relationships that become insignificant when 
samples are removed; these correlations where 
significance is lost become good candidates for 
removal. 
 

 

Figure 2: The PSC score distribution for all 6 networks. X-
axis: PSC score - The number of significant correlations 
versus the sample number. Y-axis: The log of the count of 
PSC scores. This measure shows per probe pairing how 
many of the sample-removed correlations are significant. 
I.e., if a probe pair has 10 samples and 5 of them are 
significant correlations when a sample is removed, it will 
have a 50% PSC score. The scores above suggest that 
there is a large majority of correlations that lose their 
significance when a sample is removed. 

The results for PTC are contained in Figure 3. 
This figure highlights the number of significant, 
above threshold correlations when samples are 
removed versus total sample size (X-axis) versus the 
log of the count of PTC scores at that point. 
Interestingly, in all but the Untreated and Creatine 
networks, all networks find that if a correlation 
remains significant after a sample is removed, it is 
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also within our given threshold t (100%). The 
exception is in the Untreated and Creatine networks, 
where there is again a distribution of scores from 20-
80% indicating that, for example, there is a portion 
of relationships where sample removal results in a 
correlation that is not within the given threshold t, or 
not all sample-removed correlations that are 
significant meet threshold requirements. 
 

 

Figure 3: The PTC score distribution for all 6 networks. 
X-axis: PTC score. Y-axis: The log of the count of PTC 
scores. The results here indicate that for the majority of 
networks, the number of significant correlations after 
sample removal are also within threshold. 

 

 

Figure 4: The PST score distribution for all 6 networks. X-
axis: PST score. Y-axis: The log of the count of PST 
scores. The results here indicate that there is a distribution 
of edges that do not meet the threshold and significance 
requirements to be robust. 

The results for PST are contained in Figure 4. 
This figure highlights the number of significant, 
above threshold correlations when samples are 
removed versus significant sample-removed 
correlations (X-axis) versus the log of the count of 
PST scores at that point. The PST scores, perhaps 
the most telling, reveal that there indeed exists a 
distribution of correlations from approximately 10-
100%, where a large amount of edges relative to 
network size find few significant above-threshold 
correlations compared to significant correlations. 
Interestingly, this number seems to drop off slightly 
around 50%, and appears to stabilize or grow again. 
Generally, this means that the large majority of 

correlations within the network tend to be robust. 

3.3 A Secondary Threshold? 

How does this information impact the creation, 
thresholding, and usage of the correlation network 
model? Notoriously noisy (Reverter and Chan, 
2008); (Song et al., 2012); (Opgen-Rhein amd 
Strimmer, 20007), the correlation network model 
tends to be underused due to the common reasoning 
that “correlation does not imply causation;” 
however, this does not mean that the measure does 
not capture any information. Quite frankly, the 
correlation measure captures all possible linear 
relationship, but it is up to the user to determine if 
those relationships are meaningful (Song et al., 
2012); (Opgen-Rhein and Strimmer, 2007). As such, 
this research suggests that the correlation network 
model may also benefit from having a secondary 
threshold that is based on the robustness of the 
correlation itself. While network size, density, and 
absolutely non-robust edges seemed to be impacted 
by sample size, the distribution of robust edges does 
not appear to be significantly impacted by sample 
size in our results above. Thus, it would appear that 
correlations that are strong will become stronger by 
the addition of samples, but will not become weaker 
with single sample removal if the correlation is truly 
representative of a biological co-regulated 
relationship.  

To begin to foray into the impact of a secondary 
threshold, the natural dip in PSC, PTC, and PST 
score distributions were used. This dip appears at or 
around 50%, indicating that those correlations are at 
least 50% likely to have a significant, within 
threshold correlation after a sample is removed. 
This 50% “secondary threshold” was used to 
examine the effect of removing correlations where 
robustness of PST is greater than or equal to 50%. 
To clarify, consider two probes with 10 samples. If 
each sample is individually removed and correlation 
is calculated, the resulting correlation must be 
significant and within the threshold t for at least 
50% of the iterations (5 of the 10 correlations must 
be significant and within t) for the edge to be 
considered, otherwise it was thrown out. Removing 
edges in this way reduces edge count; resulting 
network sizes using this threshold are shown in 
Table 3. 

Using the secondary 50% PST threshold, we are 
able to remove 40-80% of edges from the already 
significance and thresholded original network. 
Interestingly, the networks with the most samples 
(Young and Middle-aged) found the highest edge 
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removal at 81.65% (Young) and 80.46% (Middle-
aged). This makes sense when you consider how 
correlation is calculated – one would expect with 2 
or 3 sample removal at a time, this edge reduction 
percentage would decrease – but the magnitude of 
edges that stand to be removed is very telling. This 
means that, should the biological “signal” of the 2nd 
thresholded network be equal to or greater than the 
biological signal of the original network, that we are 
able to reduce the network size (and thus 
computational time and load of analysis of the 
model) drastically. 

3.4 Preliminary Functional Analysis 

To examine how the model may also benefit from 
having a secondary threshold to reduce noise, 
preliminary functional analysis was performed on 
original and robustness thresholded networks to see 
if it is able to remove noise that confounds 
biological signal. Clustering using MCODE was 
performed on both the Young original network and 
the Young 2nd thresholded network, and the top 5 
clusters were extracted (see Methods). After cluster 
extraction, the nodes in each cluster were tested for 
biological function using Gene Set Enrichment 
Analysis. Only annotations with 4 or more observed 
genes per cluster were considered. The results of this 
enrichment on the Young network clusters are 
shown in Figure 5. What was found is that for three 
out of five of the original Young network clusters, 
there were too many biological process annotations 
to be relevant or helpful for decision support or to 
determine the actual function (if any) of the cluster. 
By comparison, each of the robustness network 
filtered clusters contained 10 annotations or less. 
The functions of these clusters need to be further 
probed, but if the functions found in the robustness 
thresholded clusters are found to be accurate, this 
can be considered a major way to further remove 
noise from the network and understand the functions 
of the structures therein. 

Top 10 Gene Ontology enrichment of clusters in 
the middle-aged network clusters is shown in Figure 
6. As in the young network, there were many 
biological process tree annotations for original 
clusters and fewer annotations in the robustness 
filtered clusters. Future work will investigate the real 
biological function of these clusters, and 
additionally, the function of clusters in which 
robustness is used as a filter. The results of this 
approach might bring the speculation that robustness 
filtered networks will return clusters with a more 
refined biological function due to the fact that noise 

(or correlations in which we are not confident) are 
removed. 

Table 3: Network edge reduction based on second 
robustness threshold. Column 1: GEO Series number, 
Column 2: network name, Column 3: # edges in the 
thresholded/filtered network, Column 4: # edges in the 
thresholded/filtered network after second thresholding, 
and Column 5: percentage of edges that were removed 
from the original network by this second threshold, 
calculated as 100% - (2nd Threshold edges/Original 
Edges). These results indicate that the more samples 
present, the more edges can be removed, possibly because 
sample size improves correlation confidence.  

D
at

as
et

 

Name Edges 
2nd 

Threshold 
Edges 

Edge 
Reduction 

G
S

E
50

78
 

Young 923,794 169,524 81.65% 

Middle-
Aged 

1,013,130 197,977 80.46% 
G

S
E

51
40

 

Untreated 32,075,094 18,925,611 41.00% 

Creatine 33,349,407 17,935,181 46.22% 

G
S

E
46

38
4 

IPA0 1,616,710 1,092,630 32.42% 

IPA40 2,000,931 1,189,808 40.54% 

4 DISCUSSION 

Network theory in systems biology remains in 
relative infancy, and the correlation network is no 
exception to benchmarking necessity. While high 
performance computing techniques have typically 
been found to be needed for fast and thorough 
analysis of network models, laboratories do not 
always have access to these types of resources. The 
results of these studies allow for the following 
potential conclusions to be inferred from studies on 
robustness the correlation network model; additional 
testing will be necessary to confirm or deny their 
existence: 
1. Sample size and network density are inversely 

linked – the smaller the sample count, the higher 
the density. 

2. Sample size and non-robustness are inversely 
linked – the smaller the sample size, the more 
absolutely non-robust edges a network will have. 

3. Based on the distribution of robust correlations 
compared to sample number, correlation 
networks can be thresholded to further remove 
noise due to coincidental expression patterns. 
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Figure 5: Top 10 Gene Ontology enrichment terms of GSE5078 Young network clusters, original (left) and robustness 
thresholded (right). Column headings include GO Term/Annotation, GO ID, Obs., or Observed number of genes with that 
term, P-value, and Up or Down enrichment (whether or not the cluster is over or under enriched for that term based upon 
the yeast genome). 

GO	TERM GO	ID Obs. P‐Val ↑or ↓ Term	# GO	TERM GO	ID Obs. P‐Val ↑or ↓

macro.	metabolic	proc. GO:0043170 15 0.04 up 1 system	proc. GO:0003008 6 0.05 up
cellular	macro.	metabolic	

proc.
GO:0044260 14 0.02 up 2 reg.	of	molecular	function GO:0065009 5 0.01 up

reg.	of	metabolic	proc. GO:0019222 13 0.05 up 3 cell	adhesion GO:0007155 5 0.03 down
reg.	of	primary	metabolic	

proc.
GO:0080090 13 0.05 up 4

positive	reg.	of	metabolic	
proc.

GO:0009893 5 0.03 up

negative	reg.	of	cellular	proc. GO:0048523 12 0.03 up 5 biological	adhesion GO:0022610 5 0.03 down

reg.	of	macro.	metabolic	proc. GO:0060255 10 0.02 up 6
positive	reg.	of	catalytic	

activity
GO:0043085 4 0.03 up

nucleic	acid	metabolic	proc. GO:0090304 10 0.02 up 7
positive	reg.	of	molecular	

function
GO:0044093 4 0.03 up

transcription GO:0006350 9 0.04 up 8 reg.	of	catalytic	activity GO:0050790 4 0.03 up
macro.	biosynthetic	proc. GO:0009059 9 0.04 up 9
reg.	of	gene	expression GO:0010468 9 0.04 up 10
plasma	membrane GO:0005886 13 0.04 up 1 molecular_function GO:0003674 45 0.03 up

membrane GO:0016020 13 0.04 up 2 protein	binding GO:0005515 15 0.03 up
catalytic	activity GO:0003824 10 0.05 up 3 primary	metabolic	proc. GO:0044238 12 0.03 down

signaling GO:0023052 8 0.02 up 4 macro.	metabolic	proc. GO:0043170 9 0.05 down
signaling	pway GO:0023033 7 0.03 up 5 reg.	of	catalytic	activity GO:0050790 5 0.01 down

cell	surface	rec.	linked	signal	
pway

GO:0007166 6 0.05 up 6 reg.	of	molecular	function GO:0065009 5 0.01 down

7
positive	reg.	of	catalytic	

activity
GO:0043085 4 0.02 down

8
positive	reg.	of	molecular	

function
GO:0044093 4 0.02 down

9 organelle	part GO:0044422 4 0.04 down
10 intracellular	organelle	part GO:0044446 4 0.04 down

developmental	proc. GO:0032502 56 0.02 up 1 multicellular	organism.	proc. GO:0032501 15 0.04 down
multicellular	organism.	dev. GO:0007275 50 0.03 up 2 developmental	proc. GO:0032502 13 0.02 down

system	dev. GO:0048731 46 0.04 up 3 anatom.	struct.	dev. GO:0048856 13 0.02 down
nucleus GO:0005634 39 0.03 up 4 multicellular	organism.	dev. GO:0007275 12 0.04 down

cellular	developmental	proc. GO:0048869 37 0.00 up 5 cell	differentiation GO:0030154 9 0.03 down
cell	differentiation GO:0030154 34 0.00 up 6 reg.	of	biological	proc. GO:0050789 8 0.04 down
Metabolic	pways 1100 23 0.05 down 7 reg.	of	cellular	proc. GO:0050794 8 0.04 down

cell	dev. GO:0048468 22 0.05 up 8 membrane GO:0016020 4 0.04 up
signaling	proc. GO:0023046 22 0.05 up 9

signal	transmission GO:0023060 22 0.05 up 10
biological	reg. GO:0065007 17 0.03 down 1 biological_proc. GO:0008150 29 0.02 up

reg.	of	biological	proc. GO:0050789 15 0.03 down 2 metabolic	proc. GO:0008152 16 0.03 up
reg.	of	cellular	proc. GO:0050794 13 0.05 down 3 macro.	metabolic	proc. GO:0043170 7 0.04 up
catalytic	activity GO:0003824 11 0.03 up 4 protein	binding GO:0005515 6 0.03 up
cytoplasm GO:0005737 7 0.02 up 5 signal	transduction GO:0007165 6 0.03 up

hydrolase	activity GO:0016787 7 0.02 up 6 hydrolase	activity GO:0016787 5 0.03 up

cytoplasmic	part GO:0044444 6 0.04 up 7
negative	reg.	of	metabolic	

proc.
GO:0009892 4 0.03 up

8
negative	reg.	of	macro.	

metabolic	proc.
GO:0010605 4 0.03 up

9 protein	metabolic	proc. GO:0019538 4 0.05 up

signaling GO:0023052 30 0.04 up 1
anatom.	struct.	
morphogenesis

GO:0009653 5 0.04 up

signaling	pway GO:0023033 26 0.02 up 2
anatom.	struct.	formation	‐	

morphogenesis
GO:0048646 5 0.04 up

signaling	proc. GO:0023046 19 0.01 up 3
signal	transmission GO:0023060 19 0.01 up 4

protein	metabolic	proc. GO:0019538 17 0.05 up 5
small	molecule	metabolic	

proc.
GO:0044281 16 0.04 up 6

cell	proliferation GO:0008283 14 0.05 down 7
signal	transduction GO:0007165 13 0.01 up 8

reg.	of	molecular	function GO:0065009 13 0.03 up 9
cellular	protein	metabolic	

proc.
GO:0044267 13 0.04 up 10
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Figure 6: Top 10 Gene Ontology enrichment terms of GSE5078 Mid network clusters, original (left) and robustness 
thresholded (right). Colum-n headings include GO Term/Annotation, GO ID, Obs., or Observed number of genes with that 
term, P-value, and Up or Down enrichment (whether or not the cluster is over or under enriched for that term based upon 
the yeast genome). 

GO	TERM GO	ID Obs. P‐Val ↑or	↓ Term	# GO	TERM GO	ID Obs. P‐Val ↑or	↓
homeostatic	proc. GO:0042592 12 0.05 up 1 multicell.	organism.	proc. GO:0032501 23 0.01 up
cell‐cell	signaling GO:0007267 10 0.01 up 2 protein	binding GO:0005515 21 0.03 up

transferase	activity GO:0016740 8 0.01 down 3
multicell.	organism.	

development
GO:0007275 16 0.05 up

inflammatory	response GO:0006954 7 0.04 down 4 system	development GO:0048731 16 0.05 up
synaptic	transmission GO:0007268 6 0.01 up 5 signaling GO:0023052 11 0.04 up
transferase	activity GO:0016772 5 0.01 down 6 signaling	pway GO:0023033 9 0.00 up
neuronal	cell	body GO:0043025 5 0.03 up 7 organ	morph. GO:0009887 9 0.02 up

cell	body GO:0044297 5 0.03 up 8 signal	transduction GO:0007165 9 0.03 up

soluble	fraction GO:0005625 5 0.04 down 9
cell	surface	receptor	linked	

signaling	pway
GO:0007166 8 0.01 up

MAPK	signaling	pway 4010 4 0.03 down 10
positive	regulation	of	cell	

proliferation
GO:0008284 5 0.02 up

cell GO:0005623 32 0.03 down 1 cellular_component GO:0005575 51 0.05 up

cell	part GO:0044464 32 0.03 down 2
intracellular	mem.‐bounded	

organelle
GO:0043231 20 0.04 down

intracellular	organelle GO:0043229 20 0.04 down 3
macromolecule	biosynthetic	

proc.
GO:0009059 15 0.03 down

anatomical	structure	morph. GO:0009653 15 0.04 up 4
cellular	nitrogen	compound	

metab.	proc.
GO:0034641 13 0.02 up

catalytic	activity GO:0003824 5 0.01 down 5 nucleus GO:0005634 13 0.04 down
positive	regulation	of	immune	

system	proc.
GO:0002684 4 0.02 up 6 extracellular	region	part GO:0044421 12 0.05 down

regulation	of	immune	response GO:0050776 4 0.02 up 7 nucleic	acid	metab.	proc. GO:0006139 12 0.05 up
8 localization GO:0051179 11 0.02 down
9 extracellular	space GO:0005615 10 0.04 down
10 signaling	pway GO:0023033 10 0.02 down

cellular_component GO:0005575 62 0.01 down 1 organ	morph. GO:0009887 9 0.01 down
biological_proc. GO:0008150 59 0.02 down 2 cell	differentiation GO:0030154 9 0.01 down
protein	binding GO:0005515 30 0.02 down 3 cellular	developmental	proc. GO:0048869 9 0.01 down

biological	regulation GO:0065007 27 0.05 down 4
cell	surface	receptor	linked	

signaling	pway
GO:0007166 9 0.04 down

regulation	of	cellular	proc. GO:0050794 23 0.03 down 5 nervous	system	development GO:0007399 8 0.01 down
multicell.	organism.	proc. GO:0032501 23 0.05 down 6 tissue	development GO:0009888 7 0.02 down
multicell.	organism.	

development
GO:0007275 17 0.04 down 7 locomotion GO:0040011 6 0.01 down

system	development GO:0048731 17 0.04 down 8
positive	regulation	of	metab.	

proc.
GO:0009893 6 0.02 down

macromolecule	metab.	proc. GO:0043170 15 0.02 down 9
positive	regulation	of	

macromolecule	metab.	proc.
GO:0010604 6 0.02 down

positive	regulation	of	biological	
proc.

GO:0048518 15 0.02 down 10
positive	regulation	of	gene	

expression
GO:0010628 6 0.02 down

regulation	of	biological	proc. GO:0050789 54 0.04 down 1 cell	fraction GO:0000267 7 0.02 down
regulation	of	cellular	proc. GO:0050794 49 0.02 down 2 macromolecular	complex GO:0032991 7 0.04 up
nitrogen	metab.	proc. GO:0006807 24 0.01 down 3 cellular	developmental	proc. GO:0048869 7 0.04 up

cellular	nitrogen	metab.	proc. GO:0034641 24 0.01 down 4 catalytic	activity GO:0003824 5 0.01 down
biosynthetic	proc. GO:0009058 23 0.03 down 5 soluble	fraction GO:0005625 5 0.02 down

	nucleic	acid	metab.	proc. GO:0006139 21 0.02 down 6 nervous	system	development GO:0007399 4 0.03 up
gene	expression GO:0010467 20 0.04 down 7 neurogenesis GO:0022008 4 0.03 up

nucleic	acid	metab.	proc. GO:0090304 20 0.04 down 8 generation	of	neurons GO:0048699 4 0.03 up
regulation	of	gene	expression GO:0010468 19 0.04 down 9

regulation	of	multicell.	
organism.	proc.

GO:0051239 18 0.00 down 10

multicell.	organism.	proc. GO:0032501 31 0.01 up 1 binding GO:0005488 5 0.02 down
developmental	proc. GO:0032502 30 0.01 up 2 cytoplasm GO:0005737 4 0.03 down
multicell.	organism.	

development
GO:0007275 28 0.01 up 3 regulation	of	biological	proc. GO:0050789 4 0.04 up

anatomical	structure	
development

GO:0048856 28 0.03 up 4 regulation	of	cellular	proc. GO:0050794 4 0.04 up

organ	development GO:0048513 26 0.02 up 5
system	development GO:0048731 26 0.02 up 6

mem. GO:0016020 24 0.00 up 7
mem.	part GO:0044425 20 0.02 up 8

plasma	mem. GO:0005886 19 0.00 up 9
regulation	of	transport GO:0051049 4 0.01 up 10
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These studies allow us to speculate that there may be 
room for improvement in network creation studies, 
and further, that high-throughput experiments 
intended for use in network models can benefit from 
understanding the link between sample size and 
relationship confidence. We expect that expansion of 
these studies to more model organisms, sample 
sizes, and conditions will reveal similar patterns. 

4.1 Future Directions 

Future work involving network robustness involves 
examining the effects of random sample removal 
(remove Sample 1 from Gene 1 and Sample 2 from 
Gene 2) instead of coordinated sample removal 
(remove Sample 1 from Genes 1 and 2). Further, this 
direction begs the question of effects of N-sample 
removal, where N represents the number of samples 
to be removed at a time. Finally, to examine the 
change in biological signal of the network, we intend 
to pursue in depth the functional and pathway 
enrichments of networks in their original states and 
in secondary threshold states to see if the 
information lost is noise or causative. This might 
include enrichment with Gene Ontology in network 
building, or usage of the rich wealth of information 
available in NCBI’s Gene database to determine 
whether or not a relationship is likely based on 
known expression levels of a gene in given 
organisms and tissues. 
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