
Resourcebus
A New Substrate for Model-driven Creations

Petr C. Smolik and Pavel Vitkovsky
Metada s.r.o., Antala Staska 64, Prague, Czech Republic

Keywords: Model-Driven Engineering, Resource-oriented Computing, Model Versioning, Model Storage, Model
Interpretation, Linked Data Platform.

Abstract: In this paper we present our on-going work on a framework we are building as a basis for construction of
modeling and metamodeling environments. Resourcebus is basically a web-based resource-oriented
computing environment for creation and execution of dynamic resources based on interpretation of models.
Resourcebus adheres to the linked data principles and REST architectural style, and enables publishing
models on the web using open standards. The framework includes built-in versioned storage, caching,
access control, and set of various interpreters. We are developing Resourcebus primarily as a runtime
environment for model storage, model interpretation, and code generation. Resourcebus itself knows
nothing about metamodels and does not implement any particular meta-metamodel. It just provides an
environment for creating them. We conclude this paper with a list of issues that still need to be resolved.

1 INTRODUCTION

There are various types of model-driven tools
available. Some tools, such as Xtext (Eysholdt,
2010), are primarily text-based and enable
development of textual DSLs for various purposes
and include code editors with syntax coloring, and
code completion. Some tools, such as MetaEdit+
(Tolvanen, 2006), are primarily graphical and enable
creation of visual representations of domain-specific
concepts and their relations. Finally, some tools,
such as the Meta Programming System (MPS)
(Voelter, 2011), enable textual projectional editing
via structured code editors that directly operate on
the syntax tree of a program instead of on lines of
text. A large recent comparison of various tools and
approaches is provided in a report from the 2013
Language Workbench Challenge (Erdweg, 2013).

In the spectrum of approaches, Resourcebus is a
foundation for web-based model-driven tools that
are mostly targeted to non-programmers. Users of
such tools create models primarily by filling forms,
but there is also some support of graphical
navigation through the models and there are
structured code editors for specifics such as
expressions.

Resourcebus realizes several foundational
services that model-driven solution creators should

not have to worry about. These are model storage,
versioning, intelligent caching, access control, multi-
user environment, support for combining languages
(both domain-specific and general-purpose ones),
facilities for model interpretation, and the possibility
of publishing models and metamodels on the web.

In this paper we show our work in progress on
Resourcebus. We are currently working on release
0.14 and hope to reach version 1.0 within months.
Parts of Resourcebus are already in use by two of
our customers in the financial services domain, since
we are in the process of incremental migration of our
existing Metada Metarepository metamodeling
environment to Resourcebus. Metarepository takes
advantage of all the Resourcebus features and adds
its meta-metamodel and few model interpreters, such
as an editor interpreter that enables form-based
editing of models based on a specified metamodel.

2 FUNDAMENTALS

Resourcebus adheres to the linked data principles
stated in (Berners-Lee, 2006):

 Use Uniform Resource Identifiers (URIs) as names
for things.
 Use HTTP URIs so that people can look up those

names.

460 C. Smolik P. and Vitkovsky P..
Resourcebus - A New Substrate for Model-driven Creations.
DOI: 10.5220/0004808504600465
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 460-465
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

 When someone looks up a URI, provide useful
information, using the standards such as RDF
(Klyne, 2004).
 Include links to other URIs, so that they can

discover more things.

Using these principles, Resourcebus enables
expressing models and metamodels as regular linked
data and enables standard ways of their creation,
maintenance, and retrieval as regular web resources.

2.1 Resource

Resourcebus resource is defined as a thing identified
by an HTTP URI. Using content negotiation some
representation of the thing, or information about the
thing can be retrieved. This way Resourcebus has no
problem working with model entities that are often
representing real-world things or abstract things that
have only some metadata about them, but cannot be
really retrieved themselves.

The distinction whether resource identifies a
real-world thing or an abstract concept and not a file
or a document can be made by inspecting the
available resource properties describing the
resource. We found this solution more efficient and
practical compared to other proposed solutions such
as the use of “303 URIs” or “hash URIs” that are
discussed in (Sauermann, 2008).

2.2 Resource Properties

Each Resourcebus resource may have one or more
resource properties. Resource properties are directly
related to the concept of RDF predicates and their
types to RDF properties. Each property type is also a
thing identified by an HTTP URI, so that
information about any property may be retrieved and
used by Resourcebus applications.

Resource properties are either simple or
complex. Simple property has a simple value
whereas complex property defines a sub-resource
that can also have simple or complex properties.
Each complex property has an ID unique within the
scope of the given resource and may be addressed by
adding a fragment identifier with its ID behind the
resource URI (e.g. http://example.org/resource#cp).

Within Resourcebus, resource properties are
natively represented in simple XML format, where
XML namespaces are used to declare the full HTTP
URIs of all the resource properties. Via content
negotiation, it is possible to retrieve also other
representations of resource properties such as in
text/turtle (Beckett, 2013) or application/rdf+xml
Klyne, 2004) formats.

This is a simple example of the native XML
representation of resource properties:

<rbs:Data xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:ex="http://example.org/”
 xmlns:rbs="http://resourcebus.org/ns/storage#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
 syntax-ns#">
 <dcterms:title>Example resource</dcterms:title>
 <rdf:type>ex:ExampleType</rdf:type>
</rbs:Data>

And this is the above example represented in
text/turtle:

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix ex: <http://example.org/>.
@prefix rbs: <http://resourcebus.org/ns/storage#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
 syntax-ns#>.
<> a ex:ExampleType;
 dcterms:title "Example resource".

The example shows very simple properties of an
“Example resource” of type ex:ExampleType.
Information about the example type then would be
retrievable, in non-example scenario, from a URL
like http://example.org/ExampleType.

We are convinced that this form of
representation provides easy and standard way of
sharing models while enabling clear composition of
concepts from different ontologies or metamodels.

2.3 Dynamic Resources

Resourcebus resources may have content. The
content is either static or dynamic, or does not exist
at all. If there is no content, there are at least
resource properties informing about the existing
resource. Static resource is a resource that has some
associated file that can be directly retrieved as its
content. Dynamic resource provides its content (or
even properties) via interpretation of its properties
by an interpreter (depicted on Figure 2). During
interpretation it is possible to call other resources
and this mechanism thus provides means for
complex computations and even whole model
interpretations.

We expect that dynamic resources may also
provide elegant means for constructing modern web
applications based on the REST architectural style
(Fielding, 2002), because they may provide useful
properties for their execution and navigation to
related resources, and thus define their REST APIs.
Furthermore, they may use APIs of other such
resources to achieve their composition into complex
applications.

Resourcebus�-�A�New�Substrate�for�Model-driven�Creations

461

2.4 Content Negotiation

Since Resourcebus resources may contain both
properties and an actual content, it has to be clear
how to retrieve each of them. The HTTP protocol
does not provide explicit means for separate
handling of content and metadata. For this reason
Resourcebus uses the following rule during the
HTTP content negotiation:

 IF there is no content nor properties THEN return
404 status code
 ELSE IF properties may be represented in an

acceptable content-type AND URL does not end
with a filename extension THEN return properties
 ELSE IF content may be represented in acceptable

content-type THEN return content
 ELSE return 406 status code.

In other words, if Resourcebus client wants to
retrieve resource properties it puts to the Accept
header only the content-types expected to be used
for properties representation, such as text/turtle or
application/rdf+xml. Nevertheless, if a client wants
to request content with such specific content types, it
has to use a URL with corresponding filename
extension (i.e. .rdf or .ttl).

To enable the REST architectural style, the
actual resource properties returned do contain a
property holding a reference to an existing content
with the proper filename extension included, so the
client can just follow this advice and does not have
to resort to undesirable URL construction. Also, if
content is returned on the resource URL without the
filename extension, the response headers contain the
content-location header that provides the URL with
the proper filename extension included.

3 ARCHITECTURE

The architecture strategy of Resourcebus is to have a
core that is as small as possible (like a microkernel)
and all other functionality to be implemented via
pluggable “interpreters” as shown on Figure 1.

Resourcebus interpreters implement the methods
(corresponding to standard HTTP methods) of an
abstract interpreter provided by the Resourcebus
core. Interpreters may use the Resourcebus client
API to access other resources based on their needs.
Interpreters are used through dynamic resources
where a dynamic resource is configured (via
resource properties) to use a specific interpreter for
its interpretation as shown on Figure 2.

Resourcebus core uses a storage API for

Resourcebus Core

In
te

rp
re

te
r

In
te

rp
re

te
r

In
te

rp
re

te
r

In
te

rp
re

te
r

In
te

rp
re

te
r

In
te

rp
re

te
r

Resourcebus Storage

Figure 1: Resourcebus components.

Resource

Content Properties

InterpreterDynamic
Content

Interpreted
by

Computes

Representations
requested by

GET, POST, PUT, DELETE,
HEAD, PATCH, OPTIONS

Dynamic
Properties

Figure 2: Resource-oriented computing.

persistence of both resource content and resource
properties. The following subsections provide
further information about the individual
components.

3.1 Resourcebus Core

Resourcebus core is divided to client and server
parts as shown on Figure 4. The client part is used to
access both local and external resources via standard
HTTP methods and respects the content negotiation
rule specified in section 2.4 in order to distinguish
resource content from resource properties. A
resource-oriented API is provided that enables
traversal of the graph of related resources instead of
having to place raw HTTP requests.

The server part implements the resource handling
via the standard HTTP methods. The server ensures
communication with the storage where static

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

462

resource content and resource properties are stored,
executes dynamic resources by running the
appropriate interpreters, and caches the resulting
representations for repeated use.

The server tracks all resource execution
dependencies and for each cached representation it
knows exactly what was used for its computation.
Representations have to be un-cached only if
something changed that they depend on.
Computations are thus done only when really needed
and nothing is recomputed unnecessarily. This style
of computing, depicted in Figure 2, based on our
opinion, could be called the “resource-oriented
computing”, nevertheless this term is currently not
widespread and one of the few used we know of is in
(Geudens, 2012) where it is made more complex by
using a non-standard protocol.

We see the resource-oriented computing style
used within Resourcebus as its most interesting
contribution for the area of model execution (both
interpretation and code generation), because
involved computations have to be recomputed only
if their sources change. This means that not only
model changes get effectively propagated, but even
the metamodel or meta-metamodel changes do. This
allows for construction of integrated metamodeling
environments (aka metatools).

Currently there exists one metamodeling
environment built on Resourcebus, the Metada
Metarepository, that realizes a meta-metamodel and
a set of metamodels and model interpreters realizing
the metamodeling environment. The tool has been
already used on two larger projects in the financial
services domain.

The philosophy of Resourcebus core is also very
similar to the one of the Linked Data Platform
(LDP), as described in (Speicher, 2013), because
Resourcebus is built on the same linked data
principles. Resourcebus is mostly compliant with the
current working draft of the LDP specification and it
should not be a problem to reach full compliance to
the potential standard in the future.

3.2 Resourcebus Storage

Resourcebus is designed to support large
development teams working on relatively large
models with tight and overlapping release-cycles.
Versioning capabilities are therefore natively
included in the storage API. Versioning of
individual models or whole model repositories is
possible. There is an instant access to models at any
branch, tag, or historical commit. Private branches
are used by individual users to model and debug

models in a sandbox where they are not distracted by
changes of other users. Private branches may be
updated with changes from their parent branches and
may publish their changes back to them. Propagation
of fixes is possible from production branch to
several development branches.

Currently there is just one implementation of the
storage API, depicted on Figure 3, but other
implementations are possible. It is based on the Git
versioning system described in (Chacon, 2009) that
we extended with the support of sparse checkouts.
When a private branch is created, only a new Git
branch pointer is created, when changes are made,
only those changes are written to the sparse. No full
checkouts are needed, which makes large number of
private branches to be continually in use without
multiplying the disk space needed. Apache Lucene
(McCandless, 2010) indexing is used to support fast
lookup of entities and traversing their relations. The
storage format of resource properties is XML.

Storage API

Apache Lucene Git

Figure 3: First storage implementation.

This storage implementation combining Git with
Lucene was initially created only to figure out
requirements for the storage API, but it seems to be
still sufficient for a model repository with 30,000
objects (180MB in XML files), hundreds of tags and
branches, and tens of thousands of commits.

More sophisticated storage implementations are
possible if needed. Good candidates may be XML or
NoSQL databases, both described in (Strauch,
2011). It is also possible that several different
storage implementations will need to be used in
parallel, since each one will have different trade-
offs. For example the Git/Lucene implementation
seems to be quite powerful on the versioning side.

The Apache Lucene search engine is useful also
for full-text search both in static resource content or
properties, but this feature does not have to be
available through the storage API and could be
implemented via separate interpreter.

3.3 Interpreters

Resource interpreters enable realization of dynamic
resources. Their use is configured via the properties
of a given dynamic resource. They are called
interpreters, because their primary purpose is to

Resourcebus�-�A�New�Substrate�for�Model-driven�Creations

463

interpret models and do useful things based on them.
With different interpreters behind different resources
it is easy to combine both interpreters and
metamodels into flexible applications.

Groovy
Interpreter

Model Storage (XML files)

Git Apache Lucene

Resourcebus Core

Storage API

Client Server Cache

Resource API

JavaScript
Interpreter

Clojure
Interpreter

Prolog
Interpreter

Freemarker
Interpreter

XSLT
Interpreter

Meta
Interpreter

Menu
Interpreter

Editor
Interpreter

Figure 4: Resourcebus architecture.

Currently the most interesting interpreter realized is
the Editor Interpreter used by the Metada
Metarepository to provide for form-based editing of
arbitrary models based on the interpretation of their
metamodels. It nicely demonstrates how changes in
metamodel immediately take effect in the runtime.

The same way that Resourcebus interpreters
enable execution of various domain-specific
languages, they may support execution of various
general-purpose or special-purpose languages that
can be this way easily used within Resourcebus and
even use its client API to access other resources. We
have used or at least tested interpreters for the
following languages: Groovy (Koenig, 2007),
JavaScript (Crockford, 2008), Scala (Odersky,
2010), Clojure (Emerick, 2012), Freemarker
(Forsythe, 2013), XSLT (Kay, 2007), and XQuery
(Boag, 2010).

We plan Resourcebus interpreters to be hot-
pluggable and to enable parallel existence of their
several versions. The former should allow for
flexible dynamic configuration of applications, the
latter should enable long-term support of older
functionalities without having to migrate to newer
versions of interpreters.

4 CONCLUSIONS

In this paper we have presented our work on
something that we see as a substrate for model-
driven creations. Resourcebus is designed to be as
simple as possible, but to provide all foundational
services that all modeling tools need to provide, such
as model storage, versioning, access control,
intelligent caching, and a way to plug-in model
interpreters. Resourcebus aims to be compatible with
current standards such as HTTP and RDF, and future
standards such as Linked Data Platform (LDP). This
way it could serve as the basis for sharing and
distribution of models and metamodels on the web.

Our further work will be focused on finishing
version 1.0 with enough examples so that other
researchers would be able to test and potentially use
Resourcebus for implementation of their own ideas.
Issues that are still unresolved include combining
multiple types of model storage including in-
memory storage, finalization of the REST
application style, implementation of more sample
interpreters, such as ones for model-to-model
transformations, and support for event processing.

REFERENCES

Beckett, D., Berners-Lee, T., Prud'hommeaux, E.,
Carothers, G., 2013. Turtle: Terse RDF Triple
Language, W3C Candidate Recommendation.

Berners-Lee, T., 2006. Linked Data Design Issues. W3C-
Internal Document, http://www.w3.org/DesignIssues/
LinkedData.html.

Boag, S., Chamberlin, D., Fernández, M. F., et al, 2010.
XQuery 1.0: An XML Query Language (Second
Edition). W3C Recommendation.

Chacon, S., 2009. Pro Git. Apress, New York.
Crockford, D., 2008. JavaScript: The Good Parts.

O'Reilly Media, Sebastopol.
Emerick, C., Carper, B., Grand, C., 2012. Clojure

Programming: Practical Lisp for the Java World.
O'Reilly Media, Sebastopol.

Erdweg, S., van der Storm, T., Völter, M., et al, 2013. The
State of the Art in Language Workbenches:
Conclusions from the Language Workbench
Challenge. In Proceedings of the Software Language
Engineering conference (Indianapolis, USA, October
26-28, 2013). Springer.

Eysholdt, M., Behrens, H., 2010. Xtext: implement your
language faster than the quick and dirty way. In
Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion, pp. 307-309.

Fielding, R., Taylor, R., 2002. Principled Design of the
Modern Web Architecture, ACM Transactions on

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

464

Internet Technology (TOIT), Volume 2 Issue 2, May
2002.

Forsythe, C., 2013. Instant FreeetMarker Starter. Packt
Publishing, Birmingham.

Geudens, T., 2012. Resource-Oriented Computing with
NetKernel: Taking REST Ideas to the Next Level,
O'Reilly Media.

Kay, M., 2007. XSL Transformations (XSLT) Version
2.0. W3C Recommendation.

Klyne, G., Carroll, J. J., 2004. Resource Description
Framework (RDF): Concepts and Abstract Syntax,
W3C Recommendation.

Koenig, D., Glover, A., King, P., et al, 2007. Groovy in
Action. Manning Publications Co., New York.

McCandless, M., Hatcher, E., Gospodnetic, O., 2010.
Lucene in Action, Second Edition: Covers Apache
Lucene 3.0. Manning Publications Co., Stamford.

Odersky, M., Spoon, L., Venners, B., 2010. Programming
in Scala, Second Edition. Artima Press, Walnut Creek.

Sauermann, L., Cyganiak, R., 2008. Cool URIs for the
Semantic Web. W3C Interest Group Note.

Speicher, S., Arwe, J., Malhotra, J., 2013. Linked Data
Platform 1.0. W3C Last Call Working Draft.

Strauch, Ch., 2011. NoSQL Databases. Lecture Selected
Topics on Software-Technology Ultra-Large Scale
Sites, Manuscript. Stuttgart Media University,
http://www.christof-strauch.de/nosqldbs.pdf.

Tolvanen, J.-P., 2006. MetaEdit+: integrated modeling and
metamodeling environment for domain-specific
languages. OOPSLA’06 Companion, pp. 690-691.

Voelter, M., 2011. Language and IDE Development,
Modularization and Composition with MPS. In
GTTSE 2011, LNCS. Springer.

Resourcebus�-�A�New�Substrate�for�Model-driven�Creations

465

