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Abstract: In this work charge carriers mobility in diamond, calculated by two means – by kinetic equation method and 
by Monte Carlo method – is analyzed. Temperature of diamond crystal less than 300 K and low 
concentration of impurities are considered, therefore carriers are scattered preliminary by acoustic phonons. 
Electron-phonon interaction is taken in deformation potential approximation. Phonon emission and 
adsorption rates are calculated and Monte-Carlo method is used to obtain carriers mobility. The mobility is 
compared with that obtained by kinetic equation method in our previous work. The results are important for 
the treatment of electrical experiments in pure monocrystalline diamonds. 

1 INTRODUCTION 

At temperatures below 300 K and sufficiently low 
concentration of impurities and defects, the charge 
carriers mobility in diamond is restricted 
substantionally by scattering at acoustic phonons. 
Over the years, the carrier mobility in diamond has 
been measured many times as a function of 
temperature for different types of this material 
(Prelas et al., 1998; Nesladek et al., 2008; Isberg et 
al., 2002; Pernegger et al., 2005; Pomorski et al., 
2007). Nevertheless, the temperature range below 80 
K in pure diamond crystals has hardly been studied. 
Even latest works with mobility studies deal with 
rather impure samples, for example in (Jansen et al., 
2013) the order-of-magnitude estimate for the 
concentration of neutral impurities was about 1017 
cm-3, what leads to mainly impurity mechanism of 
scattering at temperatures lower than 100 K and so 
impedes high carriers mobility. In view of good 
prospects of diamond for design of electronic 
devices with unique properties (Sussmann, 2009; 
Isberg et al., 2012), particularly ionizing radiation 
detectors, increasingly pure diamond single crystals 
will be produced, carriers mobility at low 
temperatures will be sooner or later measured in 
them, and the interpretation of these experiments 
will be an urgent problem.  

Generally, the mobility is calculated within the 
quasielastic approach, but this approach gives bad 
accuracy in diamond due to high velocity of sound 

(Baturin, 2010; Belousov, Soloviev, Chernousov, 
2013). In these works the inelasticity was taken into 
account by utilizing a not simplified collision 
integral in the right part of kinetic equation in two-
moment approximation and in 0-dimensional or 1-
dimensional cases. The solution was based on the 
numerical integration of the kinetic equation. If 
necessary, this approach can easily be modified to 
take into consideration a self-consistent electric 
field, created by charge carriers. On the other hand, 
this approach does not take into account quadrupole 
and higher moments of distribution function, what 
leads to discrepancies from exact solution. In order 
to estimate the error of calculation, it is reasonably 
to compare it with the results of Monte-Carlo 
method simulation, what is implemented in this 
work. Monte-Carlo method is favourable to analyze 
kinetic processes with low concentration of charge 
carriers, i.e., without self-consistent field, but its 
advantage is possibility to conventionally solve 2- 
and 3-dimensional problems.  

2 FORMULATION OF THE 
PROBLEM 

2.1 Physical Model 

In this work a model from (Baturin et al., 2010; 
Belousov, Soloviev, Chernousov, 2013) of diamond 
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radiation detector consisting of thin plate, which 
facets are covered by metal electrodes, linked to 
power supply (fig. 1), is considered. 

 
Figure 1. Physical model of diamond ionizing-radiation 
detector. 

The plate sizes are taken much larger than its 
thickness – this allows to treat the system as one-
dimensional in the direction perpendicular to the 
plates. Ionizing radiation creates electron-hole pairs 
and ionize impurities. As in previous studies, to fix 
the idea, the diamond is assumed to be doped with 
boron atoms (acceptor, binding energy of a hole is 
0.37 eV), the non-equilibrium carriers are generated 
in a certain layer of the plate by laser radiation, 
ionizing the impurities and the case of completely 
permeable electrode-diamond contacts is considered 
(the charge carrier, coming to the contact, 
disappears). Charge carriers, moving into the 
sample, induce electric current in an external circuit 
(Shockley-Ramo theorem). Parameters of ionizing 
radiation can be determined from the pattern of 
current versus time dependency and from the charge 
traversed in an external circuit. 

The concentration of impurities which generate 
carriers, is assumed to be constant and independent 
of how many carriers have been captured on them by 
the given point of time. 

2.2 Mathematical Model 

In a pure monocrystalline diamond at temperatures 
below 300 K, the main mechanism of charge carrier 
scattering is scattering by acoustic phonons. 
Following (Baturin et al., 2006; Varfolomeev, 

Gorelkin, Soloviev, 2013), the probabilities of 
absorption −Ω  and emission +Ω  of phonon by 
charge carrier in deformation potential 
approximation are respectively: 
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where Ξ is a deformation potential constant, 
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  is the average number of 

phonons with the wave vector q, M is the mass of 
the crystal, m is the effective mass of the carrier, s is 
the speed of sound in the crystal, T is the 
temperature of the crystal, kB is the Boltzmann 
constant,   is the Planck constant, qs  is the 
energy of the phonon, 2 2 2k mε =   is the energy of 
the carrier with wave vector k . 

Hence the frequency of the emission ( )e kν  

and absorption ( )a kν  of phonons by the carrier can 
be found: 
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, ρ  is the density of diamond. 

The total frequency (of carrier-phonon processes 
and recombination) for carrier equals  

( ) ( ) ( ) ( )e a capk k k kν ν ν ν= + + , (5) 

where ( )cap kν  is the frequency of carrier capture by 
traps (if any). 

In addition, carrier can get to the plate coating 
and leave the volume of the plate. 

2.3 Monte-Carlo Method Usage 

In our case, the use of Monte Carlo simulation 
consists in manifold independent simulation of 
carrier dynamics. Carriers are generated 
probabilistically in accordance with a specified 
density of sources of carriers situated within the 
sample. There are two competing processes – the 
generation of new particles by the source and their 
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capture by traps or leaving the sample. In the course 
of time, a dynamic equilibrium between these 
processes establishes (the number of "departures" 
equals the number of "arrivals" in a unit of time), 
and the average velocity of the carriers yields the 
value of the mobility. Clearly, the average speed of 
the carriers will give the less fluctuations over time 
and hence the more accurate value of mobility, the 
more particles there are in the sample in "stationary 
state". 

Any period of time of the free motion of the 
carrier ends with one of the processes: emission of a 
phonon, absorption of a phonon, capture of the 
carrier by the trap or leaving the volume of the 
sample. 

The mean free time can be found by means of 
expression (5) for total frequency and by the 
instrumentality of random number generator 
(Mihailov, Voitishek, 2006): 

( ) ( )1 ln 1 r
k

τ
ν

= − −  (6) 

where r is a random number with uniform 
distribution on the interval [0,1]. 

The shift of the carrier along x axis during the 
mean free time is calculated:  
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after that the test is done whether the carrier has 
leaved the volume of the sample. If it has, than it 
disappears and the program creates another carrier, 
and so on until the necessary number of generated 
carriers is obtained (100000 particles in our 
calculation). 

If the carrier hasn’t gone from the volume of the 
sample, a process that aborted carrier’s motion in 
electric field is drawn. When there aren’t any traps 
in the sample, these processes can only be emission 
and absorption of a phonon. Obviously, in this case 
probabilities of emission or absorption are 
respectively  
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The magnitude of wave vector of absorbed or 
emitted phonon is drawn with the use of cumulative 
distribution function for emission (absorption) of 
phonon with given wave vector: 
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where  
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Statistical sampling of q  is conducted by 
conventional formulae ( )1

e ,q F k r−=  for emission 

and ( )1
a ,q F k r−=  for absorption of phonon 

(inversion of the function is done for the second 
argument). Scattering angle χ  is found explicitly 
from conservation laws and from the magnitude of 
phonon wave vector, for emission process by 
formulae  
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for absorption process by formulae 
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Azimuthal angle of a new direction of carrier 
movement relative to initial direction is calculated as 
random number, uniformly distributed on the 
interval [0; 2 ]π . 

2.4 Results of Simulation 

Figure 2 shows the results of Monte Carlo 
simulation  in comparison  with  the  results obtained  
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Figure 2: Results of Monte Carlo simulation in comparison with the mobility obtained by the kinetic equation method. 

by the kinetic equation method (Baturin et al., 2010; 
Belousov, Soloviev, Chernousov, 2013). The kinetic 
equation method was taken in two-moment 
approximation (Baturin et al., 2010) in isotropic and 
one-dimensional versions, in quasi-elastic and 
inelastic approximations. 

Among these variants of the kinetic equation the 
one-dimensional inelastic approximation seems to be 
the most accurate. On the other hand, the Monte 
Carlo method for the physical and mathematical 
models described above should provide even more 
accurate results because it is not simplified by two-
term approximation. Comparison of different 
variants of the kinetic equation with the "exact" 
results obtained by the Monte Carlo method can be 
used to assess the accuracy of the method of kinetic 
equation. The value of mobility obtained by the 
Monte-Carlo method at 90 K should be considered 
as an overshoot due to a not large enough number of 
particles accumulated. For the one-dimensional 
inelastic approximation in the method of kinetic 
equation almost equilibrium mobility values are less 
than the Monte Carlo values at 30 KT <  and more 
than it at 30 KT > . The relative difference between 
these mobilities is significant, up to 50%. 
Interestingly enough that more rough version of the 
kinetic equation method in the quasi-elastic isotropic 
approximation gives mobility values closer to the 
"exact" ones than the one-dimensional inelastic 

variant, with the relative difference from “exact” 
mobility up to 30%. 

3 CONCLUSIONS 

A comparison of the charge carriers mobilities 
calculated using kinetic equation and using the 
Monte Carlo method in diamond crystal at 
temperatures less than 100 K and the absence of 
impurities was performed. Carrier scattering is 
mainly caused by acoustic phonons, the electron-
phonon interaction being taken in the deformation 
potential approximation. 

Results obtained by kinetic equation method in 
two-moment approximation give a qualitatively 
correct result, but, apparently, are not suitable for an 
accurate enough quantitative description. The values 
of mobility in the quasi-elastic approximation (“law 
of 3/2”) at Т > 20 K differ from those obtained by 
the Monte Carlo method no more than 30%. The 
one-dimensional inelastic approximation in the 
method of kinetic equation gives a result which 
differs from the Monte Carlo method no more than 
50%. At the same time it should be noted that the 
kinetic equation method allows qualitative estimates 
in the presence of the self-consistent field created by 
charge carriers, what is complicated in the case of 
the use of more precise Monte Carlo method. 
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The obtained results yield assessments of the 
accuracy of various approximations used for the 
simulation of kinetic processes in diamond. This is 
important both for choosing the correct method of 
simulation of radiation detectors and other electronic 
devices based on diamond, and for more accurate 
definition of diamond charge carriers parameters by 
experimental data. 
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