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Abstract: Recent studies have demonstrated that Semi-Supervised Learning (SSL) approaches that use both labeled and
unlabeled data are more effective and robust than those that use only labeled data. However, it is also well
known that using unlabeled data is not always helpful in SSL algorithms. Thus, in order to select a small
amount of helpful unlabeled samples, various selection criteria have been proposed in the literature. One
criterion is based on the prediction by an ensemble classifier and the similarity between pairwise training
samples. However, because the criterion is only concerned with the distance information among the samples,
sometimes it does not work appropriately, particularly when the unlabeled samples are near the boundary. In
order to address this concern, a method of training semi-supervised support vector machines (S3VMs) using
selection criterion is investigated; this method is a modified version of that used in SemiBoost. In addition
to the quantities of the original criterion, using the estimated conditional class probability, the confidence
values of the unlabeled data are computed first. Then, some unlabeled samples that have higher confidences
are selected and, together with the labeled data, used for retraining the ensemble classifier. The experimental
results, obtained using artificial and real-life benchmark datasets, demonstrate that the proposed mechanism
can compensate for the shortcomings of the traditional S3VMs and, compared with previous approaches, can
achieve further improved results in terms of classification accuracy.

1 INTRODUCTION added to the training set, then the number of training
samples could be expanded effectively. Using large
In semi-supervised learning (SSL) approaches, a largeand strong training samples may lead to creating a
amount of unlabeled dat&/§, together with labeled ~ strongly learned classifier.
data (), is used to build better classifiers. That is,
SSL exploits the samples &f in addition to the la-
beled counterparts in order to improve the perfor-
mance of a classification task, which leads to a perfor- ture, including the self-training (McClosky, D. et al.,

mance improvement in the supervised learning algo- 2008: Rosenber e
. ) . . ; g, C. et al.,, 2005), co-training (Blum,
rithms with a multitude of unlabeled data. However, it A. and Mitchell, T., 1998: Du, J. et al., 2011),

|fs aISsngelll kr_ltcr)lwn thlat us'tr.'g IIS n.ct’t. alwe:ys helpftul d cluster-then-label (Singh, A. et al., 2008; Goldberg,
or aigorithms. n particular, itis notguaranteed 5 g ot 1., 2009; Goldberg, A. B., 2010), sim-

that addingdJ to the training dataX), i.e. T = LUU, - :
TR . e ply recycled strategy in SemiBoost (Mallapragada,
leads to a situation in which the classification perfor- 57\~ & al., 2009), incrementally reinforced semi-

mance can be improved (Ben-David, S. et al., 2008; supervised MarginBoost (SSMB) (Le, T. -B. and

Lu, T., 2009; Zhu, X., 2006). Therefore, if more is Kim, S. -W., 2012), and other criteria used in active

known about the confidence levels involved in clas- ; ;
sifying U, informative data could be chosen and in- :Sar?éng%_(Allq'i)ciEr%rilthg] sa(r%a?_'znk,klégir_]_?_ulfngDeIsggbg..
cluded easily when training base classifiers. Further- '\ ™"\ "3 L4 Goel. V.. 2005 Lengi Y et al.

more, if a large amount of unlabeled samples could be 2013). For example, in SemiBoost, Mallapragada

" *This work was supported by the National Research al. measu_red the pairwise similarity in_orde_r to guide
Foundation of Korea funded by the Korean Government the selection of a subset bf for each iteration and

(NRF-2012R1A1A2041661). to assign (pseudo) labels to them. That is, they first

From this perspective, in order to select a small
amount of helpful unlabeled data, various select-
ing techniques have been proposed in the litera-
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computed the confidence of &l samples based on The combination of helpflll samples with_ data

the prediction made by an ensemble classifier and theincreases the likelihood of more accurate classifica-
similarity among the samples bfJU. Then, they se-  tion; however, the determination of estimated labels
lected a few samples with higher confidence to retrain for U often leads to a fault. If this fails, the added
the ensemble classifier together withThe selecting- U samples with incorrect labels not only decrease the
and-training step was repeated for the number of iter- accuracy of the classification but also increase the dif-
ations or until a termination criterion was met. ficulty in choosing a decision function. From this

On the other hand, support vector machines perspective, in order to complement the weakness of
(SVMs) (Vapnik, V. 19'95) are considered to be S3VM, various techniques, such as SemiBoost (Mal-
strong and successful classifiers in pattern recognitionlapragada’ SP K. gt;l]., 20019_)' (lzonj\l].lgaztg Igncgc?:r\}thrat-
(PR). Unlike traditional classification models, such €9Y (Sun, S. and Shawe-Taylor, J., ), “us

as Bayesian decision rules, SVMs minimize the up- (Li, Y. -F. and Zhou, Z. -H., 2011), incrementally re-
per bound of the generalization error by maximiz- inforced selectl_on strategy (Le, T. -B. and K_|m, S. -
ing the margin between the separating hyperplane andV- 2012), manifold-preserving graph redu_ctlon (5“”'
training data. Hence, SVMs are a distribution-free S.etal, 201_4)’ etc., have been proposeq in the litera-
model that can overcome the problems of poor sta- ture/n S_em|Boost, forgxample, the c_o_nﬂd_ence value
tistical estimation and small sample sizes. SVMs also of % E.U is computed using two quantities, '-ﬂ:a'?d .
achieve greater empirical accuracy and better gener-qi' which.are. measured using,the pairwise similarity
alization capabilities than other standard supervised betweepxi and otherU andL samples. However,
classifiers. With regard to combining SVMs with SSL whemg is nearthe bon_mdary betvyeen bm cla_sses, the
strategies, numerous models use unlabeled sample alue is computed using only, W'thm.]t referrlng to

to improve the classification performance, including 7 Consequently,.the value might be.inappropriate for

semi-supervised support vector machines (S3VMs) SETECTg hg|pfu| samples. In ord_er_to_ dOUrESsprob-
(Bennett, K. P. and Demiriz, A., 1998), transduc- lem, a modifieggchnique that minimizes the errors
tive support vector machines (TSVMs) (Joachims, in estimating the labels @ is investigated.
T., 1999b), EM algorithms with generative mixture This modification is motivated using the observa-
models (Nigam, K. et al., 2000), Bayesian S3VMs tion that, for samples €U that are near the boundary
(Chakraborty, S., 2011), help-training (which is a between the positive class bf(L*) and the negative
variant of the self-training) S3VMs (Adankon, M. class ofL (L™), three terms that comprise the selec-
M. and Cheriet, M., 2011), hybrid S3VMs (Jiang, Z. tion criterion of SemiBoost are reduced to one term,
et al., 2013), and S3VM-us (semi-supervised support which only depends old. That is, two of the three
vector machines with unlabeled instances selection)terms, which are measured usibg andL~, respec-
(Li, Y. -F. and Zhou, Z. -H., 2011). tively, are changed to zero or nearly zero. From this
Among these combined approaches, the semi- observation, the balance between the impacts of the

supervised support vector machines (S3VMs) (Ben- Iabgled and pgeudo-labeled data is_ used when com-
nett, K. P. and Demiriz, A., 1998; Chapelle, O. et al., puting t_he _confldence values. _The d_|fference_between
2006) and the transductive support vector machinesbOth criteria is t\{VO'TOId' the f'.rSt difference IS that,
(TSVMs) (Joachims, T., 1999b) are the most popular for the original criterion of SemiBoost, the confidence
approaches for utilizing unlabeled data. In particular, Yalues are computed using the quantitiepcéndg
S3VMs are constructed using a mixtureloftraining only, whe_reas fo_r the modified criterion, they are mea-
set) andJ (working set) data, where the objective is sy_rgd using estimates of the. conditional class proba-
to assign class labels to the working set. Therefore, b|||t|e§ as well as the quantities of andqi. The sec-
when the working set is empty, the S3VM becomes ond difference is the method of labeling the selected

the standard SVM model. In contrast, when the train- samples: in t_he or_iginal scheme,_ thg labekat U .is
ing set is empty, it becomes an unsupervised |eam_pred|cted using &ign(p; —g;), while in the modified

ing approach (Bennett, K. P. and Demiriz, A., 1998 scheme, this is predicted by referring to the probabil-

Joachims, T., 1999b). Consequently, when both the ity estimates as well as andq;.

training and working sets are not empty, SSL strate-  The main contribution of this paper is the demon-

gies can be used. In this case, the information from stration that the classification accuracy of S3VM can
U can be helpful for the training process. More- be improved using a modified criterion when select-
over, without labels, the cost of extractidgsamples  ing unlabeled samples and predicting their labels.
may be lower than that of providing mokesamples. Furthemore, a comparison of the classification per-
Therefore, S3VMs create a richness of opportunity formance between the proposed S3VM and the tra-
for many PR researchers. ditional ones was performed empirically. In particu-
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lar, some critical questions concerning the strategies (Vapnik, V., 1995). In particular, S3VM is defined as
employed in the present work were investigated, in- follows (Bennett, K. P. and Demiriz, A., 1998):
cluding what are the features of the original S3VM

and SemiBoost that lead to the lower classification min :—L||WH2+C o ni+C* E ni
accuracy?andwhy is the proposed modified criterion 2 i; =1 J )
better than the original? st. yifg(x)+ni>Li=1,---,nl,

The remainder of the paper is organized as fol- Ifo(X))| >1—nj,j=1,---,nu.

lows. In Section 2, after providing a brief introduction
to S3VMs, an explanation for the use of selection cri-
terion in the SemiBoost algorithm is provided. Then,
in Section 3, a method of improving S3VMs through

utilizing the modified criterion for selecting a small : . .
amount of helpful unlabeled samples is presented. In (TU.)' the goal is to determine the pairs that an SVM
trained onL U (Ty x Y*) can use to yield the largest

Sections 4 and 5, the experimental setup and results : . . .
obtained using the experimental benchmark data areMmargin from the possible binary estimated label vec-

presented, respectively. Finally, in Section 6, the con- toerT* = E)y”'irl’ s ’g”””t)' This is 3 combi\?atoialv
cluding remarks and limitations that deserve further Problem, butit can be approximated (see (Vapnik, V.,
study are presented. 1995)) to locating an SVM that separates the training

set under constraints, which forces the test unlabeled
samples to be as far as possible from the margin. This
can be written as follows:

nl nt
SCIE . , min 3|ww||2+c;ni ey

In this section, S3VM and SemiBoost, which are 2 i= i=
closely related to the present empirical study, are st. yife(x)+ni>1ni>0,i=1---,nl,
briefly reviewed. The details of the algorithms can [fo(xj)|>1—nj,j=1,---,nt.
be found in the related literature (Vapnik, V., 1995;
Bennett, K. P. and Demiriz, A., 1998; Mallapragada,
P. K. etal., 2009).

S3VMs are an expansion of SVMs using an SSL
strategy, while TSVMs use the transductive learn-
ing approach. Given a set afl training pairs ()
and a (unlabeled) set aft test samples in test set

2 RELATED WORK

3)

This minimization problem is equivalent to mini-
mizing £, which is defined as follows:

1 nl
2.1 S3VMand TSVM L= Sw* + C3 hfolx)) (4
1=
nt
A set ofnl training pairs L = { (X1, ¥1)," -+, (X1, Ynl) }+ Lo Z Hi(|fe(x))]),
x € RY, andy; € R) and a set ohu unlabeled sam- =1

_ . d i
pngfSeSrJirE; E)él’(Vab);qui% z\;t/nd?ggs[g& )Sz\alr'\e/lé: ohnas\;ge;egé_ where# (-) is the Hinge loss function defined as fol-
cision function fo(-), which is defined agfg(x) =  1OWS:

w- ®(x) + b, whered = (w,b) denotes the parameters B () — 1-y, if y<1

of the classifier modelw € RY is a vector that de- 1Y) = 0 otherwise )
termines the orientation of the discriminating hyper- . , o
plane, andb € R is a bias constant such thiag||w|| _ ForC" =0in (4), the standard SVM optimiza-
represents the distance between the hyperplane andion Problem is obtained. FdC* > 0, theU data
origin. Also,® : RY — F is a nonlinear feature map- that are inside the margin are penalized. This is

ping function, which is often implemented implicitly ~ €quivalent to using the Hinge loss thas well, but
using the kernel trick. it is assumed that the label of the unlabeled exam-

When denctng o e loss fox, e uadrate B X Y- S0, n e o ok (o
rogramming formulation is defined as follows: 1 ]
prog g local search algorithm that is the basis ¥ M-9M

I C“' (Joachims, T., 1999a).

st. Vi fe(x@)—i—r]i:z 1ni>0,i=1,---,nl, 2.2 SemiBoost

whereC > 0 is a fixed penalty regularization param- The goal of SemiBoost (Mallapragada, P. K. et al.,
eter, which is determined via trial and error (Vapnik, 2009), which is a boosting framework for SSL, is to
V. and Chervonenkis, A. I., 1974), (Vapnik, V., 1982), iteratively improve the performance of a supervised
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learning algorithm @) by regarding it as a black box,
usingU and pairwise similarity. In order to follow

Algorithm 1: Sampling.

Input: Labeled datal() and unlabeled datdJ().

the boosting idea, SemiBoost optimizes performance Output: Selected unlabeled datd).

through minimizing the objective loss function de-

Procedure: Repeat the following steps to seldd$

fined as follows (see Proposition 2 (Mallapragada, P. fromU.

K. etal., 2009)):

nu

;(pi +g) (€ +e 2 1)

F <

(6)

—iZGhi(Di — ),

whereh;(= h(x)) is the classifier learned bg at the
iteration,a is the weight for combining;’s, and

nl ' K nu i
P =J;S‘f'je’2'*' 3(y;,1) + J;S‘fﬁ‘e*‘v”', o
nl ' K nu il e
Gi :;Sﬁ'jezHlé(yj,—l)—i-E jzl$jeHl Hj

Here, Hi(= H(x)) denotes the final combined
classifier andS denotes the pairwise similarity. For
all x; andx; of the training set, for exampl&can be
computed using as follows:

S(i, j) = exp(—|x — x;[13/0%), (8)

where ¢ is the scale parameter controlling the
spread of the function. In additior§¥ (and S")
denotes thenl x nu (and nu x nu) submatrix ofS.
Also, 3" andS' can be defined correspondingly; the
constani, which is computed using = |L|/|U| =
nl/nuy, is introduced to weight the importance be-
tweenL andU; andd(a,b) = 1 whena=b and 0
otherwise.

The quantities ofg; andg; can be interpreted as
the confidence in classifying € U into a positive
class (+1}) and negative clasq {1}), respectively.
Using these settinggy; andg; can be used to guide
the selection o) samples at each iteration using the
confidence measuremept — g;|, as well as to assign
the pseudo class labsign(p;i — qi). The procedure
of selecting strong samples frachusing confidence
levels, which is referred to assamplingfunction, is
summarized as follows.

From (7), the difference in values betwegrand
gi can be formulated as follows:

nl

Pi—ai=) She 2Mia(yj, 1)
=

nl
- Z:LSJIJ e 6(yl ,—1)

JC nu
+3 3 S et )
J:

9)

1. For each sample &f, compute classification con-
fidence levels{|pi —qi| }{!¥;) using (7).

2. After sorting the level$p; — ;| in descending or-
der, choose a small portion from the top of the
unlabeled data (e.g. 10% top)lds according to
the confidence levels.

3. Update the estimated label for any selected sam-
plex; by sign(pi — qi).
End Algorithm

By substituting-* = { (X, yi)|yi = +1,i=1,---,nl"}
andL™ = {(%,¥i)lyi=-1,i=1,---,nl" } as theL
samples in clas$+1} and clasg—1}, respectively,
(9) can be represented as follows:

IOi—Qi—<92Hi > S“J)
xjeLt

{22

Again, by substitutingG” = ey, . + §'} and
X~ =eMy, - S in the first two corresponding
summations of the similarity distances frogre U to
eachx; € L in class{+1} and clas§—1}, the differ-
ence in the values betweef” and X~ can be con-
sidered as the relative measurement for estimating the
possibility thatx; belongs to{+1} or {—1} as fol-
lows:

X=X~ <0 = P(x € {+1}) <P(x € {-1}),
X=X~ >0 = P(x € {+1})>P(x € {-1}).
(11)
From this representation, it can be seen that if the
difference ofX;" andX;™ is nearly zero, then the sam-
ple x; could remain on the boundary of the classi-
fier. Therefore, the classification xfis a complicated
problem. In order to address this problem, SemiBoost
uses the third term in (10), which denotes the rela-
tive information (i.e. similarity) betweer € U and
Xj € U. This may provide more meaningful informa-
tion for enlarging the margin.
However, providing more data is not always ben-
eficial. If the value obtained using the third term in

(10)
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(10) is very large oiX;* is nearly equal o, (10)

will generate some erroneous data. In that case, the

meaning achieved using the confidencexgf— X~
may be lost and the estimation farwill depend on
theU data. That is, th& samples do not affect the
estimation ofx; label; therefore, the estimated label is
unsafe and untrustworthy.

3 PROPOSED METHOD

In this section, in order to overcome the above men-
tioned weakness, the selection/prediction criterion
based orp; andq; is modified and, using the modi-
fied criterion, a learning algorithm for S3VMs is pro-
posed.

3.1 Quadratic Optimization Problem

First, the focus is on optimizing (2) in order to mini-
mize the quadratic problem to improve the results of
S3VMs. Minimizing (2) leads to the generation of an
optimized classifier. Let thds be a subset aissam-
ples selected fror that have a high possibility of
trust. That is,U is partitioned into two subsets, i.e.
the selectedd and remaining) (U = UsUU;), where
the cardinalities ofJs andU, arensandnr, respec-
tively. Thus, the minimum (2) would be divided into
two terms represented using brackets as follows:

. 1 nl
min §|\W||2+Czir]i +
=

ns nr
C* > nj+C zf]k]
=1 k=1
y|fe(X|)+r]| Z 17r]i 207| :11 7n|a
|f6(XJ)| Zl_njaj :17 ,NU.

st.
(12)
Using the Hinge loss in (5) for TSVMs, min-

imizing (12) is similar to minimizingZL, which is
computed as follows:

nl
L= ;||W|2+Ci;7‘[l(yif6(xi))

_|_

c iﬂlme(xjm ‘o kiﬂla fe<xk>|>] .
i= —

(13)
From (13), itis easy to observe that a smaller value
can be achieved when reinforcing the training set with
Us and its predicted labels. Furthermore, by omitting
the term related to thed, subset from (13), the prob-
lem of minimizing L can be simplified to the mini-
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mization of L1, which is defined as follows:

nl
L= %||W|2+C_Z-7‘[1(Yi fo(xi))
= (14)
+

c i}aufe(xjm] .
=

Thus, it can be seen thah < £ without losing
generality. From this observation, rather than opti-
mizing £, £; can be considered as a new quadratic
optimization problem. Furthermore, it should be
noted that the quadratic problem could be more ef-
ficiently optimized through the minimization of each
term in (14), not through a summation. Therefore,
a modified version of the selection criterion in (10)
could be considered. In subsequent sections, the
method of adjusting the selection (sampling) function
and using it are discussed.

3.2 Modified Criterion

As mentioned previously, using andg; can lead to
incorrect decisions in the selection and labeling steps;
this is particularly common when the summation of
the similarity measurement from € U to x; € L is

too weak, as follows:

xi+ _ xi7 < Xiu’ (15)
wherex! = (t_zt S x;eu Sf?(eHJ*Hi — ghi—H; )), or
VAR O (16)

In this situation, the confident measurement is formu-
lated as follows:

[P — i > [X].

From (17), it can be observed that the confident
measurement of € U is computed using the distance
betweerx; andx; € U, while excluding.. As a conse-
quence, the measurement is determined usirogly
and, therefore, sometimes it does not function as a cri-
terion for selecting strong samples. In order to avoid
this, the criterion of (10) can be improved through bal-
ancing the three terms in (10), i.&*, X, andX".
This improvement can be achieved through balanc-
ing the three terms through a reduction in the impact
of the third term, especially whe§"™ ~ X,~. More
specifically, in order to reduce the impact, the condi-
tional class probability is estimated with eaghe U
in this paper. This idea is motivated from the rule of
mapping the selected unlabeled sampl¢to a pre-
dicted label ¥;) being viewed as a procedure for ob-
taining the estimates of a set of conditional probabili-
ties.

(17)
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In order to obtain the estimates of the proba- where#4 is the Hinge loss function in (5).
bilities, a method cited from the LIBSVM library Finally, the selection and training steps are re-
(Chang, C. -C. and Lin, C. -J., 2011) can be con- peated while verifying the training error rates of the
sidered. Using the probability estimates as a penalty classifier. The repeated regression leads to an im-
cost, the criterion of (10), i.elpi — gi|, can be modi-  proved classification process and, in turn, provides
fied as follows: better prediction of the labels over iterations. Con-
B sequently, the best training set, which is composed of
ICLOG)| = X" =X~ + X" = (1= Pe(x))

, (18) L andUs samples, constitutes the final classifier for
where Pz(x) denotes the probability estimates and the problem.

1— P=(x) corresponds to the percentage of mistakes . B@sed on this brief explanation, an algorithm for
when labeling;. Using (18) as the criterion of select- ImProving the S3VM using the modified criterion is

ing strong unlabeled samples, the sampling function SUmmarized as follows, where the labeled and unla-
described in Section 2.2 can be modified as follows. _beled_ datal( andU), cardinality ofUs, number c_n‘
iterations (e.gt; = 100), and type of kernel function

and its related constants (i.€.andC*), are given as
input parameters. As outputs, the labels of all data
and the classifier model are obtained:

Algorithm 2: Modified Sampling.

Input: Labeled datal() and unlabeled dat&).
Output: Selected unlabeled datdy).
Procedure: Repeat the following steps to seldds Algorithm 3: Proposed Algorithm.

fronftds Input: Labeled datal() and unlabeled dat&)().

1. For each sample of the available unlabeled Output: Final classifier Hs).
data, compute the classification confidence levels Method:
{ICL(x)[}"; using (18). Initialization: SelectU<? from U through an SVM

2. After sorting the levels in descending order, trained withL; set the parameters, e@.andC*, and
choose a small portion of the top of the unlabeled kernel function @); train the first S3VM ) with
data (e.g. 10% top) dss, according to their con-  LuU{? and compute the training erra(Hs)), using
fidence levels. L only.

3. Update the estimated label for any selected sam-Procedure Repeat the following steps while increas-
ple x; usingsign(CL(x)). ingi from 1 tot; in increments of 1.

End Algorithm 1. ChoosdJs(i) from U using the modified sampling
function (i.e., Algorithm 2), where the previously
trained S3VM is invoked.

3.3 Proposed Algorithm 2. Train a new S3VM classifieh{) using bott and
Us('), and obtain the training errog(;)) with L.

In this section, an algorithm that upgrades the con- -
ventional S3VM throggh the modifipegd criterion for o+ F&(i) <€&(Hy), then keeh as the best classifier,
selecting helpful samples frok is presented. The L.e. Hr < hi ande(Hy) < &(h).

algorithm begins with predicting the labels dfus- End Algorithm

ing an SVM classifier trained with only. After ini-

tializing the related parameters, e.g. the kernel func- The time complexities of the two algorithms, the
tion and its related conditions, the confidence levels g, igoost (Mallapragada, P. K. et al., 2009) algo-
of U ({|Cl_n(u>q)_|}{‘§l) are calculated using (18). Then, ynn and the proposed algorithm, can be analyzed
“CL()?‘)'}i:l is sorted in descendmg or_der. After_ and compared as follows. As in the case of Semi-
selecting the samplle§ ranked W'.th the highest (_:onf|- Boost algorithm, almost all the processing CPU-time
Qence levels, combining them Wlthc_re.ates atran- - o ihe proposed algorithm is also consumed in com-
ing set for an S3VM classifier. In training the S3VM puting the three steps &frocedurein Algorithm 3.
classifier, the minimization problem, which corre- g, w4 gifference in magnitude between the compu-
sponds to (4), can be solved through minimization: tational complexities of SemiBoost and the proposed
algorithm depends on the computational costs associ-

nl
Ly = %HWHZ—FC Zl}[l(yi fo(xi)) ated with the routines of three steps. More specif-
s T (19) ically, in both algorithms, the three steps are con-
Lc Z 74 (Sign(CL(x)) fe (%)), cerned with: (1) sampling a small amount of the un-
& labeled samplebl using the criteria; (2) learning a
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Table 1: Comparison of time complexities of the three steps Table 2: Characteristics of the PASCAL VOC’07 database
for the SemiBoost algorithm and the proposed algorithm. used in the experiment. Here, four letter acronym, namely,

Here,|- | denotes the cardinality of a data set. Aero, Moto, Pers, Car, Hors, and Back represent the Aero-
plane, Motorbike, Person, Car, Horse, and Background
| Steps | SemiBoostaIgorithm| Proposed algorithm| groups, respectively.
(1) Sampling O(JU|+[U[loglu]) | O(U[+|U]loglU])
(2) Training O(‘L‘+|$) O<|L|+‘S) | Datasets| Aero | Moto | Pers | Car | Hors | Back |
(3) Updating weights O(|L|+]U]) - Object# | 112 120 1025 | 376 139 | 1019
(and the best S3VM) 0(1) 0(1) Feature #| 4000 | 4000 | 4000 | 4000 | 4000 | 4000

weak-learner (and S3VM iAlgorithm 3) using the M. et al., 2007). The characteristics for each group
labeled datd and the selected sampl8sand (3) up- are summarized in Table 2.

dating the ensemble classifier with the appropriately

estimated weights for SemiBoost, while keeping the 4.2 Experimental Methods

best classifier for the proposed algorithm. From this

consideration, the time complexities for the steps can |, this experiment, each dataset was divided into three
be summarized in Table 1. _ subsets, i.e. a labeled training set, labeled test set,
From Table 1, in the case of repeating the three and unlabeled data set, with a ratio of 20%: 20%:
stepst times, the time complexities of the two algo- 609, The training and test procedures were repeated
rithms are, respectivelf®(ast) and O(azt), where — tentimes and the results were averaged. The (Gaus-
a1 =2JU[+|U[loglU|+2|L[+|S|+1andaz = |U|+ " sjan) radial basis function kernel, i.e®d(x,X) =
U llog|U| +[L|+|${+1, and, consequentlgia > 02. - exp—(||x= X|2)/202), was used for all algorithms.
From this analysis, it can be seen that the required | the S3VM classifier, the two constan8* and
time for SemiBoost is much more sensitive to the car- ¢ were set to 1 and 100, respectively, for sim-
dinalities of the training setd (andU) and the se-  pjicity. The same scale parameter)( which was
lected data setd) than that for the proposed algo-  found using cross-validation by training an inductive
rithm. SVM for the entire data set, was used for all meth-
ods. The proposed S3VM (hereafter referred to as
S3VM-improved) was compared with three types of
4 EXPERIMENTAL SETUP traditional SVMs, which were TSVM (Joachims, T.,
1999b), S3VM (Chang, C. -C. and Lin, C. -J., 2011),
In this section, in order to perform experiments for @nd SemiBoost-SVM (SB-SVM) (Mallapragada, P.
evaluating the proposed approach, experimental data<- €t al., 2009), by selecting the top 10% fraun
and methods are described first.

4.1 Experimental Data 5 EXPERIMENTAL RESULTS

The proposed algorithm was evaluated and comparedThe run-time characteristics of the proposed algo-

with the traditional algorithms. This was accom- rithm are reported in the following subsections. Prior

plished through performing experiments on to presenting the classification accuracies, the original
the Image Classification Practical 201database  criterion and modified criterion are compared.

2, which was published by Vedaldi and Zisserman

(Vedaldi, A. and Zisserman, A., 2011). This database 5,1  Comparison of Two Criteria:

contains five groups of image datg@erson horsg Original and Modified

car, aeroplane andmotorbike Each group contains

one clasg+1} and must be separated from the other

images, called the backgroundimage clgsd}. The

backgroundimages (1019/4000) are a differentimage ; ; . . . )
set that is not involved in the five groups mentioned pared. First, th? foIIowmg_quesfuon_ was investigated:
above. The qualification of all image sets is verified does the modified selection criterion perform better

using the PASCAL VOC'07 database (Everingham, than the _original criterio_n? To answer this question,
an experiment on selecting unlabeled samples fdom

2http://www.robots.ox.ac.uk/Vgg/share/practical-graa was conducted using the original criterion in (9) and
classification.htm the modified criterion in (18). The experiment was

Prior to presenting the classification accuracies, the
original criterion and modified criterion were com-
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Figure 2: Comparison of the incorrect prediction rates be-
tween the original criterion and the modified criterion for
the experimental data.

gions #2 and #3, the number of selected points of the
modified criterion is smaller than that of the origi-
nal criterion. In contrast, for the regions #1 and #4,
the number of selected points for the modified crite-
rion is larger than that of the original criterion. In
the corresponding regions of the latter, there is no se-
L N lected point. From this observation, it should be noted
I - S L R that the discriminative power of the modified criterion
Figure 1: Plots comparing the selected samples with the might be better than that of the original criterion.
original criterion (a) and the modified criterion (b) for an . In orderto further mvestlgat_e this, another exper-
artificial dataset. Here, objects in the positive and negati Iment was conducted on labeling the unlabeled data
classes are denoted by"and ‘«’ symbols, respectively, in ~ USing the two selection criteria: a verification of the
different colors. The selected objects from the two classes two predicted labels for eack € U using the two
are marked with¢’ and ‘o’ symbols, respectively from the  criteria. The experiment was undertaken as follows.
positive and negative classes, in different colors. The-unl  First, a subset fror (Us), for example, the 10% car-
beled data are indicated using-&symbol. dinality of U was randomly selected; second, the two
labels of allx; € Us predicted using the two techniques
conducted as follows. First, two confidence values in (9) and (18), i.e.sign(pi — gi) andsign(CL(xi)),
were computed for all samples with the two crite-  respectively, were compared with their true labels
ria in (9) and (18). Second, a subsetlf i.e. Us (Yus € {+1,—1}); these two steps were repeated af-
(i.e. 10%), was selected referring to the confidence ter increasing the cardinality dfs by 10% until it
values. Fig. 1 presents a comparison of the two se-reached 100%. Fig. 2 presents a comparison of the
lections achieved using the above experiment for ar- ten values obtained through repeating the above ex-
tificial data, which is a two-dimensional, two-class periment ten times for the Aeroplane dataset. In the
dataset 0f{500,500 objects with a banana shaped figure, thex-axis denotes the cardinality bf and the
distribution (Duin,R. P. W. et al., 2004). The data y-axisindicates the incorrect prediction rates obtained
was uniformly distributed along the banana distribu- using the two criteria.
tion and was superimposed with a normal distribution From the figure, it can be observed that the pre-
with a standard deviatioBD= 1 in all directions. The  diction capabilities of the original criterion and the

class priorities ar®(1) = P(2) = 0.5. modified criterion generally differ from each other;
From the figure, it can be observed that the capa- the capability of the modified criterion appears bet-
bility of selecting helpful samples for discrimination ter than that of the original criterion. This is clearly
is generally improved. This is clearly demonstrated demonstrated in the incorrect prediction rates of the
in the differences between Fig. 1 (a) and Fig. 1 (b) two criteria as represented by the dashed red line with
in the number of selected samples and their geomet-al] marker and the blue solid line withcemarker for
rical structures. More specifically, for the circled re- the original and modified criteria, respectively. For all

-4t
-6} :

gt

10}
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the datasets and for each repetition, the lower rate was

Aeroplane
0.12 T T

always obtained with the modified criterion described w1l R n R

in (18), rather than the original criterion described in o1l| = @ - s3vm A o S
(9). That s, in the comparison, the modified criterion e IR NN
always obtained better performance (i.e. the red line o1r - -] ¢ \
with thed marker is higher than the blue line with the o 2. V" °

o marker). The same characteristics can be observec
in the results from the other datasets. The results of
the other datasets are omitted here in order to avoid

Error rates

0.08 -

repetition. oorl Trme-B-Esg_ o o o _a

5.2 Comparison of Classification Error oo M
Rates between Two Selection i @ T W
Strategies The cardinality of the unlabeled subset (%)

Figure 3: Comparison of the classification error rates of the
The following subsection investigates the classifica- two algorithms for the experimental data.
tion accuracy of the proposed algorithm, i.e. S3VM-
improved, using the modified criterioris it better  yaple 3: Numerical comparison of the classification er-
(or more robust) than those of the traditional algo-- ror (and standard deviation) rates (%) between the S3VM-
rithms when the number of selected samples is var-improved and traditional algorithms for VOC’'07 datasets.
ied? In order to answer this question and to assess Here, the lowest error rate in each data set is underlined.
the accuracy of the two selection strategies-in partic-
ular, the classification error rates of an SVM classi-

| Datasets | S3VM-imp | TSVM | S3VM | SB-SVM |

. i . ) . Aeroplane 5.33 8.74 10.07 7.52
fier implemented with a polynomial kernel function ©42) | ©51) | 093 | ©77)
of degree 1 and a regularization parame@(1), Motorbike 10.00 1718 | 1718 | 10.96
but designed with different training sets énd dif- (0.66) (2.02) | (1.53) | (0.64)
ferentUs subsets) were tested and evaluated. Here, Person 3L75 41.28 | 4384 | 37.80
the two trained SVMs are the SemiBoost-SVM (SB- ca (128112; (232-9‘2 (2342;1) (1295122>
SVM) and the proposed |mproveql algorithm (S3VM- (1.49) 030 | 229 | (129)
improved). That is, the S3VM-improved uses the Horse 1071 1725 | 2001 | 1297
modified criterion to select helpful samples, while the (1.05) @21 | @32 | (109

SB-SVM uses the original criterion used in Semi-
Boost. The comparison was achieved by gradually
increasing the cardinality dfs from 0% to 100%.

used onlyL, while that of 100% indicates that the semi-supervised SVMs.

SVM training used the entire set bf in addition to
L. Fig. 3 presents the comparison of the classification
error rates of the two approaches for the Aeroplane
dataset. In the figure, theaxis denotes the cardinal-
ity of Us to be added td., while they-axis indicates
the error rates obtained with the two S3VMs.

In Fig. 3, the blue solid line with & maker

Rates

SINg Inal I tions, it can be determined that the proposed mech-
A cardinality of 0% indicates that the SVM training anism using the modified criterion works well with

5.3 Numerical Comparison of the Error

In order to further investigate the characteristics of the
proposed algorithm, the experiment was repeated us-

denotes the classification error rate of the S3VM- ing different VOC’07 datasets. Table 3 presents a nu-
improved, while the dashed lines with the ©, merical comparison of the mean error rates and stan-
and[] makers represent those of the three traditional dard deviations obtained from the experiments. Here,
S3VMs, respectively. From the figure, it can be ob- the results in the second column were obtained us-
served that the classification accuracies of the SVM ing the proposed S3VM-improved algorithm where
algorithms are improved by choosing helpful samples the cardinality ofUs is 10%; the results of the third,
from U when using both. andU. This is clearly fourth, and fifth columns were obtained using the
demonstrated in the figure where the error rates of the TSVM, S3VM, and SB-SVM, which were imple-
S3VM-improved, indicated by themarker, are lower  mented using the algorithms provided in (Joachims,
than those of the SB-SVM, denoted using theym- T., 1999b), (Chang, C. -C. and Lin, C. -J., 2011), and
bol, for all theUs cardinalities. From these observa- (Mallapragada, P. K. et al., 2009), respectively.
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In addition to this result, in order to demonstrate
the significant differences in the error rates between
the S3VM algorithms used in the experiments, for the
means |f) and standard deviationg) shown in Ta-
ble 3, the Student’s statistical two-sample test (Huber,
P. J., 1981) can be conducted. More specifically, us-
ing thet-test package, thp-value can be obtained in
order to determine the significance of the difference
between these algorithms. Here, thesalue repre-
sents the probability that the error rates of the S3VM-
improved algorithm are generally smaller than those
of the traditional S3VM algorithms.

For example, for the Motorbike dataset with
p1(o1) = 0.1000(0.0066) for the S3VM-improved al-
gorithm andpp(o2) = 0.10960.0064) for the SB-
SVM algorithm (refer to Table 3), p-value of 0998
was obtained for the two algorithms. As a conse-
guence, becauge> 0.95 at the 5% significance level,
the null hypothesis HOw (01) = p2(a2) was rejected
and the alternative hypothesis Hflj(o1) < p2(02)
was accepted. In a similar manner, it can be ob-
served that all Practical Image VOC'07 datasets per-
formed better at significant levels of both 5% and
10%. From this observation, it is clear that the er-
ror rate of S3VM-improved is smaller than those of
the traditional S3VM algorithms.

5.4 Comparison of the Time
Complexities

Finally, the time complexity of the proposed algo-
rithm for the VOC'07 data sets was investigated.

First, Fig. 4 presents a comparison of the process-
ing CPU-times (in seconds) obtained through repeat-

ing the above experiment ten times for the Aeroplane
dataset. In the figure, theaxis denotes the number
of iterations {) and they-axis indicates the processing
CPU-times corrupted by the two algorithms.

From Fig. 4, as mentioned in Section 3.3, it can
be observed that the required time for SemiBoost is
much more sensitive to the cardinalities of the train-
ing sets L andU) and the selected data s&) ¢than
that for the proposed algorithm. The details of the

other data sets are omitted here in the interest of com-

pactness.

Next, the processing CPU-times (in secontisj
the S3VM-impand SB-SVMmethods for the VOC'07
data sets are shown in Table 4.

From the results of the table, we can see a com-
parison of the results obtained with ti&8VM-imp

3The times recorded are the times required for the MAT-
LAB computation on a PC with a CPU speed of 2.8 GHz
and RAM 4096 MB, and operating on a Window 7 Enter-
prise 64-bit platform.
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Figure 4: Comparison of the processing CPU-times (in sec-
onds) required for the training-test computation for the ex
perimental data set.

Table 4: Numerical comparison of the processing CPU-
times (seconds) between the S3VM-improved and SB-SVM
algorithms for VOC’07 datasets.

| Datasets | S3vM:imp | SB-SVM ]

Aeroplane 18.57 62.00
Motorbike 29.18 82.92
Person 178.42 444.10
Car 58.76 159.80
Horse 30.67 86.78

and SB-SVMfor the VOC’07 data sets. From these
considerations, the reader should observe that the pro-
posed philosophy a83VM-impneeds less time than
that of the traditionalSB-SVMin the cases of the
VOC'07 data sets.

6 CONCLUSIONS

In an effort to improve the classification performance
of S3VM algorithms, selection criteria with which the
algorithms can be implemented efficiently were in-
vestigated in this paper. S3VMs are a popular ap-
proach that attempts to improve learning performance
through exploiting the whole or a subset of unlabeled
data. For example, in SemiBoost, a strategy of im-
proving the accuracy of the SVM classifier through
selecting a few helpful samples from the unlabeled
data has been proposed. However, the selection crite-
rion has a weakness that is caused by the significant
influence of the unlabeled data on the prediction of
the labeling for the selected samples. This impact can
cause errors in selecting and labeling unlabeled sam-
ples. In order to avoid this significant effect, the se-
lection criterion was modified using the conditional
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class probability estimated and the original quanti- Prieditis, S. J. Russell, editd?roc. Int’l Conf. on Ma-
ties used for SemiBoost. This was motivated by an chine Learningpages 150-157, Tahoe City, CA.
observation that the confidence levels relating to the Du, J., Ling, C. X., and Zhou, Z. -H. (2011). When does co-
unlabeled samples could be adjusted by subtracting training work in real data? IHEEE Trans. on Knowl-
the probability estimates as a penalty cost. Using the edge and Data Engvolume 23, pages 788-799.
modified criterion, the confidence values relating to Duin,R. P. W., Juszczak, P., de Ridder, D., Paclik, P,
the labeled and unlabeled data can be balanced. Pekalska, E., and Tax, D. M. J. (2004pRTools 4:
The experimental results demonstrate that the a Matlab Toolbox for Pattern Recognitioelft Uni-

modified sampling criterion performs well with the versity of Technology, The Netherlands,
piing P Everingham, M., Van Gool, L., William, C. K. I., Winn,

S3VM, particularly when the i”?p"’.‘CtS of the positive J., and Zisserman, A. (2007). The PASCAL Visual
class and negative class are similar at the boundary. Object Classes Challenge 2007 (VOC2007) Results.
Furthermore, the results demonstrate that the Class'f"Goldberg, A. B. (2010)New Directions in Semi-Supervised
cation accuracy of the proposed algorithm is superior Learning University of Wisconsin - Madison, Madi-
to that of the traditional algorithms when appropri- son, WI.
ately selecting a small amount of unlabeled data. Al- Goldberg, A. B, Zhu, X., Singh, A., Zhu, Z., and Nowak,
though it has been demonstrated that S3VM can be R. (2009). Multi-manifold semi-supervised learning.
improved using the modified criterion, many tasks re- In D. van Dyk, M. Welling, editorProc. the 12th Int'l
main to be improved. A significant task is the selec- Conf. Artificial Intelligence and Statistics (AISTATS)
tion of an optimal, or near optimal, cardinality for the pages 99-106, Clearwater, FL.
strong samples in order to further improve the clas- Huber, P. J. (1981)Robust StatisticsJohn Wiley & Sons,
sification accuracy. Furthermore, it is not yet clear  N&W York, NY. .
which types of significant datasets are more suitable Jiang; Z., Zhang, S., and Zeng, J. (2013). A hybrid gener-
for using the selection strategy for S3VM. Finally, the ALl ISESimiTTE e s Gotklar sMmi-Speriedeslas-
e - ; sification. InKnowledge-Based Systerolume 37,
proposed method has limitations in the details that pages 137-145.

support its technical reliability, and the experiments Joachims, T. (1999a). Making large-Scale SVM Learning

performed were limited. Future studies will address Practical. In B. Sch?lkopf, C. Burges, A. Smola, ed-

these concerns. itor, Advances in Kernel Methods - Support Vector
Learning pages 41-56, Cambridge, MA. The MIT
Press.
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