
A New Approach based on Cryptography and XML Serialization for
Mobile Agent Security

Hind Idrissi1,2, Arnaud Revel1 and El Mamoun Souidi2

1 L3I Laboratory, La Rochelle University, La Rochelle, France
2MIA Laboratory, Mohammed V University, Rabat, Morocco

Keywords: Mobile Agent, Multi-agent System, Mobility, Security, Cryptography.

Abstract: Mobile agents are a special category of software entities, with the capacity to move between nodes of one or
more networks. However, they are subject to deficiency of security, related particularly to the environments on
which they land or other malicious agents they may meet on their paths. Security of mobile agents is divided
into two parts, the first one relates to the vulnerabilities of the host environment receiving the agent, and the
second one is concerning the malevolence of the agent towards the host platform and other agents. In this
paper, we will address the second part while trying to develop an hybrid solution combining the two parts. A
solution for this security concern will be presented and performed .It involves the integration of cryptographic
mechanisms such as Diffie-Hellman key exchange for authentication between the set (platform, agent) and
the Advanced Encryption Standard (AES) to communicate the data with confidentiality. These mechanisms
are associated with XML serialization in order to ensure easy and persistent portability across the network,
especially for non permanent connection.

1 INTRODUCTION

Mobile agents are a particular class of software agents
characterized by their ability to move between nodes
of one or more networks. They are applied in
Telecommunications (D. Gavalas and Anagnostopou-
los, 2009), Internet with E-commerce (Fasli, 2007),
optimization of transport systems (Chen and Cheng,
2010), management courses, and many other fields.
The mobility of these agents could be strong or weak
depending on the elements involved in the trans-
fer process (code, data, stack, heap, counter, etc.),
see (Ferber, 1999). Many systems for mobile agent
have been developed in recent years such as Aglets
(D.B. Lange and Kosaka, 1997), AgentTcl (Gray,
1997), Telescript (J. White, 1995) and JADE (F. Bel-
lifemine and Rimassa, 2001).

The mobility over network’s nodes is a very
requested characteristic for multi-agent systems
(MAS). It addresses the various deficiencies of the
client/server paradigm (Gray and al, 2001), such as:
Waiting time, Network traffic, Permanent connection,
Transmission of intermediary and not useful infor-
mation by maintaining properties of autonomy, effi-
ciency, persistence, communication, adaptability and
tolerance fault. However, this mobility is not all the

time safe. A mobile agent can be attacked when it re-
quests services from other servers or when it comes in
contact and exchange information with another agents
while roaming on the internet. These attacks may oc-
cur due to the unavailability of three security aspects:
Authentication, integrity and confidentiality.

This paper attempts to address the security issues
related to the mobility of agent. In Section 2, we de-
scribe the threats that the agent may meet along its
migration. Then, in Section 3 we present our solu-
tion to correct these vulnerabilities using divers mech-
anisms, such as Diffie-Hellman key exchange proto-
col associated with digital signature to authenticate
the communicating entities and ensure integrity of the
migrating agent, AES encryption algorithm to guar-
antee the confidentiality of data exchanged, and the
principle of XML serialization to obtain a persistent
and transportable format of agent. Therefore, an im-
plementation of the solution is proposed in Section 4,
using JADE (F. Bellifemine and Rimassa, 2001) the
Java Agent Platform designed for multi-agent systems
and with respect to specifications of FIPA standard
(S. Poslad and Hadingham, 2000) specified for soft-
ware interoperability among agents and agent-based
applications. While evaluating the feasibility and ef-
fectiveness of our solution in preventing attacks, we

403Idrissi H., Revel A. and Souidi E..
A New Approach based on Cryptography and XML Serialization for Mobile Agent Security.
DOI: 10.5220/0004812004030411
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 403-411
ISBN: 978-989-758-015-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



implement a baseline experiment consisting in a sim-
ple migration based only on XML serialization con-
cept. This will allow to compute the overhead of se-
curity added to agent mobility. Finally, further steps
and perspectives are discussed in conclusion.

2 SECURITY PROBLEM

Mobile agent technology brings significant gains for
several application areas. Its strength to resolve com-
plex problems is due to the fact that the agents with
their autonomy, mobility and adaptability, can real-
ize their goals in a flexible way by using a local or
remote interaction with other agents on the network.
However, the mobility of agents may raise security
problems. When an agent moves from one site to an-
other in order to be executed on each of them, it is
crucial to ensure that the agent will run properly and
safely on the new system visited. Similarly, it is im-
portant to guarantee to the host system that there will
be no risk to host a new agent. In this section, we de-
fine the different vulnerabilities that mobile agent or
platform may encounter. Let’s consider the case of an
application that requires the communications between
n machines (notedMi) connected by the TCP/IP net-
work as illustrated in Figure 1 (with n=4).

Figure 1: Cases of threat while mobility of agent between
network nodes.

During its visits, the mobile agent may encounter
many situations where its security is compromised. In
Figure 1 three cases are outlined. The first case illus-
trates the interaction between mobile agent and host,
this contact could be unsafe especially if the agent is
unauthorized to access the platform, or if this later
has the ability to manipulate the migrating agent. In
the second case, the agent may interact along its path
with other agents that can be malicious, and try to an-
alyze or alter its contents. The third case describes the
insecure exchanges between hosts and/or agents over
the network. According to a review on mobile agent
security (Ahuja and Sharma, 2012), three interactive

situations requires security:

• Case 1 - Agent affecting Host: The mobile agent
could have free and unauthorized access to the
runtime environment and thus, it could violate its
confidentiality, integrity and availability by inter-
cepting or modifying its data, fully exploiting its
resources, cloning or migrating indefinitely.

• Case 2 - Agent affecting Agent: An agent may un-
dergo several attacks from other agents. We dis-
tinguish in this regard two types of attacks: pas-
sive attacks that do not change the code and data
of the agent, and active attacks that could alter the
code or data of the agent, by changing the vari-
ables values or inserting a virus.

• Case 3 - Host affecting Agent: It’s the most com-
plicated and difficult situation. When the agent is
migrating to a host, it is forced to disclose its code,
status and data, which makes it susceptible to con-
fidentiality and integrity threats from the host, that
exploits its information and manipulate its behav-
iors and results.

In this paper, an interest is given to the third case
of Figure 1 where an agent could be damaged by a
hosting platform. The complexity and the dynamic
nature of interactions between agents and hosts make
it difficult to predict the behavior of both. Thus, mo-
bile agents carrying sensitive information about their
owners should be protected from tampering by mali-
cious hosts. This category of threats includes (Jansen
and Karygiannis, 1998)

• Alteration: it occurs when an agent suffers from
lack of its data integrity. An agent landing on a
host must expose its code, state, and data to the
platform. If this latter has a malicious behavior it
may modify in the agent without being detected,
which does not yet have a solution.

• Eavesdropping: a host can intercept and moni-
tor secret communications, instruction executed
by the agent, clear and public data as well as all
the subsequent data generated on the platform.

• Masquerade: a host can masquerade as another
host in order to deceive a mobile agent as to its
true destination and then extract its sensitive in-
formation. The masquerading host can harm both
the visiting agent and the host whose identity it
has assumed.

• denial of service: A malicious host may ignore
agent service requests such as not executing its
code or introducing unacceptable delays for criti-
cal tasks, which could lead the agent to be dead-
locked.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

404



To establish a well-defined security policy for the
threats mentioned in the previous paragraph, we need
to satisfy the security requirements related to this
paradigm: authentication, confidentiality, integrity
and availability. A simple solution would be that the
owner of an agent limits its itinerary only to trusted
sites. However, this solution remains insufficient re-
garding the threats that agent may meet. Also, limit-
ing the itinerary of agent will reflect passively on its
mobility as well as the results it got. In this paper,
many mechanisms are used such as: cryptography,
mutual authentication, digital signature and XML se-
rialization.

3 OUR SOLUTION

A mobile agent must have the ability to communi-
cate with other agents of the system (either local or
remote agents), to exchange information and bene-
fit from the knowledge and expertise of other agents.
But in practice, mobility does not replace the com-
munication capabilities of the agents but completes
them. Hence, the interaction between mobile agents
needs first to initiate communication between the plat-
forms, ensure their compatibility and collect specific
information about them. In this section we present
a detailed description of the proposed solution that
consists in simulating a set of cooperative agents in
charge of performing different mechanisms in order
to satisfy the security requirements.

3.1 Authentication Solution

To prevent attacks related to unavailability of authen-
tication, we integrate in each one of the interacting
platforms, a specific agent called ”DH−DSAAgent”.
This later must have among its data a specific list
containing the addresses of hosts constituting the
itinerary to travel. In practice, these addresses can
be IP addresses of host machines. Before the mi-
gration of agent to a new host, an authentication
mechanism using the Diffie-Hellman key exchange
(Diffie and Hellman, 1976), and the standard for dig-
ital signature (Gallagher, 2009) is running between
the ”DH −DSAAgent” of both platforms, in order
to create a common shared key. This key will be used
afterwards to sign and verify the addresses and data
exchanged between both hosts.

The first step of Diffie Hellman algorithm is to
generate randoms for modulo and primitive root com-
putations. This implies the use of Pseudo Random
Number Generator (PRNG) to apply this task. Yet,
the DH-provider in Java Runtime does not support

cryptographic generator, considered as the faster and
most secure ones after the quantum generators. This
issue leads us to adopt a new implementation of
Diffie Hellman algorithm using ISAAC+ (Aumasson,
2006). The ISAAC+ algorithm is an enhanced ver-
sion provably secure of ISAAC (Indirect, Shift, Accu-
mulate, Add and count) (Aumasson, 2006) which has
similarities with RC4 (Mousa and Hamad, 2006). it
uses an array of 256 four-octet integers as the internal
state, and writes the results to another 256 four-octet
integer array. It is very fast on 32-bit computers.

In our approach, we make use of a new attempt to
fix the integrated Diffie-Hellman-DSA Key Exchange
Protocol proposed in (Phan, 2005). Figure 2 enumer-
ates the different steps of the improved protocol. All
random values are generated with ISAAC+, the com-
putations are performed on finite field, and for the
digital signature we use the one-way function SHA-
1 (Eastlake and Jones, 2001). At the step 10, we in-
troduce the IP address of the remote host (got from
the list of addresses that the mobile agent contains) in
the signature, and at the step 11 the hosting platform
verifies that signature using its own IP address.

The main idea behind this attempt to fix the inte-
grated Diffie-Hellman-DSA Key Exchange Protocol
is to ensure computations basing on two ephemeral
secretsv and w chosen by the two parties A and
B. This provides forward secrecy because even if
the long-term private key of any party is exposed,
previous session keys cannot be computed since the
ephemeral secrets, v and w for that session are un-
known. Also provides key freshness because ev-
ery session key is a function of ephemeral secrets
so neither party can predetermine a session key’s
value since he would not know what the other party’s
ephemeral secret is going to be.

Figure 3 describes the process of the adopted so-
lution for authentication. The native machine sends
to the host one a request for mobility of agent and
asks for information to authenticate it. Each machine
includes a manager agent responsible for managing
communications between components of the platform
and interactions with the remote ones. This manager
agent communicates with the ”DH −DSAAgent” in
order to perform the steps of the authentication pro-
tocol and generate a session shared key of 256 bits
used later to maintain the confidentiality and integrity
properties .

The establishment of an authentication mecha-
nism between agents and platforms is very essen-
tial, to avoid attacks in relation with unauthorized ac-
cess. An agent that has access to a platform and its
services without having the proper authorization can
harm other agents and the platform itself. So, a plat-

A�New�Approach�based�on�Cryptography�and�XML�Serialization�for�Mobile�Agent�Security

405



Figure 2: Integrated improved DH-DSA Key Exchange Protocol.

Figure 3: Authentication solution.

form that hosts agents must ensure that agents do not
have access if they have no authorization. To apply
a proper and well-defined access control, the plat-
form or the agent must first authenticate the mobile
agent’s identity, before it is instantiated on the plat-
form. There are several methods for mutual authen-
tication on the net, among them the ” HTTPS Mu-
tual Authentication ”. This later combines to the pro-
tocol secured layers using encryption such as TLS
(Transport Layer Secure) to generate secured pass-
words (TLS-EAP) and to verify the identity of the
client and server using Certificates. Thus, many at-
tacks are avoided: Man-in-the-middle attack, offline
password dictionary attack and phishing. However,
this mechanism was recently broken as it suffers from

serious deficiencies, like layering problem as it is im-
possible to match authentication session and transport
session, and certificates management problem. In our
solution we don’t make use of certificates, so we gain
in terms of resources dedicated to implant a Certifi-
cate Authority (CA) and in terms of time consumed
to interact with the CA and charge certificates. Also,
in both platforms, there is a distribution of tasks to
the agents with a tracing of executed ones which cre-
ates a matching between different level of execution.
Besides, the protocol we used is based on complex
problems in mathematics such as discrete logarithm.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

406



3.2 Integrity Solution

In the previous subsection, a shared key was gener-
ated for both interacting platforms, and a digital sig-
nature algorithm was established. Therefore, to pre-
serve the integrity of exchanged data, both hosts must
send to each other a signature, and verify the received
one. This mechanism is described in last steps of Fig-
ure 2. After creating a common key (T), the native
machine signs the set of keys generated by the proto-
col with the IP address of the remote host, and then
sends this signature to the relevant host. This later in
turn signs the keys generated with its IP address, and
sends the signature to the native machine. Both ma-
chines must verify and validate the signature to carry
on processing.

The unavailability of the integrity may expose the
agent to several threats such as ”Alteration attack”.
When an agent migrates to an agent platform it ex-
poses its code, state, and data to the platform, which
can modify its carried contents of information. In-
deed, preventing the platform from modifying the
agent is strongly needed, as well as detecting changes
which does not yet have a general solution. To pro-
vide integrity feature for our approach, Digital Signa-
ture Algorithm (DSA) is used to sign data exchanged.

3.3 Mobility Solution

Mobility in the context of transportability across the
network can be performed through layer protocols
such as HTTP provided with the Apache server, also it
can be done by JAVA APIs like RMI (Remote Method
Invocation) or RPC (Remote Procedure Call) that ma-
nipulate remote objects. These APIs are structured in
network layers based on the OSI model to ensure in-
teroperability between programs and versions of Java.

For mobility feature of our approach, we adopt a
weak mobility where agent restarts its execution for
each visited host, and we make use of the XML se-
rialization mechanism that provides a persistant and
well transportable data across the network. This asso-
ciation is the most appropriate for our approach and
it addresses the flaws of other modes of transporta-
bility, it is easy to develop and ensure convenience
and efficiency as it generates an easily readable and
editable format. Figure 4 describes the mobility pro-
cess using this mechanism. In the native machine, an
agent named ”Serial Agent” is implemented in order
to serialize in XML format an instance (object) of the
mobile agent class. This class contains the attributes
and execution code of the agent. Then, the XML in-
stance given is encrypted by ”AESAgent” using the
session key and transferred to the host machine. At

the other side, the class of mobile agent is rebuilt us-
ing the encrypted XML instance of the agent, which
is firstly decrypted by ”AESAgent” using the session
key, and de-serialized using the XMLDecoder of Jav-
aBeans API.

The problem encountered in this simulation, was
when the host platform does not support the Jav-
aBeans of XML serialization or does not recognize
certain classes needed in execution. After research,
we have found that the principle of URLClassLoader
is the most appropriate for our approach. It will give
us the possibility to load the classes and packages
needed for execution from the URL of native machine
or any other databases in the network, which implants
an aspect of availability of information.

3.4 Confidentiality Solution

When information must be transmitted between two
systems, especially heterogeneous (D. Mitrovic and
Vidakovic, 2011) by their security, it can be inter-
cepted or modified by an intruder. In order to pre-
serve confidentiality we based primarily on the use
of Cryptography. There are two categories of crypto-
graphic systems: secret key cryptosystems and pub-
lic key cryptosystems. In the authentication part, a
session key was created and shared between the two
platforms, also a pair of public and private keys are
generated due to digital signature process. Hence, we
can choose the category judged adequate. Secret key
cryptosystems are considered effective as they rely on
complex methods, but they are very slow and con-
sume more computer resources to perform the com-
putations and store the generated keys that are mostly
very long. However, the public key cryptosystems
use less memory and resources with small key length.
They are much faster in processing and largely used
for data compression, but they need secure channel to
share the secret key.

The solution adopted for authentication solves the
secret key cryptosystem problem of securing the key
exchange, so the choice of this cryptosystem is jus-
tified by the small length of keys and fast computa-
tions. The algorithm adopted is AES256: Advanced
Encryption Standard (Robertazzi, 2012), which is ro-
bust and introduces a key length of 256 bits that
matches with the length of the key session obtained.
In Figure 4, the ”ManagerAg” sends the serialized
object of the agent class with the session key to the
”AESAgent”. This later takes in charge the encryp-
tion of the serialized object on the native machine, and
its decryption on the host machine.

The lack of confidentiality in data exchange with
a platform may expose the agent to the ”Eavesdrop-

A�New�Approach�based�on�Cryptography�and�XML�Serialization�for�Mobile�Agent�Security

407



Figure 4: Confidentiality solution.

ping Attack”. However, this threat is further extended
because the agent platform can not only monitor com-
munications, but also can monitor every instruction
executed by the agent. Thus, we use the secret key
system AES to encrypt and decrypt data at the both
sides. This avoids any intruder to know the real con-
tent of the message exchanged even it got it. In other
words, this supports the secrecy of exchanging.

4 OVERHEAD

In this section we present the results of experiments
performed by running an implementation of the pro-
posed solution, using JADE agent framework. In the
previous section, while giving a description of the so-
lution, we have analyzed its ability to prevent attacks
such as: ”Unauthorized Access Attack”, ”Alteration
Attack” and ”Eavesdropping Attack”. Thus, our eval-
uation efforts have been focused on testing the time
spent by migrating agents, under the conditions men-
tioned above. This section is divided into two parts:
Theoretical Analysis that presents a formal compu-
tation of time spent for interactions of our solution,
and Experiments in which two tests are performed to
calculate the overhead of security provided. The first
one is considered as basic test that illustrates a sim-
ple migration process without integrating the security
mechanisms discussed, and the second one is an im-
plementation of the solution proposed.

4.1 Theoretical Analysis

Normally, a launched mobile agent migrates from one
site to another and then comes back to the first one,
in what it is called a round-trip. Figure 5 shows the

stages of the agent round-trip:

• In the going, the agent is involved in an authen-
tication process that uses ISAAC+ and Diffie-
Hellman-DSA protocol which generates a session
key. Afterwards, the agent is serialized in an XML
object format and encrypted with AES256 algo-
rithm using the session key.

• The host receives the serialized encrypted object
and tries to rebuild the agent by first decrypting
the object using AES256 and then deserializing
it. When the class of the agent is unreachable we
make use of URLClassLoader. Once the agent re-
built, it is executed and an acquittal is sent to the
native machine in order to delete the agent.

• In the return, the agent brings results of execution
to its native machine.

Let’s considerTrt = Timeof the round trip, such
as:

Trt = T1∗Njump×2 (1)
Where:Njump = the number of jumps during the exe-
cution, it is based on the data exchanged in each stage.
T1 is a period comprising several sub-periods related
to solution process stages:

T1 = Tisaac+Tdh−dsa+Tserialization+

Tencryption+Tdecryption+Tdeserialization+

Trequests+Tdatasending. (2)

Knowing that Tserialization is approximately
equal to Tdeserialization, and Tencryption is approxi-
mately equal toTdecryption. Then: Tserialization+
Tdeserialization= 2Tserialization Tencryption+Tdecryption=
2Tencryption Hence, the equation 2 becomes:

T1 = Tisaac+Tdh−dsa+2Tserialization+

2Tencryption+Trequests+Tdatasending. (3)

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

408



Figure 5: Round trip of agent mobility.

Since the request messages are exchanged in intra-
platform and their length does not exceed four char-
acters, then no computation time is consumed for ini-
tiating communication, no memory is allocated and
no frames for transporting data across the network.
Hence, the time of requests could be negligible. So
equation 3 becomes:

T1 ≃ Tisaac+Tdh−dsa+2Tserialization+

2Tencryption+Tdatasending. (4)

The time of one round trip is calculated accord-
ing to equation 1. However, during the going of mo-
bile agent there is an added time, which is the time
of loading the class using URLClassLoader, when the
host does not recognize it. In the return to native ma-
chine, the agent doesn’t need to load the class because
it is already provided. Finally a round trip takes the
time:

Trt = (T1+Tloadingclass)×Njump+T1×Njump (5)

4.2 Experiments

Our experiments are performed using 4 heteroge-
neous machines. The first one is considered as a na-
tive machine and others as hosts. All machines are
Core i7 at 2.7 GHz, with 4 Go of RAM, 500 Go
on an ATA 500 hard disk, and are equipped with
Windows operating system in the XP version, and
used also a 100Mbps switched Ethernet network with
WampServer. For agent execution, JADE Snapshot
agent platform is used in its 3.6.1 version.

4.2.1 The Baseline Test

In order to evaluate the feasibility and performance
of our solution, we find it interesting to configure a
baseline test, that consists in performing a simple mo-
bility of agent using only XML serialization concept
without trying to encrypt it or to authenticate it. This
allows to calculate the overhead needed for securing
the mobile agent. The results of this test are exposed
in the table 1.

In such normal conditions where the agent is only
serialized and transferred, the equation 4 becomes:

T1 = Tserialization+Tdatasending, with Njump= 2 (6)

Table 1: Performance test with one native machine and sev-
eral hosts.

Time(ms) 1 Host 2 Hosts 3 Hosts

Tserialization 73 91 143

Tdatasending 127 243 339

Tloadingclass 338 914 2463

Referring to results in the table 1 and according to
equations 5 and 6, the cost for mobility of an agent to
one host, in normal conditions, can be calculated as
follow:

Trt = (((2×73)+127+338)×2)+

(((2×73)+127)×2)= 1222+546= 1768ms

In theory, the time to move an agent over three
hosts is three times the time of moving an agent to
one host. However, the use of different and hetero-
geneous machines for experiments, makes our results
not uniform. In order to know the overall difference,
we compute the average of time that agent spent while
migrating over three hosts:

T
′

rt =
(((2×143)+339+2463)×2)

3
+

(((2×143)+339)×2)
3

= 2058+413≃ 2470ms

Then, the difference of time is about:Dtime=T
′

rt −
Trt = 2470− 1768= 702ms. The large part of this
difference concerns the time of loading classes over
network and for heterogeneous machines.

4.2.2 Implementation of our Solution

The second experimentation consists in running the
implementation of our solution, taking into consid-
eration the four aspects mentioned before. This test
launches the set of agents representing the different
mechanisms used to reach a high level of security.
The results we got through running this second test
are shown in the table2.

Referring to these results, and according to equa-
tions 4 and 5 withNjump = 2, the time spent when
moving one agent under the circumstances of our so-
lution is:

T2rt = ((2.4+6.4+(2×78)+ (2×15)+343+182)

×2)+ (((2.4+6.4+(2×78)+ (2×15)+182)×2)
= 1439.6+753.6= 2293.2ms

Similarly to the first test, it was taken in charge to
calculate the difference of time between agent migra-
tion to one host and the average of agent migration to

A�New�Approach�based�on�Cryptography�and�XML�Serialization�for�Mobile�Agent�Security

409



Table 2: Performance test with one native machine and nu-
merous hosts.

Time(ms) 1 Host 2 Hosts 3 Hosts

Tisaac 2.4 3.9 6.1

Tdh−dsa 3.8
(parameters)
+ 2.6
(computations)
= 6.4

20.8 48

Tserialization 78 94 141

Tencryption 15 33 50

Tdatasending 182 318 432

Tloadingclass 343 907 2470

three hosts:

T2
′

rt =

((6.1+48+(2×141)+(2×50)+2470+432))×
2
3
+

(((6.1+48+(2×141)+(2×50)+432)×2)
3
≃ 2225+578≃ 2803ms

Then, the difference of time is about:Dtime= T2
′

rt −
T2rt ≃ 2803−2293≃ 510ms.

Finally, we can extract from both experiments the
overhead dedicated for securing the mobility of agent.
This overhead is related mainly to the authentication
and integrity by the key exchange associated with dig-
ital signature, also to the confidentiality by the en-
cryption mechanism. The computational value of this
overhead is:

Tsolution−Tbaseline= 2293.2−1768≃ 525ms.

This value represents 28% of overall time that
agent takes to move. It involves the cost of authen-
tication process, including the generation of ISAAC+
randoms, cryptographic keys and digital signatures. It
includes also the cost of the AES encryption / decryp-
tion process with key of 256 bits, the cost of loading
classes using URLClassLoading and the cost of ex-
changing data between hosts and agents. The over-
head of 525 ms is considered as admissible, credible
and not compromising for the mobility performance
of the agent, which benefits from a security feature
protecting him against vulnerabilities of hosts.

5 CONCLUSIONS

This paper presents some initial results of a research
effort aimed at the analysis of the security issues in

mobile agent systems. It also describes a proposed
solution to elaborate a security policy using mech-
anisms such as cryptography, digital signature and
XML serialization. These mechanisms are mainly in-
troduced to ensure the properties of confidentiality,
integrity, authentication and give an enhanced mobil-
ity for the agent migrating from one site to another
across network. The results of agent performance us-
ing this solution, and the security analysis provided
by evaluating its effectiveness to prevent attacks such
as: ”alteration attacks”, ”Man-in-the-middle attacks”
and ”Eavesdropping attacks”, can be reused as guide-
lines to develop secure mobile agent systems involved
in mission-critical applications.

The future work will focus on completing the se-
curity analysis of the mobile agent systems, and in
developing a reference security model using mech-
anisms and methods that proved their effectiveness
without affect the sensibilities of mobile agents.
Among our perspectives, we will try to more enhance
the use of URLClassLoader and attempt to find a so-
lution for the communications under a non perma-
nent connection, as well as optimizing the mobility
of agent following its itinerary using optimization al-
gorithm. We will also take an interest of the other
categories of threats, especially those in relation with
harming agent platforms. We will be concerned with
developing a well-defined access control policy to the
resources of the platform. In security context, we will
try to find a solution of denial of service attacks using
detection methods.

REFERENCES

Ahuja, P. and Sharma, V. (2012). A review on mobile agent
security. International Journal of Recent Technology
and Engineering (IJRTE), pages 2277–3878.

Aumasson, J. (2006). On the pseudo-random generator
isaac.IACR Cryptology ePrint Archive, 2006:438.

Chen, B. and Cheng, H. (2010). A review of the applica-
tions of agent technology in traffic and transportation
systems. Intelligent Transportation Systems, IEEE
Transactions on, 11(2):485–497.

D. Gavalas, G. T. and Anagnostopoulos, C. (2009). A mo-
bile agent platform for distributed network and sys-
tems management.Journal of Systems and Software,
82(2):355–371.

D. Mitrovic, M. Ivanovic, Z. B. and Vidakovic, M. (2011).
An overview of agent mobility in heterogeneous envi-
ronments. InWorkshop Proceedings on Applications
of Software Agents, page 52.

D.B. Lange, M. Oshima, G. K. and Kosaka, K. (1997).
Aglets: Programming mobile agents in java. InWorld-
wide Computing and Its Applications, pages 253–266.
Springer.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

410



Diffie, W. and Hellman, M. (1976). New directions in cryp-
tography.Information Theory, IEEE Transactions on,
22(6):644–654.

Eastlake, D. and Jones, P. (2001). Us secure hash algorithm
1 (sha1).

F. Bellifemine, A. P. and Rimassa, G. (2001). Jade: a
fipa2000 compliant agent development environment.
In Proceedings of the fifth international conference on
Autonomous agents, pages 216–217. ACM.

Fasli, M. (2007). Agent technology for e-commerce. John
Wiley & Sons Chichester.

Ferber, J. (1999).Multi-agent systems: an introduction to
distributed artificial intelligence, volume 1. Addison-
Wesley Reading.

Gallagher, P. (2009). Digital signature standard (dss).Fed-
eral Information Processing Standards Publication,
FIPS PUB, pages 186–3.

Gray, R. (1997). Agent tcl: A flexible and secure mobile-
agent system.

Gray, R. and al (2001). Mobile-agent versus client/server
performance: Scalability in an information-retrieval
task. InMobile Agents, pages 229–243. Springer.

J. White, J. (1995). Telescript technology: An introduction
to the language.General Magic White Paper, General
Magic.

Jansen, W. and Karygiannis, T. (1998). Mobile agent secu-
rity. Technical report, National Institute of Standards
and Technology.

Mousa, A. and Hamad, A. (2006). Evaluation of the rc4
algorithm for data encryption.IJCSA, 3(2):44–56.

Phan, R.-W. (2005). Fixing the integrated diffie-hellman-
dsa key exchange protocol.Communications Letters,
IEEE, 9(6):570–572.

Robertazzi, T. (2012). Advanced encryption standard (aes).
In Basics of Computer Networking, pages 73–77.
Springer.

S. Poslad, P. B. and Hadingham, R. (2000). The fipa-os
agent platform: Open source for open standards. In
Proceedings of the 5th International Conference and
Exhibition on the Practical Application of Intelligent
Agents and Multi-Agents, volume 355, page 368.

A�New�Approach�based�on�Cryptography�and�XML�Serialization�for�Mobile�Agent�Security

411


