Introducing Mobility into Agent Coordination Patterns

Sergio Esparcia® and Ichiro Satoh?
IDepartamento de Sistemas Informaticos y Computacion, Universitat Politécnica de Valéncia, Valencia, Spain
ZNational Institute of Informatics, Chiyoda-ku, Tokyo, Japan

Keywords:

Abstract:

Mobile Agents, Coordination, Interaction, KQML.

This paper proposes coordination patterns that support matchmaking, communication and interaction among

mobile agents in addition to stationary ones. Mobile agent technology is a powerful implementation technique
of distributed systems, but we need to manage migrations of agents, including their current and destination lo-
cations. The proposed patterns enable us to define coordination between mobile agents or between mobile and
stationary agents without explicitly knowing their migrations between locations. They are mostly based on the
Knowledge Query and Manipulation Language, one of the most extended Agent Communication Languages,
but also new patterns are proposed. Additionally, a case of study about tourism is presented.

1 INTRODUCTION

Agent coordination is an important issue when some
agents are required to work together towards a global
goal (e.g., if these agents belong to a Multi-Agent
System (MAS) (Ferber, 1999)). Commonly, agents
have different abilities and capabilities, so they have
to collaborate to achieve this global goal, which will
satisfy also the individual goals of the agents. There
exists the possibility that agents cannot achieve their
goals if they are attached to a specific environment
or machine (i.e., they are stationary). For this rea-
son, mobile agents (Lange and Oshima, 1999) are
implemented to be able to move around different ma-
chines and continue their execution there. Mobile
agents have to be able to understand the languages and
protocols of the destination machine. Mobility also
brings new issues to tackle when dealing with coor-
dination. For example, mobile agents may not know
their next destinations, because they may not have the
topology of the current network. Thus, the capabili-
ties, services, and agents of reachable computers are
unknown to them. Therefore, a matchmaking mecha-
nism that enables mobile agents to discover other sta-
tionary or mobile agents and destinations is required.

To solve this problem, a matchmaking mechanism
for stationary agents is extended with support to mo-
bility of agents. Agent communication languages
(ACL) (Labrou et al., 1999), such as the Knowledge
Query and Manipulation Language (KQML) (Finin
et al., 1994), present interaction patterns and perfor-

Esparcia S. and Satoh |I..
Introducing Mobility into Agent Coordination Patterns.
DOI: 10.5220/0004813401310138

matives that focus on the matchmaking and commu-
nication between stationary agents that cannot change
their position and already know the location of their
communication partners. The KQML itself does not
support mobility of agents, but it is useful for new vis-
iting agents because since it is a well-known ACL by
the community of agent researchers, their interaction
patterns have became widely used not only in situa-
tions where KQML is used as the ACL employed by
agents, but in different scenarios where other ACLs
are used. Then, the KQML patterns are a suitable in-
teraction and coordination mechanism to be extended
with new patterns supporting mobile agents.

The objective of this paper is to define and present
new interaction patterns for KQML that extend the
original stationary features with new patterns that are
intended to improve coordination and interaction be-
tween mobile agents. These patterns give mobile
agents the capability of correctly managing their in-
teractions, no matter that the agents move from their
previous locations to a new ones, thus improving
the performance of the agents and helping them to
achieve not only their individual goals, but also when
agents are required to fulfil a set of global goals.

The rest of this paper is structured as follows: Sec-
tion 2 describes the background of this work. Sec-
tion 3 presents the main contribution of this work,
the patterns that support interaction and coordination
between mobile agents. Section 4 presents a case of
study based on tourism. Finally, Section 5 describes
our conclusions on this topic and the future work.

131

In Proceedings of the 6th International Conference on Agents and Atrtificial Intelligence (ICAART-2014), pages 131-138

ISBN: 978-989-758-016-1

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

ICAART 2014 - International Conference on Agents and Artificial Intelligence

2 BACKGROUND

This section defines the concepts that are part of the
patterns that enhance KQML with mobility features.
Agents and mobile agents are defined, as well as the
KQML agent communication language, and the envi-
ronment where our proposal is deployed.

Agents (Wooldridge and Jennings, 1995) are au-
tonomous software entities that act representing users.
These agents have functionalities in order to help the
users they represent. Agents are able to be station-
ary or mobile, depending on whether they can move
around different computers or not. Also, they are able
to communicate with other agents. The agents used
in this paper are defined as intelligent, autonomous,
social, able to learn, and mobile.

A mobile agent (Lange and Oshima, 1999) is a
process that can transport its state from one environ-
ment to another, with its data intact, and be capable
of performing appropriately in the new environment
the same activities as in the original one. Mobile
agents decide when (e.g., to look for a better resource
allocation, a less hostile environment to work, etc.)
and where to move. When a mobile agent decides
to move, it saves its own state, transports this saved
state to the new host, and resumes execution from
the saved state. This makes them a powerful tech-
nique for implementing distributed applications. Ad-
vantages of mobile agents are: computation bundles,
parallel processing, dynamic adaptation, tolerance to
network faults, flexible maintenance, and portability.

Knowledge Query and Manipulation Lan-
guage (KQML) (Finin et al., 1994) is an ACL to sup-
port communication between intelligent agents. Each
KQML message contains the action to be carried out
(also known as the performative) as well as the param-
eters of this communication (e.g., sender, receiver,
etc.). In this work, we propose a subset of KQML
patterns that require a facilitator: recommend, broker,
subscribe, recruit, and forward; and the point-to-point
communication pattern, which does not require it.

In the recommend pattern, the service provider
agent advertises one of its capabilities to the facilita-
tor. Then, the client agent queries the facilitator about
an agent that has to be able to develop the same capa-
bility. In this case, the facilitator will send the recom-
mendation to the client agent, and finally this agent
will send the query to the service provider. The bro-
ker pattern works in a similar way as the recommend
pattern. That is, the service provider advertises one of
its capabilities, and then the client queries the facilita-
tor to act as a broker for the same capability. Then, the
facilitator will ask the service provider and then col-
lects its answer and sends it to the client agent. This

132

is, the facilitator acts as a mediator in the communi-
cation process between client and service provider.

The subscribe pattern consists on the service
provider querying the facilitator to subscribe to all the
answers of a query. Then, the facilitator sends the
client all the answers it receives to the query. The re-
cruit pattern is similar to the broker pattern, but the
service provider sends the answer to the client di-
rectly. Finally, in the forward pattern, the client sends
a query to the facilitator, but asking it to forward the
query to a specific agent, because the client agent
knows a specific service provider agent, but for any
reason it does not know its location.

For the definition of the environment, this pro-
posal relies on the Agents & Artifacts conceptual
framework (Ricci et al., 2007). This framework rep-
resents and structures the environment by means of
an aggregation of workspaces. The workspace where
an agent is located is considered as its local environ-
ment, and its granularity can be chosen by the sys-
tem designer (e.g., a workspace could be a portion of
a machine, the whole machine, or a network of ma-
chines), being possible to make a scalable system.

Workspaces provide a physical description of the
environment, in a similar way as the real world is
described. Each workspace has an absolute posi-
tion inside the environment. Workspaces can be in-
tersected and nested between them, features that al-
low an agent to be located in different workspaces
at the same time, and to make the system extensible
(adding new workspaces, merging or splitting exist-
ing workspaces, etc.). An agent is placed, at least,
in one workspace, so this agent has a specific loca-
tion within the environment. It is also possible for an
agent to move inside a workspace if the workspace
is big enough. In this case, the position of the agent
will not be the position of the workspace it is located,
but a position inside the workspace. The proposed
approach assumes that each mobile agent knows the
facilitator located in their current environment using a
service discovery protocol via multicast communica-
tions. For example, each facilitator periodically issues
heartbeat messages with its agent identifier so newly
visiting agents receive the messages to know the fa-
cilitator that is available in their current locations.

The A&A framework also includes artifacts, enti-
ties located in the environment that are reactive (but
not proactive), and provide functionalities to agents
(that are able to use artifacts in order to achieve their
objectives). Artifacts feature: (i) observable proper-
ties, which are able to be checked by agents but not
directly modified by them; (ii) operations, which are
functions that agents can execute; and (iii) link oper-
ations, similar to operations but they require another

artifact to be completed. We rely on the use of arti-
facts instead of agents in situations where proactivity
is not required, but it is necessary to be provided with
entities providing specific functionalities.

3 COORDINATION PATTERNS
FOR MOBILE AGENTS

Since mobile agents can migrate between computers,
other agents and external systems that want to inter-
act with them need mechanisms to locate their cur-
rent positions. However, such mechanisms are com-
plicated and costly, so that they should be supported
by particular agents or services. Agents also should
select their partners, which may be mobile or station-
ary, according to their functions. Therefore, we use
agents corresponding to facilitators studied in the lit-
erature of agents (e.g., KQML), and distributed ob-
jects (e.g., CORBA (Vinoski, 1997)). However, ex-
isting approaches do not support mobility of agents.
KQML provides a set of agent communication pat-
terns that rely on stationary agents, so an agent knows
the location of the agent it is communicating with, or
the location of the facilitator. Therefore, agent mobil-
ity is an interesting feature to be supported.

Since this work focuses on agent mobility, the
KQML patterns have been adapted to mobile agents,
and this section presents the modification of well-
known patterns. Most of the included patterns rely on
a facilitator agent which helps in the communication
process, but the point-to-point communication pattern
is also included. Notice that it is also presented a pat-
tern which is not included in the KQML specification,
the footprint pattern, but it is also interesting when
dealing with mobile agents.

These patterns represent basic communicative
structures between agents featuring mobility proper-
ties. The patterns are able to be combined (e.g., by ex-
ecuting them sequentially), thus creating more com-
plex patterns to deal with more complex problems and
situations. The patterns are presented in a generic way
in order to facilitate both, its combination and its us-
age in different frameworks that use different ACLSs.

Since these patterns focus on basic communica-
tion structures, it can be seen that some entities partic-
ipating in the patterns are not proactive, so they could
be represented as artifacts instead of agents, at least
from the point of view of one specific pattern. How-
ever, from the point of view of the global system (due
to pattern combination) this entity could require to be
proactive, so it has to be an agent. Therefore, these
entities are represented as agents in this paper, giving
system designers the final decision about representing

Introducing Mobility into Agent Coordination Patterns

them as agents or artifacts.

The following subsections describe the proposed
patterns by means of a text description and for most
of them a figure is provided. Figure 1 presents the
legend of the graphical notation. The number written
next to each message depicts the order number.

Workspace

Figure 1: Legend of the graphical notation.

3.1 Point-to-Point Communication

In a point-to-point communication (Figure 2), agent
A makes a query directly to agent B. Agent B knows
where A is located because of the source point of the
received message. However, if the location of agent
A changes after it queried, at the moment agent B an-
swers A’s query, B would not know where to send the
message, or it would send the message to an empty
location. In order to solve this situation, A could send
a message to B indicating its current location while
A does not receive any answer from B. This solution
could maybe overload the network, but it is required
to avoid failures when sending the answer message.

[
3. tell(Location)

4. tell(x) 2. move(Location)

gent B 1. ask(x)

Figure 2: Point-to-point communication pattern.

3.2 Register Pattern

This pattern is used by agents who join a new
workspace (Figure 3, left). The facilitator in charge
of that environment has no information about the new
agent and the latter has no information about the fa-
cilitator. Therefore, we use two approaches as service
discovery protocols, e.g., UPnP and Jini (Allard et al.,
2003). Using UPnP, the new agent informs its pro-
file information (identifier, functionalities, and so on)
to the facilitator by using a multicast communication
protocol (Banavar et al., 1999) e.g., UDP multicast-
ing. If the workspace is big enough, the new agent has
to include its location inside its profile information.
With Jini, the facilitator periodically sends messages
with its address within the workspaces that it supports
through a multicast protocol. When the new agent re-
ceives the message returns its profile information to
the facilitator specified in the address of the message.

133

ICAART 2014 - International Conference on Agents and Artificial Intelligence

3.3 Unregister Pattern

The unregister pattern is the inverse version of the
register pattern. It has to be used by an agent when it
is intended to leave the workspace that it is populat-
ing. Unregistering from a workspace means to cancel
all the pending activities with the facilitator of that
workspace. Depending on how the facilitator is im-
plemented, it could maintain the agent data inside its
Knowledge Base (KB), since this information could
be interesting for solving future queries.

However, a problem arises with this pattern if a
message is sent to agents that unregistered from the
environment, because the message will not arrive to
its addressee agent. This problem is handled with the
use of the footprint pattern (see subsection 3.11). If
a message arrives to an agent which has unregistered
from the workspace, it will be forwarded by the foot-
print artifact to the current location of the agent.

3.4 Transport Address Pattern

An agent can also move around its current workspace
(i.e., its local environment) if its size and architec-
ture allows to do so (Figure 3, right). When an agent
moves inside a workspace, it has to communicate its
new location in the workspace to the facilitator using
the transport address performative.

1. register(A,L) 1. transport-address(A,L)

= M @

Figure 3: Register pattern (left); and Transport address pat-
tern (right).

3.5 Broker Pattern, Mobile Service
Provider Agent

The broker pattern (Figure 4, left) is used when the
client agent wants the facilitator to tell it an appro-
priate agent who could be able to provide a solution
for its query. In this pattern, client and provider do
not communicate to each other directly. Therefore,
the client is not informed about the position of the
service provider since it does not require the position
for communication purposes. For the service provider
agent it is required to send updated information about
its location to the facilitator because the facilitator has
to be able to locate the service provider at any time,
to answer the query of the client.

134

3.5.1 Fetch Pattern

This is a broker situation (Figure 4, right) where the
client asks the facilitator to fetch himself with a ser-
vice provider agent to help it to achieve a goal. Be-
fore, the service provider agent had advertised that it
is ready to fetch with another agent. Having received
messages from the two agents, the facilitator sends to
the service provider agent the information of the client
who asked for fetching. Finally, the service provider
agent moves to the location of the client.

Facilitator Facilitatol

Figure 4: Broker pattern with mobile service provider agent
(left); and Fetch pattern (right).

3.6 Broker Pattern, Mobile Client

Considering the client to be mobile is very similar as
considering it as stationary. The only difference is
that the client has to send its updated location to the
facilitator, thus assuring receiving the answer to the
query associated to the broker performative.

3.7 Recommend Pattern, Mobile
Service Provider Agent

In the recommend pattern (Figure 5) client and ser-
vice provider agents communicate in a direct way.
First, the service provider will advertise to the facil-
itator the performative it is able to answer, as well
as its location. The client will then ask for a recom-
mendation to the facilitator including the query to be
solved. The facilitator sends the client the data of the
service provider agent, including its location, and then
the client directly asks the server provider. Finally,
the server tells its answer to the client. In this case,
the service provider agent has to send updated infor-
mation about its location to the facilitator.

Facilitator
2. recommend(ask(X,L))

1. advertise(ask(X,L))

3. recommend(ask(X,L))

Client 4. ask(X)
5. tell(X)

Figure 5: Recommend pattern with mobile service provider
agent.

Facilitator

1. forward(Receiver,ask(x))

7. tell(x)

0. unregister(Receiver)

) Facilitator

Introducing Mobility into Agent Coordination Patterns

6. tell(x)

forward(Receiver,ask(x)) Mobile

Facilitator

5. tell(x)

3. forward(Receiver,ask(x))

Facilitator

Figure 6: Forward pattern with mobile receiver (only to selected facilitators).

3.8 Recommend Pattern for
Destination, Mobile Client

This case is similar to the case of the recommendation
pattern for a mobile service provider agent. The dif-
ference here is that the content of the query made by
the client is the specific location to get a requirement.
In this case, the facilitator recommends the service
provider to the client, and sends not only the name
or identifier, but the location of this service provider.
Therefore, after receiving this' recommendation,- the
client makes use of its mobility features and moves
where the service provider is located to get the re-
quirement (resource, information, etc.) that it queried.

3.9 Forward Pattern, Mobile Receiver

In the forward performative, the sender of the mes-
sage knows about the existence of a receiver that is
able to fulfil the query it intends to solve, but it does
not know the current location of the receiver, so the
use of a facilitator is required. Nevertheless, since
the receiver is mobile, it is possible to move to a dif-
ferent workspace. When this situation occurs, then
the facilitator has to send a broadcast performative
to ask the facilitators from other workspaces. Since
all facilitators are stationary, they know the location
of other facilitators, so they are able to communicate
between them. Each facilitator will look around its
workspace for the receiver agent. Once located, the
receiver agent will answer the query, and the two fa-
cilitators will bring the response to the sender.

A more efficient solution for forwarding is to
make a multicast, sending the message to a limited
number of agents (Figure 6). The facilitators to send
the multicast are chosen by proximity or by using
the previous knowledge about the type of agents that
populate the different environments. If the receiver
agent is not located inside any of the environments of
these facilitators, then they will forward the message
to more facilitators until the receiver gets the message.
Then, the facilitator in the environment of the receiver
will send the answer to the environment of the client.

There is a third possibility for solving this prob-
lem, the use of a directory. A directory contains the
name and/or the identifier of an agent, and the cur-
rent location of the agent. Therefore, the facilitator
will send the forward message to the facilitator of the
correct environment, or will directly ask to the agent.
This approach supposes new problems because in or-
der to keep these directories up-to-date, facilitators
have to exchange messages between them. However,
it improves the broadcast approach, since the number
of messages using the directory is smaller than the
number of messages when broadcasting.

3.10 Forward Pattern, Mobile Sender

In the case of the forward pattern with mobile sender,
the sender has to send the facilitator its updated lo-
cation information. This is critical when the message
is a query that requires an answer from the receiver.
Therefore, if the information about location that the
facilitator has inside its KB is not up-to-date, sending
the answer back will fail.

3.11 Footprint Pattern

When an agent wants to send a message to another
agent, it must know its current location. Therefore, a
mechanism is needed for tracking a mobile receiver.
Immediately before the receiver moves into another
workspace, it creates and leaves a footprint artifact
behind. This artifact has a more updated location of
the receiver and receives messages on behalf of it.

Two approaches to find the receiver are supported:
(i) each footprint artifact registers the latest location
of the receiver (as an observable property), so after
receiving a query, the footprint artifact (using reactiv-
ity) sends it directly to it (Figure 7); and (ii) a footprint
artifact only stores the next location of the mobile re-
ceiver, so the queried footprint artifact has to query
another footprint artifact, and so on, until the agent is
located and the query is sent to it (Figure 8).

This pattern is not part of the KQML specifica-
tion, but it is included here because of its relevance

135

ICAART 2014 - International Conference on Agents and Artificial Intelligence

0. move Fo 2 0. move:

Figure 8: Footprint pattern (second approach).

on dealing with mobile agents. Differently from the
forward pattern, using footprint artifacts reduces the
number of messages that are required to be sent be-
fore finding the receiver, and avoids to use facilitator
agents to find the receiver. However, this pattern does
not substitute the use of forwarding, which is useful
in other situations (e.g., if it is not allowed to place
artifacts in the environment).

3.12 Subscribe Pattern, Mobile Service
Provider Agent

The subscribe performative is used by a client to ask
the facilitator about the truth of a statement. The fa-
cilitator waits until a confirmation of the statement
is given by any agent of the workspace. However,
this confirmation is not requested by the facilitator,
so agents proactively inform the facilitator. The case
of the mobile service provider agent (Figure 9, left) is
slightly different from the case where this agent is sta-
tionary. The difference between both situations is that
the service provider agent has to inform the facilitator
about its movements, to make sure to be found by the
facilitator when it needs to solve a query. However,
in the case of subscription it is not a strong require-
ment because of the proactivity of the service provider
agent when sending messages to the facilitator.

3.13 Subscribe Pattern, Mobile Client

Differently from the mobile service provider agent sit-
uation, in this case (Figure 9, right) the mobility of the
client is a key aspect when an agent subscribes to a
facilitator. It is important to notice about that because
a client could send a subscribe performative to the fa-
cilitator, and then it could move to a different place.
When a client agent moves from one workspace to
another, it has to inform the facilitator, and to unsub-
scribe if it has any pending subscription queries. In
the case that the client does not unsubscribe before

136

environment)

Figure 9: Subscribe pattern with: Mobile Service Provider
Agent (left); and Mobile Client (right).

moving to a new workspace the network will be over-
flowed with messages from the facilitator while trying
to locate the client. Therefore, it is an implementa-
tion decision to automatically unsubscribe if the agent
leaves the workspace so as to keep the network load
under control or to keep the subscription active until
the client unsubscribes. This second option could be
interesting if the agent has moved from the workspace
only as a temporary situation and it plans to come
back, so it wants to keep updated information com-
ing from the workspace that it has temporarily left.

3.14 Recruit Pattern, Mobile Service
Provider Agent

The recruit pattern (Figure 10, left) consists on a
client sending a petition to the facilitator to find an
agent who is able to find a solution for its query. Here,
the answer to the query from the client is given di-
rectly by the service provider agent to the client. Mo-
bility of the service provider agent is employed to as-
sure the correct arrival of the information to the client.
The service provider agent will move to the location
of the client, thus delivering the answer to the query,
and then it will come back to its initial position.

3.15 Recruit Pattern, Mobile Client

The main feature of the recruit pattern is that exists di-
rect communication between the client and the service
provider agent. Thus, mobility of any of the agents
could suppose a failure in the process if the agents
do not find each other. The case of a mobile client
(Figure 10, right) is important because if it moves,
the service provider agent would not be able to locate
it. In order to avoid this problem to happen, when
the client sends a recruiting performative the facilita-
tor has to be updated with the current position of the
client. When the facilitator sends the received query
to the service provider agent, it also sends the current
location of the client, thus being able for the service
provider to send the message to the address where the

2. advertise(ask(X)) 2. advertise(ask(X))

1. recruit(tell(X))
3. ask(X) 1. recruit(tell(X,L)) 3. ask(X,L)

4. move-to(tell(X)) : 4. tell(X)
o ae _en

Figure 10: Recruit pattern with: Mobile Service Provider
Agent (left); and Mobile Client (right).

client is located. In the case the client leaves the envi-
ronment the recruit performative is canceled.

4 CASE OF STUDY: TOURISM

The tourism market is increasing its electronic busi-
ness in the last years, with more products and services
being offered online. However, the prices offered to
the users of the tourism market are not stable, and they
change due to the fluctuation of the demand at dif-
ferent moments. Additionally, competence between
tourism providers is-another factor that influences the
prices, with sales and special discounts.

For this reason, clients are interested on finding
the best available prices for the tourism products and
services they require. Due to the aforementioned fluc-
tuations on the prices, the users will spend so much
time looking for the best available prices. Therefore,
a tourism online market based on mobile agents is
created. This market is open, including agents rep-
resenting the clients, and agents representing the dif-
ferent tourism providers. A client agent has stored
the preferences of the human client which it is rep-
resenting (e.g., budget, preferred destinations, etc.)
and its goal is to find a trip that satisfies these pref-
erences. Each tourism provider agent offers products
of a specific type (e.g., hotels, flights, train tickets,
etc.). Clients and providers access the system in order
to look for products and services (in the case of the
clients), or for offering and publicizing them (in the
case of providers). The environment of the system is
distributed among different workspaces, one for each
type of products or services. For example, there is
a workspace for hotel reservations, another for flight
tickets, etc. It is necessary for a client agent to move
around different workspaces to get the products and
services of the desired trip. Each workspace has its
own facilitator that provides the functionalities de-
scribed in the patterns. In case that the client agent
was not able to move around different workspaces, it
would be necessary to have more than one client agent
per user, thus complicating the process of finding an
appropriate trip, from both computational and tempo-
ral points of view. Therefore, using a mobile agent

Introducing Mobility into Agent Coordination Patterns

saves time and computational resources.

A scenario depicting the use of the broker and
forward patterns in the tourism market is presented.
Here, a mobile client agent has the goal of reserving
a hotel and buying the flight tickets to the destina-
tion. In the example (Figure 11), there are two differ-
ent workspaces (Flight and Hotel), where reservations
for flights and hotels, respectively, are carried out. In
each workspace, providers advertise their capabilities
to the respective facilitators. The mobile client is lo-
cated in the flight workspace, and queries the facilita-
tor to act as a broker to find a proper flight. After mak-
ing this query, the client unregisters from the flight
workspace and registers into the hotel workspace (the
register and unregister messages are not represented
to improve the readability of the figure). Once in the
hotel workspace, the client asks the hotel facilitator to
work as a broker to find a hotel that matches its re-
quirements. In this moment, there are two concurrent
tasks (i.e., some messages have the same order num-
ber). On the one hand, the flight facilitator finds a
flight provider that is offering flights that match the
client expectations and gets a flight for the client.
Then, the flight facilitator sends a forward message
with the flight information to the hotel facilitator. On
the other hand, the hotel facilitator sends the query of
the mobile client to the hotel provider, which answers
it back to the facilitator including the chosen hotel.
Finally, the hotel facilitator sends the answer of both
queries, flight and hotel, to the client, whose desired
trip is now planned and reserved.

From the human point of view, this approach saves
time and the agent is able to search in a wider scope
than the human herself. From a computational view,
having only one agent in control of reserving the trip
facilitates the computation.

5 CONCLUSIONS AND FUTURE
WORK

This paper has presented a proposal for introducing
mobility concepts into the KQML interaction pat-
terns, also including new patterns that support mobile
agents. These patterns are aimed at improving coor-
dination and interaction between mobile agents, since
coordinating entities that are able to move around dif-
ferent environments supposes a challenge due to the
uncertainty about the exact location of the agents par-
ticipating in the communicative process. There are
patterns that rely on a point-to-point communication,
but most of the patterns rely on the existence of a fa-
cilitator that knows the agents populating its environ-
ment and is also able to communicate with facilita-

137

ICAART 2014 - International Conference on Agents and Artificial Intelligence

6. forward(MobileClient,tell(flight))

| Flight
Faciltator

1. advertise(ask(flight))

4. ask(flight)

5. tell(x)

2. broker(ask(flight))
R Flight Viob
¥

7. tell(flight,hotel)

3. Move-to(Hotel)

6. tell(hotel)

)
Faciliator

4. broker(ask(hotel)) 1. advertise(ask(hotel))

5. ask(hotel)

e |
Client Provider

Figure 11: Example for the tourism market with a mobile client and two different workspaces.

tors in other environments, thus making possible for
agents located in different environments to commu-
nicate through the facilitators. The coordination pat-
terns proposed in this paper are also useful in the real
world where agents, e.g., humans, can move between
locations to work or meet others, like mobile agents.
As future work, the patterns presented here will be
implemented in an agent platform that gives support
to mobile agents, like MobileSpaces (Satoh, 2003), or
to MAS, as THOMAS (Argente et al., 2011), along
with other useful coordination patterns for mobile
agents we found. Since patterns are defined in a
generic way in this paper, they can be then expressed
by means of the specific ACL of the framework where
the patterns will be implemented in. We also plan to
use the approach in physically mobile systems, and
real societies whose people move between locations.

ACKNOWLEDGEMENTS

This work is supported by the NII International
Internship Program, the MINECO/FEDER grant
TIN2012-36586-C03-01, the TIN2009-13839-
C03-01 project of the Spanish government, and
CONSOLIDER-INGENIO 2010 under grant
CSD2007-00022.

REFERENCES

Allard, J., Chinta, V., Gundala, S., and Richard Ill, G.
(2003). Jini meets upnp: an architecture for jini/upnp
interoperability. In Proc. Symposium on Applications
and the Internet, pages 268-275. IEEE.

Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V.,
and Rebollo, M. (2011). An abstract architecture for
virtual organizations: The thomas approach. Knowl-
edge and Information Systems, 29(2):379-403.

Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J.,
Strom, R. E., and Sturman, D. C. (1999). An ef-
ficient multicast protocol for content-based publish-
subscribe systems. In Proc. 19th IEEE Int. Conf. Dis-
tributed Computing Systems, pages 262-272. IEEE.

138

Ferber, J. (1999). Multi-agent systems: an introduction to
distributed artificial intelligence, volume 1. Addison-
Wesley Reading.

Finin, T., Fritzson, R., McKay, D., and McEntire, R.
(1994). Kgml as an agent communication language.
In Proc. 3rd international conference on Information
and knowledge management, pages 456-463. ACM.

Labrou, Y., Finin, T., and Peng, Y. (1999). Agent commu-
nication languages: The current landscape. Intelligent
Systems and Their Applications, IEEE, 14(2):45-52.

Lange, D. B. and Oshima, M. (1999). Seven good rea-
sons for mobile agents. Communications of the ACM,
42(3):88-89.

Ricci,~A., Viroli, M., -and Omicini, “A. (2007). Give
agents their artifacts: the a&a approach for engineer-
ing working environments in mas. In Proc. 6th int.
conference on Autonomous agents and multiagent sys-
tems, page 150. ACM.

Satoh, 1. (2003). A testing framework for mobile computing
software. IEEE Transactions on Software Engineer-
ing, 29(12):1112-1121.

Vinoski, S. (1997). Corba: Integrating diverse applications
within distributed heterogeneous environments. IEEE
Communications Magazine, 35(2):46-55.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent
agents: Theory and practice. Knowledge engineering
review, 10(2):115-152.

