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Abstract: Prior information has been effectively exploited mainly using probabilistic models. In this paper, by focus-

ing on thebias embedded in the classifier, we propose a novel method to discriminatively leapmidhe

bias based on the extra prior information assigned to the samples other than the class catggtrg, 2-D

position where the local image feature is extracted. The proposed method is formulated in the framework of
maximum margin to adaptively optimize the biases, improving the classification performance. We also present
the computationally efficient optimization approach that makes the method even faster than the standard SVM
of the same size. The experimental results on patch labeling in the on-board camera images demonstrate the
favorable performance of the proposed method in terms of both classification accuracy and computation time.

1 INTRODUCTION oI5l

Prior information has been effectively exploited in the = i
fields of computer vision and machine learning, such |1 ="

as for shape matching (Jiang et al., 2009), image seg- c-th class lab:
mentation (El-Baz and Gimel'farb, 2009), graph in- p-th position
ference (Cremers and Grady, 2006), transfer learn- rsz‘ featurevector

ing (Jie et al., 2011) and multi-task learning (Yuan Figure 1: Patch labeling. The task is to predict the class la-

et 3'-’ 2.013)' Learnln_g prior has so far been addressedoelsc of the patches, each which consists of the appearance
mainly in the probabilistic framework on the assump-  feature vectox and the prior positiom. Note that there are
tion that the prior is defined by a certain type of gener- p positions in total.

ative probabilistic model (Wang et al., 2010; Kapoor

etal., 2009); especially, non-parametric Bayesian ap- nstrycturedprior biasb without assuming any spe-

proach further considers the hyper priors of the prob- ¢ific models. While the biab is generally set as a

abilistic models (Ghosh and Ramamoorthi, 2003).  ¢onstant across samples depending only on the class
In this paper, we focus on the classifigr,= category, in this study we define it adaptively based

w' x+b, and especially on the bias term, so called * o the extra prior information other than the class cat-
term (Poggio et al., 2001)while some transfer learn- egory, as follows.

ing methods are differently built upon the prior of the
weight w for effectively transferring the knowledge
into the novel class categories (Jie et al., 2011; Gao
et al., 2012) and the prior of also induces a regu-
larization onw. The bias is regarded as rendering the
prior information on the class probabilities (Bishop,
1995; Van Gestel et al., 2002) and we aim to learn the

Suppose samples are associated with the extra
prior informationp € {1,..,P} as well as the class
categoryc € {1,..,C}, whereP andC indicate the
total number of the prior types and the class cate-
gories, respectively. For instance, in the task of la-
beling patches on the on-board camera images, each
patch (sample) is assigned with the appearance fea-

Wispaper we describe the classifier in such a linear tre X, the class category and the position (extra
form for simplicity, but our proposed method also works on prior information) p, as shown in Fig. 1. Not only

the kernel-based classifier by simply replacing the feature  the featurex but also the prior positiop where the
with the kernel feature, in the reproducing kernel Hilbert ~ feature is extracted is useful to predict the class cat-

space. egory of the patch; the patches on an upper region
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probably belong tekyand the lower region would be
road, even though the patches extracted from those
two regions are both less textured, resulting in similar
features.
The probabilistic structure that we assume in this
study is shown in Fig. 2b with comparison to the ,
si mpl e model in Fig. 2a. By using generalized linear (2! ™! e
model (Bishop, 2006), the standard classifier (Fig. 2a) Figure 2: Graphical models to depict the probabilistic de-

is formulated to estimate the posterior on the class cat-Pendencies. The notatiossx andp denote the class cate-
egoryca 2 gory, the (appearance) feature vector and the extra prior in

formation, respectively. The arrows show the probabdisti
logp(c|x) ~ logp(x|c) + logp(c) = wch+ be, (1) dependencies. .(a) Thg featucés simply drawn from the
o class category in the si npl e model. (b) Thepr oposed
where be = logp(c) indicates the class-dependent model incorporates the extra prior informatiprwhich is
bias. On the other hand, theroposed model connected ta via c. (c) Those three variables are fully
(Fig. 2b) using the priop induces the following clas-  connected inthéul | - connect ed model.

sifier;

(b) pr oposed (c)full -connect ed

Table 1: Classification methods fotth class category. The

logp(c|x, p) ~ logp(x|c) + logp(p|c) + logp(c) dimensionality of the feature vector is denoted Dyx €
- vl 0P, and the number of prior typesis
=W X+ be ) (2)
Where the bIaSpr] — Iogp(p|c) _|_ |ng(C) iS depen- Method MOdelT DOF
dent on both the class categarand the prior infor- sinple Ye = We X+ b D+1
mation p. Thus, if the bias could be properly deter- proposed Yo = W. X+ b[cp] D+P

mined, the classification performance would be im-
proved compared to the standard classification model
(1). One might also consider tHeil | - connect ed
model shown in Fig. 2c whose classifier is formulated

by 2 BIAS LEARNING

logp(cix.p) ~ log F;(X|C’ P)+logp(plc) +-logp(c) We detail the proposed method by first defining the
—wlP x4+ b[cp], 3) formulation for learning the biases and then present-
- o ) ing the computationally efficient approach to optimize
where the classifier weightc™ relies on the priop them. As we proceed to describe a general form re-
as the biasb[cp] does. This model is more complicated garding the prior biases, it might be helpful for un-
and consumes large memory storage since the classiderstanding to refer to the task of labeling patches in
fier model{w[cp],b[cp]} is prepared for respective priors ONn-board camera images as shown in Fig. 1; the sam-
p=1,.,P. And, due to the high degree of freedom PI€ is represented by the appearance featared the
(D.O.F) of this model, it would be vulnerable to over- Prior positionp € {1,..,P}.
learning. These models are summarized in Table 1 .
and will be again discussed later. 2.1 Formulation
In this paper, we propose a novel method for
discriminatively learning the prior biasé®’ in (2) We consider a binary class problem for simplicity and
to improve the classification performance. The pro- take aone-vs-restapproach for multi-class tasks. Sup-
posed method is formulated in the optimization prob- POSé we havé® types of prior information, and let
lem of the maximum margin criterion (Smola et al., xi[p] € 0P denote thed-dimensional feature vector of
2000). We also propose the computationally efficient thei-th samplei(= 1, .., n[P') drawn from thep-th type
approach for the optimization which contains large of prior. As described in Sec.1, we deal with the clas-

] W (- LIV
full-connected y.=w; X+bz PD+P

amount of samples drawn from all the priopse sification defined by
{1,..,P}. Thereby, the proposed method is even faster -
than the standard SVM (Vapnik, 1998) of the same y=w'x" +plF, (4)

size, while providing the high-performance classifier

that exploits the prior information. wherey denotes the classifier output which is sub-

sequently thresholded by zero for performing binary
2 in (]_) means the equa”ty in disregard of the irrele- Classification, anav andb[p] are the classifier Weight
vant constant term log(x) or logp(x, p) in (2) and (3). vector and the bias, respectively. Note again that

68



Discriminative Prior Bias Learning for Pattern Classification

the biasblP! depends on the-th type of prior,p €
{1,..,P}. The classifier (4) can be learned via the fol-
lowing optimization formulation in the framework of
maximum margin (Smola et al., 2000);

nle!

m|n ~|w|>+C 5
o || | ZZE (5)
st. Vpe{l, ,P} Vle{l, ,n[p}}

Py > 1 &Pl >,

v w "

whereC is the cost parameter. This is obviously con-
vex and its Lagrangian is written by

P [Pl ¢ [P]

Z [p]{y[p] Txi[p]_,’_b[p])_1+£i[p]},

p nlpl

L——|\w||2+CZZE (6)

Pn
B
where we introduce the Lagrange multipli@rg’] >
(0 Bi[p] > 0. The derivatives of the Lagrangian are

oL P ol
a_w W_%Zal Vi X =0
P nlpl
W= z Z ai[p]yl[P]xl[P] @)
p 1
i — =C-a”-pP=0=0<a”<Cc (®
ogP
oL T
m = IZai Vi 0. (9)
Thereby, the dual is finally obtained as
p nlPl pld T p nlpl
min EZZZGDG yP yJ (P xgq}—ZZai[p]
{qi[p]}l p _RA T ] [
(10)
nlpl
st.vp, Za PlylPl — 0, vi,vp,0<al” <cC.

This is a quadratic programming (QP) analogous to
the dual of SVM (Vapnik, 1998) except that there ex-
ist P linear equality constraints with respect @
The standard QP solver is applicable to optimize
(10), though requiring substantial computation cost.
For optimizing QP of the SVM dual, the method of
SMO (Platt, 1999) is successfully applied, but in this
case, we can not employ it directly due to the muItipIe
equality constraints. In what follows, we present the |
computationally efficient approach to optimize (10).

2.2 Optimization

A large number of variableﬁai[p]}i’p in the QP (10)
are inherently partitioned into block-wise variables
regarding the priop; we obtainP blocks ofaPl =

{ai[p]}izl"_‘n[p] en®, p=1,..,P. According to those
block-wise variables, (10) is decomposed into the fol-
lowing sub-problem as well:

-
[P\ [Pl [Py [P] [P

m|n22a oy, yJ X

niP) n@ T
Y zai[P] {1_yi[P] ; ZGEQ]yEQ]Xi[P] XEQJ} (11)
[ q7p )
nirl
st. 5 O(i[p]yi[p]
I

This is again a quadratic programming,which resem-
bles the SVM dual except for the linear term with re-
spect taa[Pl and thus is effectively optimized by using
the SMO (Platt, 1999). Therefore, the whole proce-
dure for optimizing (10) consists of iteratively opti-
mizing the sub-problem (11) with respect to the prior
p by means of SMO as shown in Algorithm 1.

In order to discuss the convergence of the itera-
tive optimization, we mention the KKT condition of

(10) (Fan et al., 2005). The optimizeLp] satisfies the
following condition:

—0,vi,0<a” <c.

Gi,p(a) + bi[p]yi[p] _ 3P _ M[P]7 (12)
)\i[p]ai[p] -0, M[p] (C— ai[p]) —0, )\i[p] >0, M[p]
T
whereG; p(@) =y\"x? 5P 517 aldylx _1is the

derivative of the objective function in (10) with re-
spect toai[p]. This is rewritten into
al? <c: Gip(a)+bPyP >0,

al” >0: Gipla)+ by <o,

(13)
(14)

and smcey, e{+1 —1}, the above conditions result
in
y[p}G- (0){ < b|[p] ieﬂ[f] (15)
S 4 ,p . 9
! > b,[p] i 1P
where
={il@® <cryP=1)v (o >0ny" =-1)},
(16)
={ij@ <cryP=—1)v (@ >0y =1)}.
(17)
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Therefore, we can conclude thako] is a stationary
point if and only if

89 2 | max PGyl - | min-y{"Gp(c)| <o
ieI[Lp ' et '
(18)

On the basis of this measure, we can stop the it-
eration when maydlP < & with a small tolerance
£ > 0. The measurd” also provides a clue for
effectively selecting the priop to be optimized via
(11). That is, we perform the (sub-)optimization (11)
at p* = argmaxd® so as to effectively minimize
max, 8Pl This approach will be empirically validated
in the experiment. At the optimum, the bialg is re-
trieved by
1

(1]

[P —

Z yi[p]Gi,p(a)a

illpl

(19)

where I = {ij0 < al” < C}, (20)

since the right hand side in (12) equals zerd foillP.
Finally, we describe the technical tip for further

reducing the computational cost in the optimization.

From a practical viewpoint, the samples of the two

Algorithm 1: Bias Learning.

Input: {x” yi”'}: feature vector and its class label
of thei-th training sample from the-th type of
prior,p=1,..,P,i=1,..,nlP,

€ > 0: small tolerance for terminating the it-
eration.

1 P={p/3i,y” =1A3y" = -1}

2: Initialization: Vp € {1,..,P},alP =0
3: Randomly pick upp € P

4: repeat

5. SetalP as the optimizer of (11)
6. Computed” in (18),Ype P

7. p < argmaxcp /P

8: until max,pdlP < ¢

Output: w computed by (7) andbl!P }p 1,..p COM-
puted by (19) forp € P and (24) forp ¢ P, using
the optimizerga'? } .

would be preferable for the classification; this is our
future work. By eliminating such trivial types of prior,
we can reduce the computational burden of the whole
procedure to optimize (10). As a result, the proposed
optimization procedure is shown in Algorithm 1.

class categories are not equally distributed across the

priorsp=1,..,P but are localized in limited number
of priors. For instance, in the case of on-board cam-
era images, theoad never appears in upper regions
where theskyusually dominates. That is, we occa-
sionally encounter the following sub-problem;

]} (21)

[ o

mmZZG J yI yJ X;

n[p

S {1 § Saity

I azp |

nlpPl
st. Z aPlyP — o, vi,0<al” <cC, (22)
Vi yI =1(orVvi, y,[ Pl _ -1). (23)
The above QP is trivially optimized ly!P’ = 0 due to

the constraint (22), and the biel8! can be determined

as
L :{ +oo Vi,yi[p]

—w Wi,y =1

, (24)

2.3 Discussion

In the proposed method, all samples across all types
of priors are leveraged to train the classifier, improv-
ing the generalization performance. In contrast, the
full - connect ed method (Table 1) treats the samples
separately regarding the priors, and thusitta clas-
sifier is learnt by using only a small amount of sam-
ples belonging to th@-th type of prior, which might
degrade the performance. On the other hand, the
si mpl e method learning the classifier from the whole
set of samples is less discriminative without utiliz-
ing the prior information associated with the samples.
The proposed method effectively introduces the priors
into the classifiers via the biases which are discrimi-
natively optimized.

The proposed method is slightly close to the cross-
modal learning (Kan et al., 2012; Sharma and Jacobs,
2011). The samples belonging to different priors are
separated as if they are in different modalities, though
the feature representations are the same in this case.
The proposed method deals with them in a unified

which means that the samples from such a prior are manner via the adaptive prior biases. Actually, the

definitely classified as positive (or negative) no matter
how the appearance features of the samples are.

this case, the class category is solely dependent on thalistribution is shifted (translated) a@

prior information via the biablPl € {40, —c0}. This

setting (24) might be too excessive and more mild one ylP) =

70

proposed method is applicable to the samples that are

Indistributed differently across the pnors the sample

Pl t+eand
the prlor bias can adapt to it il = wTesmce
TxPl 4 plPl yldl — w'xld 4 b[a] =w'xP +
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ful | - connect ed method applies classifiers compris-
ing wiP' and blP at respective priorp = 1,..,P.
This method requires tremendous memory storage
for those P classifiers; in this experiment, 2112-
dimensional weight vectonw in 11 class categories
are stored at each of 1511 positions. On the other
hand, in thepr oposed method, the feature vectors
are classified by using the identical weightacross
the priors together with the adaptively optimized bias
blPl depending on the priqp.

On-board image Label image
Figure 3:CamVid dataset (Brostow et al., 2008).

(b9 +w'e) =y!Pl. Therefore, the samples of the dif-
ferent priors are effectively transferred into the opti- 3.2 Computation Cost
mization to improve the classification performance.
We evaluated the proposed method in terms of com-
putation cost.
3 EXPERIMENTAL RESULTS The first issue is related to the way of selecting
p in the iterative optimization; the proposed proce-
We evaluated the proposed method on patch label-dure selectp deterministically byp* = argma &7
ing in the on-board camera images by us@nVid (the 7-th line in Algorithm 1)." As the alternative for
dataset (Brostow et al., 2008). This patch labeling the proposed selection, the other two ways are con-
contributes to understand the scene surrounding theceivable sequentiaBndrandomselections. In the se-

car. qugntial selection, the target pripiis simply selected
as in raster scan over the image frame. The random
3.1 Setting selection means that the targets randomly picked

up from the whole seft1, .., P}. Fig. 4 shows the com-
parison results with respect to the objective cost in
(10) and the gap m@é[p in (18) measuring viola-
h tion of the KKT condition, both of which should be
decreased toward convergence. The optimization is
fast converged via the proposed method, while in the
other methods the optimization takes a larger num-
ber of iterations until convergence; in particular, the
sequential method requires more than 10,000 itera-
tions. These results reveal the importance of selecting
p to be optimized and show that the proposed method
quickly decreases the cost as well as the gap, leading
qto fast convergence.

The second issue is about scalability of the pro-
posed method. The method trains the classifier by us-
ing all the samples across the priors, scale of which

The CamVid dataset (Brostow et al., 2008) contains
several sequences composedfufy labeled image
frames as shown in Fig. 3: each pixel is assigned witl
one of 32 class labels including ‘void’. Those labeled
images are captured at 10 Hz. In this experiment, we
employ the major 11 labels frequently seen in the im-
age framesroad, building, sky, tree, sidewalk, car,
column pole, sign symbol, fence, pedestaadbicy-
clist, to form the 11-class classification task.

We extracted the GLAC image feature (Kobayashi
and Otsu, 2008) from a local image patch of>2@0
pixels which slides at every 10 pixels over the resize
image of 480x 360. In this case, the feature vector
X € 0?12 s associated with the 2D position of the

patch as the extra prior information; the total number . . ; .

of prior types (grid points) i® = 1551. Thus, the task is as large as n t.he' np_l € methoq. Fig. 5"?‘ shows

is to categorize the patch feature vectors extracted at'e COMPutation time with comparison to tienpl e

1511 positions into the above-mentioned 11 classes. method on various sizes of training samples_. _These
methods are implemented by MATLAB usinip-

W d the th in themvid .
c use e ree sequences in amvi pSvm (Chang and Lin, 2001) on Xeon 3.33GHz ¥C

dataset, and partitioned each sequence into three su Th d method is sianificantly faster than th
sequences along the time, one of which was used for _. € proposed method IS significantly faster than the

training and the others were for test. This cross vali- sinple method. The time complexity ofi npl e

dation was repeated three times and the averaged clagMethod which solves the standard SVM dual has been

- 2.1 i
sification accuracy is reported. 1e_|;1p|r|cally SSOWP to btgi)(n ) (Joac_thlm?, ]]999)'k
For comparison, we applied the methods men- € proposed optimization approach iteratively works
tioned n Sec.'lsl mpl e andf.“' | - connect e_d meth- 3In this experiment, the feature vectors are actually con-
ods as listed in Table 1. Trsenpl e method is astan-  yerted into the form of the kernel Gram matrix to which the

dard classification using the weigtt with the bias QP solver inibsvm is directly applied, for fair comparison
b without relying on the prior informatiomp. The of the QP problems in thgr oposed andsi npl e methods.
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Figure 4. Comparison for the ways of selecting the target
prior p in terms of (a) the objective cost in (10) and (b)
the gap may3!”! in (18) which measures violation of KKT

condition.
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Figure 5: Comparison of th& npl e andpr oopsed meth-
ods in terms of (a) computation time as well as (b) number
of support vectors (SVs).

method.

ing set is decomposed (Sec.2.2). The subset is re-
garded as the working set whose size is an important3.3 Classification Performance

factor for fast computing QP (Fan et al., 2005). In the

proposed method, it is advantageous to inherently \we then compared the classification performance of

define the subset,e. the working set, of adequate

the three methodssi npl e, full-connected and

size according to the prior. Thus, roughly speaking, proposed (Table 1). Table 2 shows the overall per-

the time complexity of the@r oposed method results

formance, demonstrating that theoposed method

in O(M %) = O(%). In particular, the computa- outperforms the others. It should be noted that
tion time essentially depends on the (resultant) num- thef ul | - connect ed method individually applies the
ber of support vectors (SVs); Fig. 5b shows the num- classifier specific to the priop € {1,,P}, requiring
ber of support vectors produced by those two meth- a plenty of memory storage and consequently taking

ods. Thepr oposed method provides a smaller num-

large classification time due to loading the enormous

ber of support vectors, which significantly contributes memory. Thepr oposed method renders as fast clas-
As a result, the sification as thai npl e method since it enlarges only
proposed optimization approach works quite well to- the bias. By discriminatively optimizing the biases for

to reduce the computation time.

gether with the working set (priop) selection dis-

respective priors, the performance is significantly im-

cussed in the previous experiment (Fig. 4). These re-proved in comparison to thet npl e method; the im-

sults show the favorable scalability of theoposed
method, especially compared to the standampl e

72

provementis especially found at the categoriesasf
pedestrianand bicyclist that are composed of patch



Discriminative Prior Bias Learning for Pattern Classification

building

sidewalk car

-3 h— [

: e i

sign symbol fence

+inf +inf
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-55
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-6.5

—inf

-1

—inf

pedestrian bicyclist

Figure 6: Maps of the biases learnt by fhe@posed method. The significance of the biases are shown by usinglpsmlors
from (dark) blue to (dark) red. This figure is best viewed ifoco

parts similar to other categories but are associatedbiases for thesky are distributed above the horizon-

with the distinct prior positions. tal line, while those of theoad are high in the lower
Finally, we show in Fig. 6 the biases learnt by part. Thepede_striarprobably walks on thgidewalk

the proposed method; the biase&blP}, are folded mainly shown in the left side. The oncomiogr runs

into the form of image frame according to the x-y po- 2" the right-hand roa}d, and the row of thailding .

sitions. These maps of the biases reflect hier is found on the road_S|de. These biases are adapt_lvely

probability over the locations where the target cat- Iearntf_romth&:amvm dataset and they would be O.I'f'

egory appears. These seem quite reasonable fron{erent if we use other datasets collected under differ-

the viewpoint of the traffic rules that the car obeys; €Nt traffic rules.

since theCamVid dataset is collected at the Cam-

bridge city (Brostow et al., 2008), in this case, the

traffic rules are of the United Kingdom. The high
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Table 2: Classification accuracy (%).
simple full-connected proposed

road 93.10 93.80 94.92
building  75.90 72.96 78.70
sky 90.52 82.21 90.25
tree 70.49 77.59 79.95
sidewalk  77.06 78.43 81.36
car 53.84 58.64 65.16
column pole 9.53 16.15 12.85
sign symbol 1.73 1.62 1.70
fence 5.23 11.09 13.48
pedestrian 17.26 30.69 31.52
bicyclist  17.09 18.49 24.88
avg. 46.52 49.24 52.25

4 'CONCLUSIONS

We have proposed-a method to discriminatively learn
the prior biases in the classification. In the proposed
method, for improving the classification performance,
all samples are utilized to train the classifier and the

input sample is adequately classified based on the

prior information via the learnt biases. The proposed
method is formulated in the maximum-margin frame-
work, resulting in the optimization problem of the QP

form similarly to SVM. We also presented the compu-
tationally efficient approach to optimize the resultant
QP along the line of SMO. The experimental results

on the patch labeling in the on-board camera images
demonstrated that the proposed method is superior in

terms of classification accuracy and the computation
cost.

the computation time for training the classifier is even
faster than the SVM of the same size.
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