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Abstract: Prior information has been effectively exploited mainly using probabilistic models. In this paper, by focus-
ing on thebias embedded in the classifier, we propose a novel method to discriminatively learn theprior
bias based on the extra prior information assigned to the samples other than the class category,e.g., the 2-D
position where the local image feature is extracted. The proposed method is formulated in the framework of
maximum margin to adaptively optimize the biases, improving the classification performance. We also present
the computationally efficient optimization approach that makes the method even faster than the standard SVM
of the same size. The experimental results on patch labeling in the on-board camera images demonstrate the
favorable performance of the proposed method in terms of both classification accuracy and computation time.

1 INTRODUCTION

Prior information has been effectively exploited in the
fields of computer vision and machine learning, such
as for shape matching (Jiang et al., 2009), image seg-
mentation (El-Baz and Gimel’farb, 2009), graph in-
ference (Cremers and Grady, 2006), transfer learn-
ing (Jie et al., 2011) and multi-task learning (Yuan
et al., 2013). Learning prior has so far been addressed
mainly in the probabilistic framework on the assump-
tion that the prior is defined by a certain type of gener-
ative probabilistic model (Wang et al., 2010; Kapoor
et al., 2009); especially, non-parametric Bayesian ap-
proach further considers the hyper priors of the prob-
abilistic models (Ghosh and Ramamoorthi, 2003).

In this paper, we focus on the classifier,y =
www⊤xxx+b, and especially on the bias term, so called ‘b’
term (Poggio et al., 2001)1, while some transfer learn-
ing methods are differently built upon the prior of the
weight www for effectively transferring the knowledge
into the novel class categories (Jie et al., 2011; Gao
et al., 2012) and the prior ofwww also induces a regu-
larization onwww. The bias is regarded as rendering the
prior information on the class probabilities (Bishop,
1995; Van Gestel et al., 2002) and we aim to learn the

1In this paper, we describe the classifier in such a linear
form for simplicity, but our proposed method also works on
the kernel-based classifier by simply replacing the featurexxx
with the kernel featureφφφxxx in the reproducing kernel Hilbert
space.
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Figure 1: Patch labeling. The task is to predict the class la-
belsc of the patches, each which consists of the appearance
feature vectorxxx and the prior positionp. Note that there are
P positions in total.

unstructuredprior biasb without assuming any spe-
cific models. While the biasb is generally set as a
constant across samples depending only on the class
category, in this study we define it adaptively based
on the extra prior information other than the class cat-
egory, as follows.

Suppose samples are associated with the extra
prior information p ∈ {1, ..,P} as well as the class
categoryc ∈ {1, ..,C}, whereP andC indicate the
total number of the prior types and the class cate-
gories, respectively. For instance, in the task of la-
beling patches on the on-board camera images, each
patch (sample) is assigned with the appearance fea-
ture xxx, the class categoryc and the position (extra
prior information)p, as shown in Fig. 1. Not only
the featurexxx but also the prior positionp where the
feature is extracted is useful to predict the class cat-
egory of the patch; the patches on an upper region
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probably belong toskyand the lower region would be
road, even though the patches extracted from those
two regions are both less textured, resulting in similar
features.

The probabilistic structure that we assume in this
study is shown in Fig. 2b with comparison to the
simple model in Fig. 2a. By using generalized linear
model (Bishop, 2006), the standard classifier (Fig. 2a)
is formulated to estimate the posterior on the class cat-
egoryc as2

logp(c|xxx)∼ logp(xxx|c)+ logp(c) = www⊤c xxx+bc, (1)

where bc = logp(c) indicates the class-dependent
bias. On the other hand, theproposed model
(Fig. 2b) using the priorp induces the following clas-
sifier;

logp(c|xxx, p)∼ logp(xxx|c)+ logp(p|c)+ logp(c)

= www⊤c xxx+b[p]c , (2)

where the biasb[p]c = logp(p|c) + logp(c) is depen-
dent on both the class categoryc and the prior infor-
mation p. Thus, if the bias could be properly deter-
mined, the classification performance would be im-
proved compared to the standard classification model
(1). One might also consider thefull-connected
model shown in Fig. 2c whose classifier is formulated
by

logp(c|xxx, p)∼ logp(xxx|c, p)+ logp(p|c)+ logp(c)

= www[p]
c
⊤

xxx+b[p]c , (3)

where the classifier weightwww[p]
c relies on the priorp

as the biasb[p]c does. This model is more complicated
and consumes large memory storage since the classi-

fier model{www[p]
c ,b[p]c } is prepared for respective priors

p = 1, ..,P. And, due to the high degree of freedom
(D.O.F) of this model, it would be vulnerable to over-
learning. These models are summarized in Table 1
and will be again discussed later.

In this paper, we propose a novel method for

discriminatively learning the prior biasesb[p]c in (2)
to improve the classification performance. The pro-
posed method is formulated in the optimization prob-
lem of the maximum margin criterion (Smola et al.,
2000). We also propose the computationally efficient
approach for the optimization which contains large
amount of samples drawn from all the priorsp ∈
{1, ..,P}. Thereby, the proposed method is even faster
than the standard SVM (Vapnik, 1998) of the same
size, while providing the high-performance classifier
that exploits the prior information.

2‘∼’ in (1) means the equality in disregard of the irrele-
vant constant term logp(xxx) or logp(xxx, p) in (2) and (3).
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Figure 2: Graphical models to depict the probabilistic de-
pendencies. The notationsc, xxx andp denote the class cate-
gory, the (appearance) feature vector and the extra prior in-
formation, respectively. The arrows show the probabilistic
dependencies. (a) The featurexxx is simply drawn from the
class categoryc in the simple model. (b) Theproposed
model incorporates the extra prior informationp which is
connected toxxx via c. (c) Those three variables are fully
connected in thefull-connected model.

Table 1: Classification methods forc-th class category. The
dimensionality of the feature vector is denoted byD, xxx ∈
ℜD, and the number of prior types isP.

Method Model D.O.F

simple yc = www⊤c xxx+bc D+1

proposed yc = www⊤c xxx+b[p]c D+P

full-connected yc = www[p]
c
⊤

xxx+b[p]c PD+P

2 BIAS LEARNING

We detail the proposed method by first defining the
formulation for learning the biases and then present-
ing the computationally efficient approach to optimize
them. As we proceed to describe a general form re-
garding the prior biases, it might be helpful for un-
derstanding to refer to the task of labeling patches in
on-board camera images as shown in Fig. 1; the sam-
ple is represented by the appearance featurexxx and the
prior positionp∈ {1, ..,P}.

2.1 Formulation

We consider a binary class problem for simplicity and
take a one-vs-rest approach for multi-class tasks. Sup-
pose we haveP types of prior information, and let

xxx[p]i ∈ℜD denote theD-dimensional feature vector of
thei-th sample (i = 1, ..,n[p]) drawn from thep-th type
of prior. As described in Sec.1, we deal with the clas-
sification defined by

y= www⊤xxx[p]+b[p], (4)

wherey denotes the classifier output which is sub-
sequently thresholded by zero for performing binary
classification, andwww andb[p] are the classifier weight
vector and the bias, respectively. Note again that
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the biasb[p] depends on thep-th type of prior, p ∈
{1, ..,P}. The classifier (4) can be learned via the fol-
lowing optimization formulation in the framework of
maximum margin (Smola et al., 2000);

min
www,{b[p]}p

1
2
‖www‖2+C

P

∑
p

n[p]

∑
i

ξ[p]i (5)

s.t. ∀p∈ {1, ..,P}, ∀i ∈ {1, ..,n[p]},

y[p]i (www⊤xxx[p]i +b[p])≥ 1− ξ[p]i , ξ[p]i ≥ 0,

whereC is the cost parameter. This is obviously con-
vex and its Lagrangian is written by

L =
1
2
‖www‖2+C

P

∑
p

n[p]

∑
i

ξ[p]i −
P

∑
p

n[p]

∑
i

β[p]
i ξ[p]i (6)

−
P

∑
p

n[p]

∑
i

α[p]
i {y

[p]
i (www⊤xxx[p]i +b[p])−1+ ξ[p]i },

where we introduce the Lagrange multipliersα[p]
i ≥

0, β[p]
i ≥ 0. The derivatives of the Lagrangian are

∂L
∂www

= www−
P

∑
p

n[p]

∑
i

α[p]
i y[p]i xxx[p]i = 000

⇒www=
P

∑
p

n[p]

∑
i

α[p]
i y[p]i xxx[p]i (7)

∂L

∂ξ[p]i

=C−α[p]
i −β[p]

i = 0⇒ 0≤ α[p]
i ≤C (8)

∂L

∂b[p]
=

n[p]

∑
i

α[p]
i y[p]i = 0. (9)

Thereby, the dual is finally obtained as

min
{α[p]

i }i,p

1
2

P

∑
p,q

n[p]

∑
i

n[q]

∑
j

α[p]
i α[q]

j y[p]i y[q]j xxx[p]i

⊤
xxx[q]j −

P

∑
p

n[p]

∑
i

α[p]
i

(10)

s.t. ∀p,
n[p]

∑
i

α[p]
i y[p]i = 0, ∀i,∀p, 0≤ α[p]

i ≤C.

This is a quadratic programming (QP) analogous to
the dual of SVM (Vapnik, 1998) except that there ex-
ist P linear equality constraints with respect toααα[p].
The standard QP solver is applicable to optimize
(10), though requiring substantial computation cost.
For optimizing QP of the SVM dual, the method of
SMO (Platt, 1999) is successfully applied, but in this
case, we can not employ it directly due to the multiple
equality constraints. In what follows, we present the
computationally efficient approach to optimize (10).

2.2 Optimization

A large number of variables{α[p]
i }i,p in the QP (10)

are inherently partitioned into block-wise variables
regarding the priorp; we obtainP blocks ofααα[p] =

{α[p]
i }i=1,..,n[p] ∈ℜn[p] , p= 1, ..,P. According to those

block-wise variables, (10) is decomposed into the fol-
lowing sub-problem as well:

min
ααα[p]

i

1
2

n[p]

∑
i, j

α[p]
i α[p]

j y[p]i y[p]j xxx[p]i

⊤
xxx[p]j

−
n[p]

∑
i

α[p]
i

{

1− y[p]i

P

∑
q6=p

n[q]

∑
j

α[q]
j y[q]j xxx[p]i

⊤
xxx[q]j

}

(11)

s.t.
n[p]

∑
i

α[p]
i y[p]i = 0, ∀i, 0≤ α[p]

i ≤C.

This is again a quadratic programming which resem-
bles the SVM dual except for the linear term with re-
spect toααα[p] and thus is effectively optimized by using
the SMO (Platt, 1999). Therefore, the whole proce-
dure for optimizing (10) consists of iteratively opti-
mizing the sub-problem (11) with respect to the prior
p by means of SMO as shown in Algorithm 1.

In order to discuss the convergence of the itera-
tive optimization, we mention the KKT condition of

(10) (Fan et al., 2005). The optimizerα[p]
i satisfies the

following condition:

Gi,p(ααα)+b[p]i y[p]i = λ[p]
i −µ[p]i , (12)

λ[p]
i α[p]

i = 0, µ[p]i (C−α[p]
i ) = 0, λ[p]

i ≥ 0, µ[p]i ≥ 0,

whereGi,p(ααα) = y[p]i xxx[p]i

⊤
∑P

q ∑n[q]
j α[q]

j y[q]j xxx[q]j −1 is the
derivative of the objective function in (10) with re-

spect toα[p]
i . This is rewritten into

α[p]
i <C : Gi,p(ααα)+b[p]i y[p]i ≥ 0, (13)

α[p]
i > 0 : Gi,p(ααα)+b[p]i y[p]i ≤ 0, (14)

and sincey[p]i ∈ {+1,−1}, the above conditions result
in

−y[p]i Gi,p(ααα)

{

≤ b[p]i i ∈ I
[p]
+

≥ b[p]i i ∈ I
[p]
−

, (15)

where

I
[p]
+ ={i|(α[p]

i <C∧y[p]i =1)∨ (α[p]
i >0∧y[p]i =−1)},

(16)

I
[p]
− ={i|(α[p]

i <C∧y[p]i =−1)∨ (α[p]
i >0∧y[p]i =1)}.

(17)
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Therefore, we can conclude thatα[p]
i is a stationary

point if and only if

δ[p] ,
[

max
i∈I

[p]
+

−y[p]i Gi,p(ααα)
]

−

[

min
i∈I

[p]
−

−y[p]i Gi,p(ααα)
]

≤ 0.

(18)

On the basis of this measure, we can stop the it-
eration when maxp δ[p] < ε with a small tolerance
ε > 0. The measureδ[p] also provides a clue for
effectively selecting the priorp to be optimized via
(11). That is, we perform the (sub-)optimization (11)
at p∗ = argmaxp δ[p] so as to effectively minimize
maxp δ[p]. This approach will be empirically validated
in the experiment. At the optimum, the biasb[p] is re-
trieved by

b[p] =
1

|I[p]|
∑

i∈I[p]
−y[p]i Gi,p(ααα), (19)

where I
[p] = {i|0< α[p]

i <C}, (20)

since the right hand side in (12) equals zero fori ∈ I[p].
Finally, we describe the technical tip for further

reducing the computational cost in the optimization.
From a practical viewpoint, the samples of the two
class categories are not equally distributed across the
priors p= 1, ..,P but are localized in limited number
of priors. For instance, in the case of on-board cam-
era images, theroad never appears in upper regions
where thesky usually dominates. That is, we occa-
sionally encounter the following sub-problem;

min
ααα[p]

i

1
2

n[p]

∑
i, j

α[p]
i α[p]

j y[p]i y[p]j xxx[p]i

⊤
xxx[p]j

−
n[p]

∑
i

α[p]
i

{

1− y[p]i

P

∑
q6=p

n[q]

∑
j

α[q]
j y[q]j xxx[p]i

⊤
xxx[q]j

}

(21)

s.t.
n[p]

∑
i

α[p]
i y[p]i = 0, ∀i, 0≤ α[p]

i ≤C, (22)

∀i, y[p]i = 1 (or ∀i, y[p]i =−1). (23)

The above QP is trivially optimized byααα[p] = 000 due to
the constraint (22), and the biasb[p] can be determined
as

b[p] =

{

+∞ ∀i, y[p]i = 1

−∞ ∀i, y[p]i =−1
, (24)

which means that the samples from such a prior are
definitely classified as positive (or negative) no matter
how the appearance features of the samples are. In
this case, the class category is solely dependent on the
prior information via the biasb[p] ∈ {+∞,−∞}. This
setting (24) might be too excessive and more mild one

Algorithm 1: Bias Learning.

Input: {xxx[p]i ,y[p]i }: feature vector and its class label
of the i-th training sample from thep-th type of
prior, p= 1, ..,P, i = 1, ..,n[p].

ε > 0: small tolerance for terminating the it-
eration.

1: P= {p|∃i,y[p]i = 1∧∃i,y[p]i =−1}
2: Initialization: ∀p∈ {1, ..,P}, ααα[p] = 000
3: Randomly pick upp∈ P

4: repeat
5: Setααα[p] as the optimizer of (11)
6: Computeδ[p] in (18),∀p∈ P

7: p← argmaxp∈P δ[p]

8: until maxp∈P δ[p] < ε
Output: www computed by (7) and{b[p]}p=1,..,P com-

puted by (19) forp∈ P and (24) forp /∈ P, using
the optimizers{ααα[p]}p.

would be preferable for the classification; this is our
future work. By eliminating such trivial types of prior,
we can reduce the computational burden of the whole
procedure to optimize (10). As a result, the proposed
optimization procedure is shown in Algorithm 1.

2.3 Discussion

In the proposed method, all samples across all types
of priors are leveraged to train the classifier, improv-
ing the generalization performance. In contrast, the
full-connected method (Table 1) treats the samples
separately regarding the priors, and thus thep-th clas-
sifier is learnt by using only a small amount of sam-
ples belonging to thep-th type of prior, which might
degrade the performance. On the other hand, the
simple method learning the classifier from the whole
set of samples is less discriminative without utiliz-
ing the prior information associated with the samples.
The proposed method effectively introduces the priors
into the classifiers via the biases which are discrimi-
natively optimized.

The proposed method is slightly close to the cross-
modal learning (Kan et al., 2012; Sharma and Jacobs,
2011). The samples belonging to different priors are
separated as if they are in different modalities, though
the feature representations are the same in this case.
The proposed method deals with them in a unified
manner via the adaptive prior biases. Actually, the
proposed method is applicable to the samples that are
distributed differently across the priors; the sample
distribution is shifted (translated) asxxx[q] = xxx[p]+eeeand
the prior bias can adapt to it byb[q] = b[p]−www⊤eeesince
y[p] = www⊤xxx[p]+ b[p], y[q] = www⊤xxx[q]+ b[q] = www⊤xxx[p]+
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On-board image Label image

Figure 3:CamVid dataset (Brostow et al., 2008).

(b[q]+www⊤eee) = y[p]. Therefore, the samples of the dif-
ferent priors are effectively transferred into the opti-
mization to improve the classification performance.

3 EXPERIMENTAL RESULTS

We evaluated the proposed method on patch label-
ing in the on-board camera images by usingCamVid
dataset (Brostow et al., 2008). This patch labeling
contributes to understand the scene surrounding the
car.

3.1 Setting

The CamVid dataset (Brostow et al., 2008) contains
several sequences composed offully labeled image
frames as shown in Fig. 3: each pixel is assigned with
one of 32 class labels including ‘void’. Those labeled
images are captured at 10 Hz. In this experiment, we
employ the major 11 labels frequently seen in the im-
age frames,road, building, sky, tree, sidewalk, car,
column pole, sign symbol, fence, pedestrianandbicy-
clist, to form the 11-class classification task.

We extracted the GLAC image feature (Kobayashi
and Otsu, 2008) from a local image patch of 20×40
pixels which slides at every 10 pixels over the resized
image of 480× 360. In this case, the feature vector
xxx ∈ ℜ2112 is associated with the 2D position of the
patch as the extra prior information; the total number
of prior types (grid points) isP= 1551. Thus, the task
is to categorize the patch feature vectors extracted at
1511 positions into the above-mentioned 11 classes.

We used the three sequences in theCamVid
dataset, and partitioned each sequence into three sub-
sequences along the time, one of which was used for
training and the others were for test. This cross vali-
dation was repeated three times and the averaged clas-
sification accuracy is reported.

For comparison, we applied the methods men-
tioned in Sec.1;simple andfull-connected meth-
ods as listed in Table 1. Thesimple method is a stan-
dard classification using the weightwww with the bias
b without relying on the prior informationp. The

full-connected method applies classifiers compris-
ing www[p] and b[p] at respective priorsp = 1, ..,P.
This method requires tremendous memory storage
for those P classifiers; in this experiment, 2112-
dimensional weight vectorswww in 11 class categories
are stored at each of 1511 positions. On the other
hand, in theproposed method, the feature vectors
are classified by using the identical weightwww across
the priors together with the adaptively optimized bias
b[p] depending on the priorp.

3.2 Computation Cost

We evaluated the proposed method in terms of com-
putation cost.

The first issue is related to the way of selecting
p in the iterative optimization; the proposed proce-
dure selectsp deterministically byp∗ = argmaxpδ[p]
(the 7-th line in Algorithm 1). As the alternative for
the proposed selection, the other two ways are con-
ceivable,sequentialandrandomselections. In the se-
quential selection, the target priorp is simply selected
as in raster scan over the image frame. The random
selection means that the targetp is randomly picked
up from the whole set{1, ..,P}. Fig. 4 shows the com-
parison results with respect to the objective cost in
(10) and the gap maxp δ[p] in (18) measuring viola-
tion of the KKT condition, both of which should be
decreased toward convergence. The optimization is
fast converged via the proposed method, while in the
other methods the optimization takes a larger num-
ber of iterations until convergence; in particular, the
sequential method requires more than 10,000 itera-
tions. These results reveal the importance of selecting
p to be optimized and show that the proposed method
quickly decreases the cost as well as the gap, leading
to fast convergence.

The second issue is about scalability of the pro-
posed method. The method trains the classifier by us-
ing all the samples across the priors, scale of which
is as large as in thesimple method. Fig. 5a shows
the computation time with comparison to thesimple
method on various sizes of training samples. These
methods are implemented by MATLAB usinglib-
svm (Chang and Lin, 2001) on Xeon 3.33GHz PC3.
The proposed method is significantly faster than the
simple method. The time complexity ofsimple
method which solves the standard SVM dual has been
empirically shown to beO(n2.1) (Joachims, 1999).
The proposed optimization approach iteratively works

3In this experiment, the feature vectors are actually con-
verted into the form of the kernel Gram matrix to which the
QP solver inlibsvm is directly applied, for fair comparison
of the QP problems in theproposed andsimple methods.
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Figure 4: Comparison for the ways of selecting the target
prior p in terms of (a) the objective cost in (10) and (b)
the gap maxp δ[p] in (18) which measures violation of KKT
condition.

on the block-wise subset into which the whole train-
ing set is decomposed (Sec.2.2). The subset is re-
garded as the working set whose size is an important
factor for fast computing QP (Fan et al., 2005). In the
proposed method, it is advantageous to inherently
define the subset,i.e., the working set, of adequate
size according to the prior. Thus, roughly speaking,
the time complexity of theproposed method results
in O(M n2.1

M2.1 ) = O( n2.1

M1.1 ). In particular, the computa-
tion time essentially depends on the (resultant) num-
ber of support vectors (SVs); Fig. 5b shows the num-
ber of support vectors produced by those two meth-
ods. Theproposed method provides a smaller num-
ber of support vectors, which significantly contributes
to reduce the computation time. As a result, the
proposed optimization approach works quite well to-
gether with the working set (priorp) selection dis-
cussed in the previous experiment (Fig. 4). These re-
sults show the favorable scalability of theproposed
method, especially compared to the standardsimple
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Figure 5: Comparison of thesimple andproopsed meth-
ods in terms of (a) computation time as well as (b) number
of support vectors (SVs).

method.

3.3 Classification Performance

We then compared the classification performance of
the three methods,simple, full-connected and
proposed (Table 1). Table 2 shows the overall per-
formance, demonstrating that theproposed method
outperforms the others. It should be noted that
thefull-connected method individually applies the
classifier specific to the priorp ∈ {1, ,P}, requiring
a plenty of memory storage and consequently taking
large classification time due to loading the enormous
memory. Theproposed method renders as fast clas-
sification as thesimple method since it enlarges only
the bias. By discriminatively optimizing the biases for
respective priors, the performance is significantly im-
proved in comparison to thesimple method; the im-
provement is especially found at the categories ofcar,
pedestrianandbicyclist that are composed of patch
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Figure 6: Maps of the biases learnt by theproposed method. The significance of the biases are shown by using pseudo colors
from (dark) blue to (dark) red. This figure is best viewed in color.

parts similar to other categories but are associated
with the distinct prior positions.

Finally, we show in Fig. 6 the biases learnt by
the proposed method; the biases{b[p]}p are folded
into the form of image frame according to the x-y po-
sitions. These maps of the biases reflect theprior
probability over the locations where the target cat-
egory appears. These seem quite reasonable from
the viewpoint of the traffic rules that the car obeys;
since theCamVid dataset is collected at the Cam-
bridge city (Brostow et al., 2008), in this case, the
traffic rules are of the United Kingdom. The high

biases for theskyare distributed above the horizon-
tal line, while those of theroad are high in the lower
part. Thepedestrianprobably walks on thesidewalk
mainly shown in the left side. The oncomingcar runs
on the right-hand road, and the row of thebuilding
is found on the roadside. These biases are adaptively
learnt from theCamVid dataset and they would be dif-
ferent if we use other datasets collected under differ-
ent traffic rules.
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Table 2: Classification accuracy (%).

simple full-connected proposed

road 93.10 93.80 94.92
building 75.90 72.96 78.70

sky 90.52 82.21 90.25
tree 70.49 77.59 79.95

sidewalk 77.06 78.43 81.36
car 53.84 58.64 65.16

column pole 9.53 16.15 12.85
sign symbol 1.73 1.62 1.70

fence 5.23 11.09 13.48
pedestrian 17.26 30.69 31.52
bicyclist 17.09 18.49 24.88

avg. 46.52 49.24 52.25

4 CONCLUSIONS

We have proposed a method to discriminatively learn
the prior biases in the classification. In the proposed
method, for improving the classification performance,
all samples are utilized to train the classifier and the
input sample is adequately classified based on the
prior information via the learnt biases. The proposed
method is formulated in the maximum-margin frame-
work, resulting in the optimization problem of the QP
form similarly to SVM. We also presented the compu-
tationally efficient approach to optimize the resultant
QP along the line of SMO. The experimental results
on the patch labeling in the on-board camera images
demonstrated that the proposed method is superior in
terms of classification accuracy and the computation
cost. In particular, the proposed classifier operates
as fast as the standard (linear) classifier, and besides
the computation time for training the classifier is even
faster than the SVM of the same size.
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