
Robust Execution of Rover Plans via Action Modalities Reconfiguration

Enrico Scala, Roberto Micalizio and Pietro Torasso
Dipartimento di Informatica, Universita’ di Torino, Torino, Italy

Keywords: Replanning, Plan Repair, Plan Execution, Space Exploration, Consumable Resources, CSP.

Abstract: Robust execution of exploration mission plans has to deal with limited computational power on-board a plan-
etary rover, and with limited rover’s autonomy. In most cases, these limitations practically prevent the rover
to synthesize a new mission plan when some unexpected contingency arises. The paper shows that when such
deviations refers to anomalies on the consumption of resources, robust execution can be achieved efficiently
through an action reconfiguration approach instead of a replanning from scratch. Building up on an extended
action model representation, the paper proposes an effective continual planner - ReCon - that, exploiting a
general purpose CSP solver, is able to (i) detect violations of mission resource constraints, and (ii) find (if any)
a new configuration of actions.

1 INTRODUCTION

The management of robotic agent plans operating
in hazardous and extreme environments is a critical
activity that has to take into account several chal-
lenges. In particular, in the context of space ex-
ploration, a planetary rover operates in an environ-
ment which is just partially observable and loosely
predictable. As a consequence, the rover must have
some form of autonomy in order to guarantee robust
plan execution (i.e., reacting to unexpected contin-
gencies). The rover’s autonomy, however, is typi-
cally bounded both because of limitations of on-board
computational power, and because the rover is not in
general allowed to change significantly the high level
plan synthesized on Earth. Space missions there-
fore exemplify situations where contingencies occur,
but plan repair must be achieved through novel tech-
niques trading-off rover’s autonomy and the stability
of the mission plan.

Robust plan execution has been tackled in two
ways: on-line and off-line. On-line approaches, such
as (Gerevini and Serina, 2010; van der Krogt and
de Weerdt, 2005; Garrido et al., 2010; Brenner and
Nebel, 2009; Scala, 2013b; Micalizio, 2013), in-
terleave execution and replanning: whenever unex-
pected contingencies cause the failure of an action,
the plan execution is stopped and a new plan is syn-
thesized as a result of a new planning phase. Off-line
approaches, such as (Block et al., 2006; Conrad and
Williams, 2011), avoid replanning by anticipating, at

planning time, the possible contingencies. The result
of such a planning phase is a contingent plan that en-
codes choices between functionally equivalent sub-
plans1. At execution time, the plan executor is able
to select a contingent plan according to the current
contextual conditions. However, as for instance in the
work of (Policella et al., 2009), the focus is mainly
on the temporal dimension and they do not consider
consumable and continuous resources.

In this paper we propose a novel on-line method-
ology to achieve robust plan execution, which is ex-
plicitly devised to deal with unexpected deviations in
the consumption of rover’s resources. First, in line
with the action-based approach a-la STRIPS (Fox
and Long, 2003) and differently from the constrained
based planning (Fratini et al., 2008; Muscettola,
1993), we model consumable resources as numeric
fluents (introduced in PDDL 2.1 (Fox and Long,
2003)). Then, we enrich the model of the rover’s ac-
tions by expliciting a set of execution modalities. The
basic idea is that the propositional effects of an action
can be achieved under different configurations of the
rover’s devices. These configurations, however, may
have a different impact on the consumption of the re-
sources. An execution modality explicitly models the
resource consumption profile when an action is car-
ried out in a given rover’s configuration. The integra-
tion of execution modality at the PDDL level allows a
seamless integration between planning and execution.

1The notion of alternative (sub)plans is also presented
for (off-line) scheduling; for details see (Barták et al., 2008)

142 Scala E., Micalizio R. and Torasso P..
Robust Execution of Rover Plans via Action Modalities Reconfiguration.
DOI: 10.5220/0004819501420152
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 142-152
ISBN: 978-989-758-015-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: A simple mission plan.

Relying on the concept of execution modalities,
we propose to handle exceptions arising in planetary
rover domains as a reconfiguration of action modali-
ties, rather than as a replanning problem. In particular,
the paper proposes a plan execution strategy, denoted
as ReCon; once (significant) deviations from the nom-
inal trajectory are detected, ReCon intervenes by re-
configuring the modalities of the actions still to be
performed with the purpose of restoring the validity
of resource constraints imposed by the rover mission.

To accomplish its task ReCon uses Choco2 as CSP
solver, so that it takes advantage of both the power of
the constraint programming and the high level repre-
sentation of PDDL.

After introducing a motivating example, we de-
scribe the employed action model, enriched with the
notion of execution modality. Then we introduce the
ReCon strategy and an example showing how the sys-
tem actually works in a exploration rover mission. Fi-
nally, an experimental section, which evaluates the
competence and the efficiency of the strategy w.r.t.
a traditional replanning from scratch and the LPG-
ADAPT system reported in (Gerevini et al., 2012).

2 MOTIVATING EXAMPLE

Let us consider a planetary rover in charge of explor-
ing (and analyzing) a number of potentially interest-
ing sites and able to transmit information towards the
Earth. In doing so the rover is capable of moving,
taking pictures, and starting the data upload once the
pieces of information must be transmitted. For sim-
plicity reasons, consider the mission plan of Figure
1, involving take picture, drive and communications
activities. This mission represents a feasible solu-
tion for a planning problem with goal: fin(r1,l3),
mem>=120, pwr>=0, time<=115g ; that is, at the end of
plan the rover must be located in l3 (propositional flu-
ent), the free memory must be (at least) 120 memory
units, there must be a positive amount of power, and
the mission must be completed within 115 secs.

2The software is at disposal at http://www.emn.fr/z-
info/choco-solver/, while the work has been presented in
(Narendra et al., 2008)

The figure shows how the four actions (regu-
lar boxes) change the status of the rover over the
time (rounded-corner boxes)3. Note that the status
of a rover involves both propositional fluents, (e.g.,
in(r1, l1) meaning rover r1 is in location l1);
and numeric fluents: memory represents the amount
of free memory, power is the amount of available
power, time is the mission time given in seconds, and
com_cost is an overall cost associated with commu-
nications.

The estimates about the rover’s status are inferred
by predicting, deterministically, the effects of the ac-
tions. In particular, the numeric fluents have been es-
timated by using a “default setting” (i.e., a standard
modality) associated with each action.

Let us now assume that during the execution of
the first drive action the rover has to travel across a
rough terrain. Such an unexpected condition affects
the drive as the rover is forced to slowdown4, and as
a consequence the drive action will take a longer time
to be completed; the effects are propagated till the last
snapshot, s 4 where the goal constraint time <= 115
will be no longer satisfied.

After detecting this inconsistency, approaches
based on a pure replanning step would compute a new
plan achieving the goal by changing the original mis-
sion. For instance, some actions could be skipped
in order to compensate the time lost during the first
drive.

However, robotic systems as a planetary rover
have typically different configurations of actions to
be executed and each configuration can have a differ-
ent impact on the mission progress. For instance the
robotic systems described in (Calisi et al., 2008) and
in (Micalizio et al., 2011) can perform a drive action
in fast or slow modes. Reliable transmission to the
earth, for example, can be slow and cheap, or fast and
expensive, depending on the devices actually used.

Our proposal is to explicitly represent such dif-
ferent configurations within the action models, and
hence try to resolve an impasse via a reconfiguration

3To simplify the picture, we show in the rover’s status
just a subset of the whole status variables

4The slowdown command of the rover may be the con-
sequence of a reactive supervisor, which operates as a con-
tinuous controller as shown in (Micalizio et al., 2011)

Robust�Execution�of�Rover�Plans�via�Action�Modalities�Reconfiguration

143

of the actions still to be performed. Intuitively, our
objective is to keep the high level plan structure un-
changed, but to adjust the modalities of the actions
still to be performed. In section 5 we will see an ex-
ample of such a reconfiguration.

In the next section we will introduce the rover ac-
tion model that explicitly expresses the set of execu-
tion modality at disposal.

3 MODELING ROVER’S
ACTIONS

As we have seen in the previous section, a planetary
rover can perform the same set of actions via different
configurations of parameters or devices. To capture
this aspect, this section introduces the rover action
model adopted in this work. The model exploits (and
extends) the numeric PDDL 2.1 action model (Fox
and Long, 2003), i.e. where the notion of numeric
fluents has been proposed. In particular, we use the
numeric fluents to model continuous and consumable
resources.

The intuition is that, while actions differ each
other in terms of qualitative effects (e.g. a drive action
models how the position of the rover changes after
the action application), the expected result of an ac-
tion can actually be obtained in many different ways
by appropriately configuring the rover’s devices (e.g.
the drive action can be performed with several engine
configurations). Of course, different configurations
have in general different resource profiles and it is
therefore possible that the execution of an action in
a given configuration would lead to a constraint vio-
lation, whereas the same action performed in another
configuration would not. We call these alternative
configurations modalities and we propose to capture
the impact of a specific modality by modeling the use
of specific configurations in terms of pre/post condi-
tions on the numeric fluents involved; such modalities
become explicit in the action model definition.

The resulting model expresses the rover actions at
two different levels of abstraction. The higher one
is the qualitative level indicating ”what” the action
does. The lower one is the quantitative level express-
ing ”how” the action achieves its effect.

The idea of alternative behaviors has also been
investigated in (off-line) scheduling, where the no-
tion of Temporal Network with Alternatives has been
introduced (Barták et al., 2008). It is quite evident
however that, as anticipated in the introduction, the
concept of execution modality is inspired to an (on-
line) action centered approach (Brenner and Nebel,
2009), rather than on a constraints/scheduling based

one (Cesta and Fratini, 2009).

By recalling our motivating example, Figure 2
shows the model of the drive action. The action
template drive (?r, ?l1, ?l2) requires a rover
?r to move from a location ?l1 to location ?l2.
:modalities introduces the set of modalities asso-
ciated with a drive; in particular, we express for this
action, three alternative modalities:
- safe: the rover moves slowly and far from obsta-
cles; intuitively the action should spend more time but
consuming less power
- cruise: the rover moves at its cruise speed and can
go closer to obstacles;
- agile: the rover moves faster than cruise, con-
suming more power but requiring less time.
The :precondition and :effect fields list the ap-
plicability conditions and the effects, respectively,
and are structured as follows: first a propositional for-
mula encodes the condition under which the action
can be applied; the second field (:effect) indicates
the positive and the negative effects of the action. For
each modality m in :modalities we have the amount
of resources required (numeric precondition) or con-
sumed/produced (numeric effect) by the action when
performed under that specific modality m.

For instance, the preconditions (reachable
?l1, ?l2) and (in ?r1, ?l1) are two atoms re-
quired as preconditions for the application of
the action. These two atoms must be satisfied
independently of the modality actually used to
perform the drive action. While the compari-
son (safe: (>= (power ?r) (* (safe_cons ?r)
(/ (distance ?l1 ?l2) (safe_speed ?r)))))
means that the modality safe can be se-
lected when the rover’s power is at least
larger than a threshold given by evaluating
the expression on the right side. Analogously,
(safe: (decrease (power ?r) (*(safe_cons ?r)
(/ (distance ?l1 ?l2) (safe_speed ?r)))) de-
scribes in the effects how the rover’s power is reduced
after the execution of the drive action. More pre-
cisely, we have modeled the power consumption as a
function depending on the duration of the drive action
(computed considering distance and speed) and the
average power consumption per time unit given a
specific modality. For instance, in safe modality,
the amount of power consumed depends on two
parameters (safe_cons ?r) and (safe_speed ?r)
which are the average consumption and the average
speed for the safe modality, respectively, while
(distance ?l1 ?l2) is the distance between the two
locations ?l1 and ?l2.
Finally, note that in the numeric effects of each
modality, the model updates also the fluent time

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

144

(:action drive
:parameters (?r - robot ?l1 - site ?l2 - site)
:modalities (safe,normal,agile)
:precondition (and (in ?r ?l1) (road ?l1 ?l2)
(safe: (>= (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r)))))
(cruise: (>= (power ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r)))))
(agile: (>= (power ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r)))))
)
:effect
(and
(in ?r ?l2) (not (in ?r ?l1))
(safe: (decrease (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (safe_speed ?r)))
(increase (powerC ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))
(cruise: (decrease (power ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (cruise_speed ?r))
(increase (powerC ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r)))))
(agile: (decrease (power ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (agile_speed ?r))
(increase (powerC ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r)))))
)

Figure 2: The augmented model of a drive action.

according to the selected modality. Also in this case,
the duration of the action is estimated by a function
associated with each possible action modality.

Analogously to the drive action we model modal-
ities also for the Take Picture (TP) and the Com-
munication (COMM). For TP we have the low (LR)
and high (HR) resolution modalities which differ in
the quality of the taken picture and the occupied
memory. Intuitively, the more the resolution is, the
more the memory consumption will be. Whereas for
the Communication we assume to have two differ-
ent channels of transmissions: CH1 with low overall
comm cost and low bandwidth, and CH2 with high
overall comm cost but high bandwidth.

The selection of action modalities has to take into
account that complex dependencies among resources
could exist. For instance, even if a high resolution
TP takes the same time as a low resolution TP, the
selection has a big impact on the amount of time
spent globally, too. As a matter of facts, as long as
the amount of stored information increases, the time
spent by a (possible) successive COMM grows up ac-
cordingly, which means that also the global mission
horizon will be revised.

Given the rover’s actions defined so far, a rover
mission plan is a total ordered set of fully instan-
tiated rover’s action templates5. Given a particular
rover’s state S and a given set of goals G to be reached

5The plan can be also generated automatically by ex-
ploiting a numeric planner system, properly modified to
handle actions with modalities. (e.g., the Metric-FF plan-
ning system (Hoffmann, 2003) or LPG (Gerevini et al.,
2008)

(including both propositional/classical conditions and
constraints on the amount of resources), the mission
plan is valid iff it achieves G from S.
Executing the Mission Plan. As we have seen in the
previous section, the rover’s mission can be threat-
ened many times by unexpected contingencies; so the
validity of the mission can be easily compromised
during its actual execution.

Nevertheless, when the detected unexpected con-
tingency at execution time just invalidates the re-
source consumption expectations, even if the current
modality allocation would not be consistent with the
constraints involved in the plan and in the goal, there
could be ”other” allocations of modalities still feasi-
ble. By exploiting this intuition, the next section in-
troduces an adaptive execution technique which, in-
stead of abandoning the mission being executed, tries
first to repair the flaws via a reconfiguration of the
action modalities. The reconfiguration considers all
those actions still to be executed.

Given a plan P, to indicate when a plan is
just resource inconsistent, we will use the predicate
res incon over P, i.e. we will say res incon(P). Other-
wise we will say that the plan is valid or structurally
invalid. This latter case happens when, given the cur-
rent plan formulation, at least an action in the plan
is not propositional applicable, or there is at least a
missing (propositional) goal.

4 RECON: ADAPTIVE PLAN
EXECUTION

In this section we describe how the plan adaptation
process is actually carried on by exploiting a Con-
straint Satisfaction Problem representation. The main
strategy implemented, namely ReCon, is a contin-
ual planning agent (Brenner and Nebel, 2009),(des-
Jardins et al., 1999), extended to deal with the rover
actions model presented in the previous section. In or-
der to handle the CSP representation, ReCon exploits
two further sub-modules: Update by means of which
new observations are asserted within the CSP repre-
sentation, and Adapt which has the task of making
the mission execution adaptive to the incoming situa-
tion.

4.1 The Continual Planning Loop

Algorithm 1 shows the main steps required to execute
and (just in case) adapt the plan being executed. The
algorithm takes in input the initial rover’s state S0, the
mission goal Goal, and the plan P expressed as dis-
cussed in the previous section. Note that each action

Robust�Execution�of�Rover�Plans�via�Action�Modalities�Reconfiguration

145

has to have a particular modality of execution instan-
tiated. The algorithm returns Success when the exe-
cution of the whole mission plan achieves the goal;
Failure otherwise. In this case, a failure means that
there is no way to adapt the current plan in order to
reach the goal satisfying mission constraints. To re-
cover from this failure, a replanning step altering the
structure of the plan should be invoked, but this step
requires the intervention of the ground control station
on Earth.

The first step of the algorithm is to build a
CSPModel representing the mission plan (line 1).
Due to lack of space, we cannot present this step
in details; our approach, however, inherits the main
steps by Lopez et al. in (Lopez and Bacchus, 2003) in
which the planning problem is addressed as a CSP6.
As a difference w.r.t. the classical planning, the en-
coding exploited by our approach needs to store vari-
ables for the modalities to be chosen, and variables for
the numeric fluents involved in the plan. Numeric flu-
ents variables are replicated as many steps in the plan.
The purpose is to capture all the possible evolutions
of resources profiles given the modalities that will be
selected. The constraints oblige the selection of the
modality to be consistent with the resource belonging
to the previous and successive time step. Moreover,
further constraints allow only reconfigurations con-
sistent with the current observation acquired (which
at start-up corresponds to the initial state), and the
goals/requirement of the mission.

Once the CSPModel has been built, the algorithm
loops over the execution of the plan. Each iteration
corresponds to the execution of the i-th action in the
plan. At the end of the action execution the process
verifies the current observation obsi+1 with the rest of
the mission to be executed. In case the plan is struc-
turally invalid (some propositional conditions are not
satisfied or the goal cannot be reached) ReCon stops
the plan execution and returns a failure; i.e., a replan-
ning procedure is required.

Otherwise we can have two other situations. First,
there have been no consistent deviations from the
nominal predictions therefore the execution can pro-
ceed with the remaining part of the plan. Second the
plan is just resource inconsistent (res incon(P), line
10). In this latter case, ReCon has to adapt the cur-
rent plan by finding an alternative assignments to ac-
tion modalities that satisfies the numeric constraints
(line 11). If the adaptation has success, a new non-
empty plan newP is returned and substituted to the old
one. This new plan is actually the old plan, but with a
different allocations of action modalities. Otherwise,

6Alternative CSP conversions are possible; for instance
see (Barták and Toropila, 2010)

the plan cannot be adapted and a failure is returned;
in this case, the plan execution is stopped and a new
planning phase is needed.

Algorithm 1: ReCon.
Input: S0, Goal, P
Output: Success or Failure

1 CSPModel = Init(S0;Goal;P) ;
2 i = 0;
3 while : P is completed do
4 execute(ai, curMod(ai));
5 obsi+1 = observe();
6 if P is structurally invalid w.r.t. obsi+1

and Goal then
7 return Failure

8 else
9 Update(CSPModel,ai,num(obsi+1));

10 if res incon(P) then
11 newP =

Adapt(CSPModel,i,Goal,P);
12 if newP 6= /0 then
13 P = newP

14 else
15 return Failure

16 i = i+1

17 return Success

4.2 Update

The Update step is sketched in Algorithm 2. The al-
gorithm takes in input the CSP model to update, the
last performed action ai, and the set NObs of observa-
tions about numeric fluents. The algorithm starts by
asserting within the model that the i-th action has been
performed; see lines 1 and 2 in which variable modi is
constrained to assume the special value exec. In par-
ticular, a first role of the exec value is to prevent the
adaptation process to change the modality of an ac-
tion that has already been performed, as we will see in
the following section. Moreover, exec allows also the
acquisition of observations even when the observed
values are completely unexpected. In fact, by assign-
ing the modality of action ai to exec, we relax all the
constraints over the numeric variables at step i+ 1-
th (which encode the action effects). This is done in
lines 3-5 in which we iterate over the numeric fluents
N j mentioned in the effects of action ai, and assign
to the corresponding variable at i+1-th step the value
observed in NObs. On the other hand, all the numeric
fluents that are not mentioned in the effects of action
ai do not change, so the corresponding variables at

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

146

step i+1 assume the same values as in the previous i-
th step (lines 6-8). The idea of the Update is to make
the CSP aware of the current new observations and
the modalities already executed. In this way, a recon-
figuration task does not need to rebuild the structure
completely from scratch.

Algorithm 2: Update
Input: CSPModel, ai,NObs
Output: modified CSPModel

1 delConstraint(CSPModel,modi=curMod(ai));

2 addConstraint(CSPModel,modi=exec);
3 foreach N j 2 a f f ected(ai) do
4 addConstraint(CSPModel,
5 (modi=exec)!

N j
i+1=get(NObs,N j

i+1))

6 foreach N j 2 :a f f ected(ai) do
7 addConstraint(CSPModel,
8 (modi=exec)! N j

i+1=N j
i)

4.3 Adapt

The Adapt module, shown in Algorithm 3, takes in
input the CSP model, the index i of the last action per-
formed by the rover, the mission goal, and the plan P;
the algorithm returns a new adapted plan, if it exists,
or an empty plan when no solution exists.

The algorithm starts by removing from CSPModel
the constraints on the modalities of actions still to
be performed; i.e., each variable modk with k greater
than i is no longer constrained (ai is the last performed
action and its modality is set to exec) (lines 1-2). This
step is essential since the current CSPModel is incon-
sistent; that is, the current assignment of modalities
does not satisfies the global constraints. By removing
these constraints, we allow the CSP solver to search
in the space of possible assignments to modality vari-
ables (i.e., the actual decisional variables, since the
numeric fluents are just side effects of the modality
selection), and find an alternative assignment that sat-
isfies the global constraints (line 3). If the solver re-
turns an empty solution, then there is no way to adapt
the current plan and Adapt returns no solution. Oth-
erwise (lines 6-10), at least a solution has been found.
In this last case, a new assignment of modalities to the
variables modk (k : i+1::jPj) is extracted from the so-
lution, and this assignment is returned to the ReCon
algorithm as a new plan newP such that the actions
are the same as in P, but the modality labels associ-
ated with the actions ai+1; ::;ajPj are different.

Note that, in order to keep updated the CSP model

for future adaptations, the returned assignment of
modalities is also asserted in CSPModel; see lines 6
to 10.

Algorithm 3: Adapt.
Input: CSPModel, i,Goal,P
Output: a new plan, if any

1 for k=i+1 to jPj do
2 delConstraint(CSPModel

modk=currentMod(ak))
3 Solution = solve(CSPModel);
4 if Solution = null then
5 return /0

6 else
7 newP=extractModalitiesVar(Solution);

8 for k=i+1 to jnewPj do
9 addConstraint(CSPModel,

modi=curMod(newP[i]))
10 return newP

5 RUNNING THE MISSION
ROVER EXAMPLE

Let us consider again the example in Figure 1, and
let us see how RoCon manages its execution. First
of all, the plan model must be enriched with the ex-
ecution modalities as previously explained; Figure 3
(top) shows the initial configuration of action modal-
ities: the drive actions have cruise modalities, the
take picture (TP) has HR (high resolution) modality,
and the communication (Comm) uses the low band-
width channel (CH1). This is the enriched plan ReCon
receives in input.

Now, let us assume that the actual execution of the
first drive action takes a longer time than expected,
47s instead of 38s, and consumes more power, 3775
Joule instead of 3100 Joule. While the discrepancy
on power is not a big issue as it will not cause a fail-
ure, the discrepancy on time will cause the violation
of the constraint time <=115; in fact, performing the
subsequent actions in their initial modalities would re-
quire 120 seconds. In other words, the assignment of
modalities to the subsequent actions does not satisfies
the mission constraints. This situation is detected by
ReCon that intervenes and, by means of the Adapt
algorithm discussed above, tries to find an alternative
configuration of modalities.

Let us assume that communication cost is con-
strained; that is, the mission goal includes the con-
straint com_cost = 1; this prevents ReCon from using

Robust�Execution�of�Rover�Plans�via�Action�Modalities�Reconfiguration

147

Figure 3: The initial configuration of modalities (above), and the reconfigured plan (below).

the fast communication channel. The more intuitive
decision is to promote the execution of the drive to
agile. However, this would cause the violation on the
constraint concerning the maximum amount of power
to be spent. Therefore ReCon has to look for an alter-
native assignments of modalities.

Observing the model of the action, it is interesting
to note that the a lower resolution image consumes
less memory, meaning that the successive communi-
cation, in our case (COMM R1 L3), will need less time
(and also less power) for achieving its effects. For this
reason ReCon demotes the next activity, i.e. TP, to be
execute to modality LR and so the global constraints
are now satisfied.

Of course, we assume that mission constraints
leave ReCon some room to repair resource inconsis-
tent situations. For instance, if the mission has re-
quired an hard constraint on the quality of the taken
images, the low resolution would have not been possi-
ble, and hence an overall replanning would have been
necessary.

In principle, by flattening all the actions and the
given modalities as explained in (Scala, 2013c), re-
planning is possible as alternative to the reconfigura-
tion mechanism. In this case, however, the problem to
be handled would become much more difficult, since
all the possible action sequences applicable starting
from the current state could be explored.

To highlight the complexity arising from a replan-
ning formulation, let us assume that in our example
there is a connection from location l3 to l4, and from
l2 and l4. That is, the rover can move not only from
l1 to l2, but also from l2 to l4 and from l4 to l3, for
all the provided modalities. In addition, for simplic-
ity reasons, assume that from that point (l3), the only
possible sequence of actions toward the goal is given
by a2 and a3.

While the reconfiguration mechanism can focus
just on the impact on resources given by the selection

of modalities for the next actions (tp, drive, comm),it
is quite evident that a traditional replanner should
deal with a larger search space. As matter of fact, it
should consider also the (several) possible trajectories
of states given by exploring the alternatives ways of
reaching location l2 (drive(r1,l2,l4)), for all the pos-
sible modalities of execution. That is, it will have to
cope with both the propositional and resource con-
straints of the arising planning problem. For a deeper
discussion on this aspect, see (Scala, 2013c).

As we will see in the next section, this different
characterization is crucial for determining the perfor-
mance of the reconfiguration over replanning from
scratch, and even over the state of the art plan repair
strategy presented in (Fox et al., 2006).

6 EXPERIMENTAL VALIDATION

To assess the effectiveness of our proposal, we evalu-
ated two main parameters: (1) the computational cost
of reconfiguration, and (2) the competence of ReCon,
that is, the ability of completing a mission.

To this aim, we have compared ReCon with three
alternative strategies: REPLAN, LPG-ADAPT and
NoRep. Whenever the plan becomes resources in-
consistent, both REPLAN and LPG-ADAPT stop the
execution of the plan and try to recover from the im-
passe. REPLAN searches a new plan completely from
scratch, while LPG-ADAPT uses the old plan as a
guidance to speed-up the resolution process7. Con-
versely, NoRep just stops the plan execution as soon
as it is no longer valid. We used REPLAN and LPG-
ADAPT to better assess the contribution of ReCon

7LPG-ADAPT, (Gerevini et al., 2012), is the plan adap-
tation extension of LPG, (Gerevini et al., 2008), one of the
more awarded systems throughout the planning competi-
tions of the last decade. LPG-ADAPT can be considered
the state of the art in the context of plan adaptation

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

148

w.r.t. the current state of the art in (re)planning deal-
ing with consumable resources.

We have implemented ReCon in Java 1.7 by ex-
ploiting the PPMaJaL library8; the Choco CSP solver
(version 2.1.3) 9 has been used in the Adapt algorithm
to find an alternative configuration. Concerning the
REPLAN strategy, we invoke Metric-FF (Hoffmann,
2003) by converting the rover actions with modalities
in PDDL 2.1 actions. In order to emulate an (on-line)
plan execution context, we allotted each computation
with a time deadline, corresponding to 1 minute.

As we will see below, this parameter is critical for
the competence of the system being tested. For this
reason, in appendix we report also results obtained
with two other time deadlines, representing extremal
conditions: 5 secs (near real time) and 180 secs.

Our tests set consists of 168 plans; each plan in-
volves up to 34 actions (i.e., drives, take pictures, and
communications), it is fully instantiated (a modality
has been assigned to each action), and feasible since
all the goal constraints are satisfied when the plan is
submitted for the execution.

To simulate unexpected deviations in the con-
sumption of the resources, we have run10 each test
in thirteen different settings. In each of these settings
we have noised the amount of resources consumed by
the actions. In particular, in setting 1, an action con-
sumes 10% more than expected at planning time. In
setting 2, the noise was increased to 15%, and so on
until in setting 13 where the noise was set to 70%, i.e.
an action consumes 70% more resources than initially
predicted.

Figure 4 reports the competence - measured as the
percentage of performed actions in the plan - of the
three strategies, in the thirteen settings of noise we
have considered. As expected, the competence de-
creases as long as the amount of noise increases, for
all the strategies tested. ReCon resulted more com-
petent than both REPLAN and LPG-ADAPT. Even
though REPLAN and LPG-ADAPT can modify all
the aspects of the plan structure, and hence they are
theoretical more competent than ReCon, the search
spaces generated by the overall arising planning prob-
lems turned out to be too large from the point of view
of REPLAN and LPG-ADAPT and hence they of-
ten trespassed the time limit of 60 secs. In particu-

8www.di.unito.it/�scala
9The Choco Solver implements the state of the art al-

gorithms for constraint programming and has already been
used in space applications, see (Cesta and Fratini, 2009).
Choco can be downloaded at http://www.emn.fr/linebreak
z-info/choco-solver/.

10Experiments have run on a 2.53GHz Intel(R)
Core(TM)2 Duo processor with 4 GB.

lar we can observe an average gap of 20% between
the percentage of plan completed by ReCon and RE-
PLAN. As refers the comparison with LPG-ADAPT,
the gap is more limited for the high level of noise,
showing how LPG-ADAPT can effectively takes ad-
vantage from the knowledge of the previous plan. It
is worth noting that, as expected, this gap decreases
as long as the noise increase; this is of course due to
the contribution of the flexibility of the search space
in which LPG-ADAPT and REPLAN can find a solu-
tion.

Figure 5 shows the computational cost, on aver-
age, of the three strategies. Here the advantage of
ReCon is very large. In fact, even for the worst case
(when the noise is set to be 70%), ReCon is extremely
efficient, indeed it takes, on average, just 356 msec.
Whereas, even for the cases with few noise, REPLAN
takes about 5 secs of cpu-time till the 20 secs em-
ployed for the worst cases, while LPG-ADAPT per-
forms a little bit worse than REPLAN. Note that for
each case considered, the time for the repair corre-
sponds to the sum of all the attempts to recovery
from the failure (reconfiguration, plan-adaptation or
replanning) performed until the end of the mission.

Finally, in Figure 6 we conclude by analyzing
the number of invocations of the systems throughout
the whole plan execution. It must be noticed that in
the first ten noise settings (i.e., noise from 10% to
55%), REPLAN is activated, on average, more of-
ten than Recon. However, for the last three noise
settings (i.e., noise from 60% to 70%) ReCon is in-
voked slightly more times than REPLAN. This hap-
pens because, as long as the plan execution process
goes on, the constraints becomes more and more tight,
causing the detection mechanism to be invoked more
frequently. Differently, each invocation of REPLAN
generates a completely new plan; therefore the plan
execution till the end is not directly related to the pre-
vious plan execution problem. This is the reason why
REPLAN almost preserves the same amount of invo-
cations throughout the cases we have tested. A similar
trend can be found in comparing LPG-ADAPT with
ReCon. Here LPG-ADAPT makes on the average less
repair than ReCon already from the 4th level of noise;
intuitively, this difference is probably due to the dif-
ferent way in which LPG, w.r.t. Metric-ff, explores
the search space. Of course this should be verified
testing other numeric planners.

7 CONCLUSIONS

We have proposed in this paper a novel approach to
the problem of robust plan execution. Rather than

Robust�Execution�of�Rover�Plans�via�Action�Modalities�Reconfiguration

149

Figure 4: Competence (60 secs setting): Percentage of per-
formed actions.

Figure 5: CPU time (60 secs setting).

Figure 6: Average Number of Repairs (60 secs setting).

recovering from plan failures via a re-planning step
(see e.g., (Gerevini and Serina, 2010; van der Krogt
and de Weerdt, 2005; Garrido et al., 2010; Scala,
2013a)), we have proposed a methodology, called Re-
Con, based on the re-configuration of the plan actions.
ReCon is justified in all those scenarios where a pure
replanning approach is unfeasible. This is the case,
for instance, of a planetary rover performing a space
exploration mission. Albeit a rover must exhibit some
form of autonomy, its autonomy is often bounded

by two main factors: (1) the on-board computational
power is not always sufficient to handle mission re-
covery problems, and (2) the rover cannot in general
deviate from the given mission plan without the ap-
proval from the ground control station.

ReCon presents many advantages w.r.t. re-
planning. First of all, as the experiments have demon-
strated, reconfiguring plan actions is computationally
cheaper than synthesizing a new plan from scratch
and even trying to adapt it via a classical plan adap-
tation tool (as the one reported in (Gerevini et al.,
2012)). Moreover, ReCon leaves the high-level struc-
ture of the plan (i.e., the sequence of mission tasks)
unchanged, but endows the rover with an appropri-
ate level of autonomy for handling unexpected con-
tingencies. ReCon can be considered as a comple-
mentary repair strategy to other works in the con-
text of autonomy for space as those in (Chien et al.,
2012); as matter of facts, ReCon explores a different
dimension of the repair problem, which is based on an
action-centered planning representation rather than on
a timeline based perspective (Fratini et al., 2008).

The solution described in this paper has been
tested on a challenging domain such as a space ex-
ploration domain, but its applicability is not restricted
to this domain. Many other robotic tasks could benefit
of the proposed approach, since in many of them the
need of adapting the plan execution to the resources
constrains is very relevant.

The approach we have presented can be improved
in a number of ways. A first important enhancement
is the search for an optimal solution. In the current
version, in fact, ReCon just finds one possible con-
figuration that satisfies the global constraints. In gen-
eral, one could be interested in finding the best con-
figuration that optimizes a given objective function.
Reasonably, the objective function could take into ac-
count the number of changes to action modalities;
for instance, in some cases it is desirable to change
the configuration as little as possible. Of course, the
search for an optimal configuration is justified when
the global constraints are not strict, and several alter-
native solutions are possible.

REFERENCES

Barták, R., Ĉepek, O., and Hejna, M. (2008). Temporal
reasoning in nested temporal networks with alterna-
tives. In Fages, F., Rossi, F., and Soliman, S., ed-
itors, Recent Advances in Constraints, volume 5129
of Lecture Notes in Computer Science, pages 17–31.
Springer Berlin Heidelberg.

Barták, R. and Toropila, D. (2010). Solving sequential plan-

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

150

ning problems via constraint satisfaction. Fundam.
Inf., 99(2):125–145.

Block, S. A., Wehowsky, A. F., and Williams, B. C. (2006).
Robust execution of contingent, temporally flexible
plans. In Proc. of National Conference on Artificial
Intelligence (AAAI-06): 802-808.

Brenner, M. and Nebel, B. (2009). Continual planning and
acting in dynamic multiagent environments. Jour-
nal of Autonomous Agents and Multiagent Systems,
19(3):297–331.

Calisi, D., Iocchi, L., Nardi, D., Scalzo, C., and Zi-
paro, V. A. (2008). Context-based design of robotic
systems. Robotics and Autonomous Systems (RAS),
56(11):992–1003.

Cesta, A. and Fratini, S. (2009). The timeline representa-
tion framework as a planning and scheduling software
development environment. In Proc. of P&S Special
Interest Group Workshop (PLANSIG-10).

Chien, S., Johnston, M., Frank, J., Giuliano, M., Kavelaars,
A., Lenzen, C., and Policella, N. (2012). A gener-
alized timeline representation, services, and interface
for automating space mission operations. Technical
Report JPL TRS 1992+, Ames Research Center; Jet
Propulsion Laboratory.

Conrad, P. R. and Williams, B. C. (2011). Drake: An effi-
cient executive for temporal plans with choice. Jour-
nal of Artificial Intelligence Research (JAIR), 42:607–
659.

desJardins, M., Durfee, E. H., Jr., C. L. O., and Wolverton,
M. (1999). A survey of research in distributed, con-
tinual planning. AI Magazine, 20(4):13–22.

Fox, M., Gerevini, A., Long, D., and Serina, I. (2006). Plan
stability: Replanning versus plan repair. In Proc. In-
ternational Conference on Automated Planning and
Scheduling (ICAPS-06), pages 212–221.

Fox, M. and Long, D. (2003). Pddl2.1: An extension to pddl
for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR), 20:61–124.

Fratini, S., Pecora, F., and Cesta, A. (2008). Unifying
planning and scheduling as timelines in a component-
based perspective. Archives of Control Sciences,
18(2):231–271.

Garrido, A., C., G., and Onaindia, E. (2010). Anytime plan-
adaptation for continuous planning. In Proc. of P&S
Special Interest Group Workshop (PLANSIG-10).

Gerevini, A., Saetti, A., and Serina, I. (2012). Case-based
planning for problems with real-valued fluents: Ker-
nel functions for effective plan retrieval. In Proc. of
European Conference on AI (ECAI-12), pages 348–
353.

Gerevini, A., Saetti, I., and Serina, A. (2008). An approach
to efficient planning with numerical fluents and multi-
criteria plan quality. Artificial Intelligence, 172(8-
9):899–944.

Gerevini, A. and Serina, I. (2010). Efficient plan adapta-
tion through replanning windows and heuristic goals.
Fundamenta Informaticae, 102(3-4):287–323.

Hoffmann, J. (2003). The metric-ff planning system: Trans-
lating ”ignoring delete lists” to numeric state vari-
ables. Journal of Artificial Intelligence Research
(JAIR), 20:291–341.

Lopez, A. and Bacchus, F. (2003). Generalizing graphplan
by formulating planning as a csp. In Proc. of Inter-
national Conference on Artificial Intelligence (IJCAI-
03), pages 954–960.

Micalizio, R. (2013). Action failure recovery via model-
based diagnosis and conformant planning. Computa-
tional Intelligence, 29(2):233–280.

Micalizio, R., Scala, E., and Torasso, P. (2011). Intelli-
gent supervision for robust plan execution. In LNCS
6954 of Associazione Italiana per Intelligenza Artifi-
ciale (AIxIA-11), pages 151–163.

Muscettola, N. (1993). Hsts: Integrating planning and
scheduling. Technical Report CMU-RI-TR-93-05,
Robotics Institute, Pittsburgh, PA.

Narendra, J., Rochart, G., and Lorca, X. (2008). Choco:
an open source java constraint programming library.
In CPAIOR’08 Workshop on Open-Source Software
for Integer and Contraint Programming (OSSICP’08),
pages 1–10.

Policella, N., Cesta, A., Oddi, A., and Smith, S. (2009).
Solve-and-robustify. Journal of Scheduling, 12:299–
314. 10.1007/s10951-008-0091-7.

Scala, E. (2013a). Numeric kernel for reasoning about plans
involving numeric fluents. In Baldoni, M., Baroglio,
C., Boella, G., and Micalizio, R., editors, AI*IA 2013:
Advances in Artificial Intelligence, volume 8249 of
Lecture Notes in Computer Science, pages 263–275.

Scala, E. (2013b). Numerical kernels for monitoring and
repairing plans involving continuous and consumable
resources. In Proc. of International Conference on
Agents and Artificial Intelligence (ICAART-13), pages
531–534.

Scala, E. (2013c). Reconfiguration and Replanning for ro-
bust Execution of Plans Involving Continous and Con-
sumable Resources. PhD thesis, Department of Com-
puter Science - Turin.

van der Krogt, R. and de Weerdt, M. (2005). Plan repair
as an extension of planning. In Proc. International
Conference on Automated Planning and Scheduling
(ICAPS-05), pages 161–170.

APPENDIX

This appendix shows extra experimental results for
the test cases used in section 6. In particular, we have
run the LPG-ADAPT system (Gerevini et al., 2012),
and the system developed in this paper, by using two
alternative time thresholds: 5 secs and 180 secs. Our
objective is to study the behavior of the systems vary-
ing the maximum cpu time at disposal to attempt the
repair for very critical (5 secs) and quite permissive
(180 secs) situations.

As we can see from figure 7, this parameter is
crucial for the competence of LPG-ADAPT, while it
does not condition the competence of ReCon. As ex-
pected, the LPG-ADAPT competence is almost the
same of ReCon for the 180 secs; while with 5 secs, a

Robust�Execution�of�Rover�Plans�via�Action�Modalities�Reconfiguration

151

(a) 5 secs setting (b) 180 secs setting

Figure 7: Competence: Percentage of performed actions.

(a) 5 secs setting (b) 180 secs setting

Figure 8: CPU time.

(a) 5 secs setting (b) 180 secs setting

Figure 9: Average Number of Repairs.

replanning based approach is not competitive at all.
Of course, the performance showed in 8 for LPG-
ADAPT comes to a price, given by a larger cpu-time
spent totally (figure 8).

Let us remember that such a cpu time is the sum
of all the repairs attempted for each given tested case.
As expected, this parameter increases as long as the
noise grows, since we can have a larger number of re-

pair process to perform, and the constraints become
tighter.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

152

