
Decomposition Tehniques
for Solving Frequency Assigment Problems (FAP)

A Top-Down Approach

Lamia Sadeg-Belkacem1,2,3, Zineb Habbas2, Fatima Benbouzid-Si Tayeb1 and Daniel Singer2

1LCMS, ESI, Algiers, Algeria
2 LCOMS, University of Lorraine, Ile du Saulcy, 57045 Metz cedex, France

3Laboratory of Applied Mathematics, Military Polytechnic School, Algiers, Algeria

Keywords: Frequency Assignment Problem, Constraint Satisfaction Problem, Graph Clustering, Genetic Algorithm.

Abstract: This paper deals with solvingMI-FAP problem. Because of the NP-hardness of the problem, it is difficult to
cope with real FAP instances with exact or even with heuristic methods. This paper aims at solving MI-FAP
using a decomposition approach and mainly proposes ageneric Top-Down approach. The key idea behind
the generic aspect of our approach is to link the decomposition and the resolution steps. More precisely,
two generic algorithms calledTop-Downand Iterative Top-Downalgorithms are proposed. To validate this
approach two decomposition techniques and one efficientAdaptive Genetic Algorithm(AGA-MI-FAP) are
proposed. The first results demonstrate good trade-off between the quality of solutions and the execution time.

1 INTRODUCTION AND
RELATED WORKS

The increasing development of new wireless ser-
vices has led to foster studies on Frequency Assign-
ment Problem (FAP). FAP was proved to beNP-
hard (Hale, 1980) and more details on FAP can be
found in (Aardal et al., 2003). The present work deals
with the Minimum Interference Frequency Assign-
ment Problem (MI-FAP) that aims to allocate a re-
duced number of frequencies to transmitters/receivers
while minimizing the overall set of interferences in
the network. Because of the NP-hardness of the prob-
lem it is very difficult to cope with real instances with
both exact or heuristic algorithms. Although several
exact approaches have been proposed (enumerative
search, B&B, ...), they are not efficient when dealing
with realistic instances. In order to address large in-
stances of FAP, numerous heuristics and metaheuris-
tics have been proposed. One can cite (Maniezzo and
Carbonaro, 2000) who applied an Ant Colony Opti-
mization metaheuristic to MI-FAP. (Kolen, 2007) pro-
posed a Genetic Algorithm but it is very time con-
suming. (Voudouris and Tsang, 1995) examined the
application of the Guided Local Search to FAP. How-
ever, all those metaheuristics have not confirmed their
performances on large instances.

In the last decade, some works have investigated
decomposition techniques in order to address large in-
stances of FAP proposing to exploit structural proper-
ties of the problem. (Koster et al., 1998) and (Al-
louche et al., 2010) usedTree Decompositionto de-
compose the problem and used exact algorithms for
its resolution. This approach improved several lower
bounds for hard instances of CALMA (CALMA-
website, 1995). (Colombo and Allen, 2007) proposed
a generic algorithm for decomposing the problem into
a collection of sub-problems connected by acut and
solving them in a recursive way by metaheuristics.
More recently, (Fontaine et al., 2013) developed a lo-
cal search algorithm guided by a tree decomposition.

This paper presents the first investigations towards
a generic method based on decomposition combined
with metaheuristics for solving large optimization
problems. The MI-FAP problem is used as a particu-
larly representative and interesting target application.
The objective here is twofold, to solve the problem
near optimally and in the shortest possible time. The
generic method leads to an originalTop-Down ap-
proachsolving first the sub-problem associated with
the cut and the sub-problems associated with the clus-
ters afterwards. Two versions of the method are pro-
posed. The first one calledTop-Downis a backtrack-
free algorithm and the second one is an improved

477Sadeg-Belkacem L., Habbas Z., Benbouzid-Si Tayeb F. and Singer D..
Decomposition Tehniques for Solving Frequency Assigment Problems (FAP) - A Top-Down Approach.
DOI: 10.5220/0004820204770484
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 477-484
ISBN: 978-989-758-015-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

version calledIterative-Top-Down. To validate our
propositions two decomposition algorithms are de-
fined, based both on the well known Min-Cut decom-
position algorithm of (Stoer and Wagner, 1997). One
is calledBalanced Min-Cut Weigthed Decomposition
and the otherBalanced Min-Cut Cardinality Decom-
position. A robust and fast Genetic Algorithm for
MI-FAP has also been developed in order to solve
the sub-problems. For the refinement of the global
solution, the 1-opt local search was used. One can
notice that this generic method can be used with any
other decomposition, any other resolution algorithm.
The quality of solutions and the runtime of the differ-
ent approaches, with and without decomposition, are
compared on benchmarks given in CALMA project.
The results indicate that our best strategy can signifi-
cantly improve the computation time without any sig-
nificant loss of quality of the solution.

The rest of this paper is organized as follows.
Section 2 gives a formal presentation of FAP. Sec-
tion 3 presents a generic Top-Down approach for
the resolution of FAP involving a decomposition
step. Two variants of Balanced Min-Cut Decompo-
sitions are presented in Section 4. Section 5 presents
AGA MI-FAP and 1-opt local search method. Sec-
tion 6 presents the first results of this approach while
Section 7 concludes the paper.

2 FORMULATIONS OF FAP

2.1 Partial Constraint Satisfaction
Problems (PCSP)

Definition 1. Constraint Satisfaction Problem. A
Constraint Satisfaction Problem (CSP) is defined as a
triple P=< X,D,C> where

• X = {x1, ...,xn} is a finite set of n variables.

• D= {D1, ...,Dn} is a set of n finite domains. Each
variable xi takes its value in the domain Di .

• C = {C1, ...,Cm} is a set of m constraints. Each
constraint Ci is defined on an ordered set of
variables Si ⊆ X called the scope of Ci .
For each constraint Ci a relation Ri specifies the
authorized values for the variables defined in
Si. This relation Ri can be defined intentionally
as a formula or extentionally as a set of tuples,
Ri ⊆∏xk∈Si) Dk (subset of the cartesian product).

Definition 2. Constraint Graph. A binary CSP
P =< X,D,C > can be represented by a Con-
straint Graph G=< V,E > where V = X and

E = {(xix j) : (xix j) ∈C}.

Definition 3. PCSP (Koster et al., 1998). A bi-
nary Partial Constraint Satisfaction Problem (PCSP)
is defined a a quintuple P=< X,D,C,P,Q > where
< X,D,C> is a binary CSP as defined previously. P
is a set of constraint -penalty functions P= {P(xixj) :
Di ×D j → R} where (xix j) ∈ C and Q is a set of
variable-penalty functions Q= {Qxi : Di→R} where
xi ∈ X.
Each value taken by a variable xi ∈ X can be sub-
ject to a penalty. Moreover, a constraint(xix j) ∈ C
indicates that some combinations of values for xi and
x j are also penalized. The objective when solving a
PCSP is to select a value for each variable xi ∈ X
such that the total penalty is minimized.
A solution of a PCSP is represented by a complete as-
signment of values to each variable xi ∈ X denoted
< d1,d2, . . . ,dn > where di ∈ D(i). The cost of a so-
lution is defined as the sum of all constraint-penalties
and variable-penalties, as follows:

∑
xi∈X

Qxi (di)+ ∑
(xixj)∈C

P(xixj)({di ,d j})

Solving a PCSP consists in finding a solution with a
minimum cost.

Remark 1. Among the set of constraints, those that
must not be violated are called ”hard” constraints
while the others are ”soft” constraints. Ch and Cs
will denote the sets of hard and soft constraints re-
spectively.
A PCSP is sometimes called weighted CSP and de-
noted as a quintuple P=< G,D,C,P,Q > where
G=<V,E > is the constraint graph associated with
the CSP< X,D,C>. In this way, it can naturally be
viewed as a weighted constraint graph.

2.2 Modeling MI-FAP as a PCSP

Many variants of FAP belong to the class of PCSP.

Definition 4. A MI-FAP is a PCSP defined by
< T,F,C,P,Q > where T= {t1, t2, . . . , tn} is a set
of transmitters, F= {F1,F2, . . . ,Fn} with Fi the
set of possible frequencies that can be assigned to
the transmitter ti and C= {C1,C2, . . . ,Cm} is a set
of binary constraints. A constraint between two
transmitters ti and tj indicates that communication
from ti may interfere with communication from
t j . An interference occurs in general when the
difference between the frequencies assigned to the
transmitters is less than a given threshold. For
each constraint Ck in C with scope Sk = {ti , t j}, some

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

478

combinations of values(fi , f j)∈ Fi×Fj are penalized
(constraint-penalty). Moreover, some transmitter can
be associated with preassigned frequencies. For such
transmitter all the other possible frequencies are
penalized (variable-penalty).

A solution to a MI-FAP is represented by a com-
plete assignment of frequencies< f1, f2, . . . , fn > to
each transmitter ti ∈ T, with fi ∈ Fi. Solving a MI-
FAP consists in finding a solution minimizing:

∑
ti∈T

Qti (fi)+ ∑
(tit j)∈C

P(tit j)({ fi , f j})

3 SOLVING MI-FAP WITH
DECOMPOSITION

3.1 Motivation

In this paper, an original ”Top-Down” approach is
investigated for FAP, where, the decomposition and
solving steps are closely related. Two generic algo-
rithms are presented. The first one calledTop-Down
is a backtrack-free and fast algorithm. The second al-
gorithm is an iterative version of the first one.

3.2 Top-Down Algorithm

Given a MI-FAP problem represented as a weighted
graph, theTop-Downalgorithm (Algorithm 1) decom-
poses first (in Line 1) the problem into a collection of
k sub-problems (clusters). Each edge (i,j) between a
pair of clustersCk andCl is a constraint between two
antennasi and j of the MI-FAP problem. The vari-
ables associated withi and j are calledboundary vari-
ables. The set of all theboundary variablesconsti-
tutes the resultingcut. Then (in Line 2), it solves the
cut sub-problem and gives rise to one partial solution
”Sol cut” and its cost ”Cost cut”. In Lines[3-5], the
k sub-problems are solved in sequential or in parallel.
Notice that this step considers that allboundary vari-
ablesare already instantiated, and this significantly
reduces the size of the resulting clusters. The global
solution ”Sol” and its cost ”Cost” are computed in
Lines 6-8 respectively. The final, optional step im-
proves the quality of the solution (Line 9).

3.3 Iterative Top-Down Algorithm

Once Algorithm 1 has computed a solution for the
cut problem, all theboundary variablesare instan-
tiated. This reduces the search space associated with
the clusters. To avoid this drawback, an improved

Algorithm 1 : Top-Down algorithm.
Input : G=<V,E >
Ouptut : A global solutionSol and itsCost

1: Decompose(G, C1, C2, . . .Ck, cut)
2: Solve(cut, Solcut, Costcut)
3: for i = 1 to k 1 do
4: Solve(Ci, Sol Ci, cost Ci, Sol cut)
5: end for
6: Sol← Sol C1⊙ 2Sol C2, . . .⊙ 2Sol Ci

7: Cost Clusters←
k
∑

i=1
Cost Ci

8: Cost←Cost Clusters+Cost cut
9: Improve (Sol, Cost)

version of the former algorithm calledIterative Top-
Downalgorithm (see Algorithm 2) is proposed. It re-
laxes the cut sub-problem by cancelling the instantia-
tion of some boundary variables of the cut.

Algorithm 2 : Iterative Top-Down algorithm.
Input : G=<V,E >,
Max Iter: nb. max. of iterations, H : heuristic
Ouptut : A global solutionSol and itsCost

1: Decompose(G, C1, C2, . . .Ck, cut)

2: Init sol(G, Sol, Cost) // finds one initial solution
3: Sol cut← Sol[cut]

4: for i = 1 to Max Iter do
5: Release(G,cut,H,Sol,Solcut,Solcut’,Costcut’)
6: for i = 1 to k 1 do
7: Solve(Ci, sol Ci, cost Ci, Sol cut’)
8: end for
9: Current Sol← sol C1⊙ 2sol C2, . . .⊙ 2sol Ck

10: Cost Clusters←
k
∑

i=1
cost Ci

11: Current Cost←Cost Clusters+Cost cut′

12: Improve (Current Sol,Current Cost)

13: if Current Cost<Cost then
14: Sol←Current Sol
15: Cost←Current Cost
16: end if
17: end for

Algorithm 2 proceeds as follows: given a FAP in-
stance modelled as a weighted graphG =< V,E >,
the procedure ”Decompose”(Line 1) gives a parti-
tion of G into k clustersC1, ...Ck. The procedure
”Init sol” finds an initial solutionSol of the prob-
lem by using either a random strategy or a heuristic
method.Sol cut is the solution of the cut problem ob-
tained by projectingSol on the cut, according to line
3. To increase the search space of the sub-problems,
the procedure ”Release” is called in Line 5. This pro-
cedure removes the instantiation of someboundary
variables. The choice of theseboundary variablesto
be restored further depends on a given heuristicH.
This procedure returns a partial solutionSol cut′ of
the cut. All the sub-problems are then solved, as in the
previous algorithm. The current solutionCurrent Sol
and its costCurrent Costare given in lines 9 and 10.
This current solution is improved (Line 12). For more
diversification and to escape from local minima the
above process is repeated a certain number of times

1It can be a sequential or a parallel loop.
2⊙ is the concatenation of two partial solutions.

Decomposition�Tehniques�for�Solving�Frequency�Assigment�Problems�(FAP)�-�A�Top-Down�Approach

479

(Max Iter). To validate the iterative Top-Down algo-
rithm, the choice of theboundary variablesto be re-
moved from the cut is done byMIC heuristic : given
a clusterCk, the boundary variableto be removed
from the cut is the variablei with the Maximum In-
ternal Cost (MIC). The Internal Cost ofi in Ck is:

∑
(i, j)∈E; j∈Ck

wi j .

4 DECOMPOSITIONS METHODS

In this section two algorithms are proposed for de-
composing MI-FAP. They are both based on a well
known algorithm due to Stoër (Stoer and Wagner,
1997) for the Min-Cut problem of a weighted graph
with a Minimum Cut in terms of weight. To gener-
alize this idea to thek-partitioning problem, a divi-
sive algorithm is used in a recursive way. Moreover,
while the original algorithm does not exploit the size
of the clusters, a “balanced decomposition” which is
of particular interest for parallel solving is targeted in
this work. Finally, as the resolution algorithms are
closely linked to the decomposition, several form of
decomposition are investigated. In particular, two al-
gorithms are presented: BMCWD and BMCCD.

4.1 Preliminary: Min-Cut Algorithm

Before detailing the approach, the key notion behind
the Min-Cut algorithm due to Stoër that is the Mini-
mums-t cut (see Theorem 1) are described.

Theorem 1. (Min-Cut of a graph (Stoer and Wag-
ner, 1997)): Let s and t be two vertices of a graph G.
Let G(s/t) be the graph obtained by forcing the ver-
tices s, t to be in two different clusters and let G/{s, t}
be the graph obtained by merging s and t. Then a
Minimum Cut of G can be obtained by taking the min-
imum of the Minimum cut of G(s/t) and a Minimum
cut of G/{s, t}.

Intuitively, this theorem means that either there
exists a Min-cut ofG that separatess andt and then
the Minimums-t cut of G is a Min-Cut ofG, or there
is none and so the Min-Cut ofG/{s, t} fits. The algo-
rithm saves the Minimums-t cut for arbitrarys, t ∈V,
and merges them to find a Min-Cut in the graph. The
Min-Cut is the minimum of the|V| − 1 cuts found.
The main loop in Algorithm 3 calls the Min-cut-step
procedure Algorithm 4 to split the current graphG
into two clustersCcur1 andCcur2 connected by a Min-
Cut with a weight calledwCur.

The Min-cut-step procedure (Algorithm 4) adds
to a given setA initialized to s, the Most Tightly
ConnectedVertex withA (MTCV(A)) until A equals

Algorithm 3 : Min-Cut.3

Input : G=<V,E >
Output:C1,C2,w

1: C1← /0 ; C2← /0
2: s← elementof(V) /*s randomly selected */

3: w← wG

4: while |V| > 1 do
5: Min-cut-step(G,s,vend−1,vend)

6: Ccur1 =V−{vend} ; Ccur2 = {vend}

7: wcur←Cut(Ccur1,Ccur2)

8: G← Shrink(G,vend−1,vend)
/* vend−1, vend : the two vertices returned by Min-cut-step */

9: if wcur < w then
10: w← wcur

11: C1←Ccur1 ; C2←Ccur2

12: end if
13: end while

V. The added verticesvend,vend−1 ∈ A will compose
the current clusters in Algorithm 3. The cut of these
clusters is proven to be Minimumvend-vend−1-cut of
the initial graphG (in (Stoer and Wagner, 1997)).

As a consequence,vend,vend−1 are merged
(Shrink) in the rest of the algorithm This operation
is repeated until|V| = 2. The Min-cut of the initial
graphG is then the minimum of the|V−1| cuts found.
The starting nodes can be the same for the whole al-
gorithm or it can be selected arbitrarily in each com-
putation phase as well.

Algorithm 4 : Min-cut-step.
Input : G=<V,E >, a∈V
Output:vend−1,vend∈V

1: A←{a}

2: while A 6=V do
3: A← A∪MTCV(A)

4: end while

Proposition 1. The theoretical complexity of the Min-
cut decomposition is in O(|V||E|+ |V|2log|V|).

The proof is given in (Stoer and Wagner, 1997)

4.2 Decomposition Algorithms for FAP

A great number of different approaches have been
proposed in the literature for a graph decomposition.
None of them is much better or worse than the other
in all cases. In fact, the quality of a decomposition
is closely related to the nature of the problem to be
solved. In this work, the goal assigned to this de-
composition step is to allow solving large-scale size
problems in a reasonable time, while obtaining near
optimal solutions. To approximate an optimal solu-
tion, one possibility is to minimize the cost of the cut
with respect to the global cost of the graph. This is
the first expected property for the proposed decompo-
sition. Therefore, a second property for our decom-
position is to produce ”balanced clusters” which can

3 wG = ∑
(i j)∈E

w(i j) , Cut(X, Y) = ∑
(i j)∈E,i∈X, j∈Y

w(i j).

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

480

be solved independently. The two properties lead to
what will be called an “efficient decomposition”.

Definition 5. (“Efficient decomposition”)
Let G=<V,E > be a graph decomposed into a par-
tition P of k clusters C1, C2 . . . Ck.

• %cut is the ratio w
wG

where w is the the weight of
the cut and wG is the weight of G.
• b is defined as the parameter to measure the bal-

ance of a decomposition as follows:
b = Min(|C1|,|C2|,...,|Ck|)

Max(|C1|,|C2|,...,|Ck|) , where|Ci| is the number
of vertices in Ci.

An “efficient decomposition” is a decomposition with
b close to 1 and %cut close to 0.

4.2.1 BMCWD Algorithm

BMCWD algorithm (Balanced Min-Cut Weighted
Decomposition) described by algorithm 5 aims at
searching for a well balanced and an efficient decom-
position with a small cut even if it is not Minimum.

Algorithm 5 : BMCWD.
Input : G=<V,E > Maxiter , w threshold, bthreshold
Output:C1,C2,wbalance

1: C1← /0 ; C2← /0
2: s← elementof(V) /*randomly selected */
3: wbalance← wG

4: while |V| > 1 do

5: k← 0 ; f lag← 0 ; T← /0
6: while (f lag= 0and k< Maxiter) do
7: k← k+1
8: Min-cut-step(G,s,vend−1,vend)

9: Ccur 1←V−{vend} ; Ccur 2←{vend} ; wcur←Cut(Ccur 1,Ccur 2)

10: /* property 1 of “efficient decomposition” */
11: if wcur > w thresholdthen
12: f lag← 1

13: else ifk<= Maxiter then
14: save(T, [vend,vend−1,s,wcur])

15: s← elementof(V) /* a new initial vertex randomly selected */
16: else
17: /* select from T [v(end)i ,v(end−1)i ,ai] with max w(cur)i */

18: selectmax(T,v(end)i ,v(end−1)i ,si ,w(cur)i)

19: s← si

20: vend−1← v(end−1)i ; vend← v(end)i ; wcur← w(cur)i

21: end if
22: end while
23: G← Shrink(G,vend−1,vend) /* vend,vend−1: the 2 last vertices put inA */

24: /* property 2 of “well balancing */

25: b=
Min(|Ccur 1|,|Ccur 2|)
Max(|Ccur 1|,|Ccur 2|)

/* the balance condition */

26: if b> b threshold then
27: if wcur < wbalancethen
28: wbalance← wcur ; C1←Ccur 1 ; C2←Ccur 2

29: end if
30: end if
31: end while

In order to improve the cut, the BMCWD Algorithm
merges the two last added nodes of the Cut(vend and
vend−1) only if the value of the cut separatingvend and
vend−1 denoted (wcur) is large enough. Otherwise the
previous values are saved, and the execution of the
algorithm is aborted without calling the Shrink func-
tion. A new Min-Cut step is then executed with a new

initial vertex. In that case, the value of wthreshold
corresponds towG

|E| where|E| is the number of edges
in the current graphG. This step is executed a num-
ber of times equal toMaxiter, after which the most
connected verticesvend andvend−1 are merged.

Proposition 2. The theoretical complexity of BM-
CWD algorithm is O(kmax× (|V||E|+ |V|2log|V|))
where kmax is the maximum number of iterations.

4.2.2 BMCCD Algorithm

The BMCCD (Balanced Min-Cut Cardinality De-
composition) algorithm is a variant of BMCWD
which minimizes the number of edges in the cut. A
simple way to link the two algorithms is to consider
that all the edges have a weight equal to 1 (in original
graph). In that case, the BMCCD and th BMCWD
algorithms are equivalent.

5 SOLVING METHOD

5.1 Genetic Algorithm: Informal
Presentation and Useful Notations

This section presents a Genetic Algorithm (GA) ded-
icated to MI-FAP resolution corresponding to the
functionsolvein Algorithms 1, 2 of section 3.

In standard GA crossover and mutation probabil-
ities are predetermined and fixed. Consequently, the
population becomes premature and falls in local con-
vergence early. To avoid this drawback an Adapative
Genetic Algorithm (AGA) is proposed. The following
notations are introduced to facilitate the presentation
of AGA algorithm:
Let P=<X,D,C,P,Q> be a PCSP andG=<V,E>
its weighted graph (V = X , E =C and|V|= n).

• N[vi] = {v j ∈ V|(vi ,v j) ∈ E} is the Neighbour-
hood of the vertexvi in G.

• s = (f1, f2, . . . , fn) denotes a solution ofP where
fi ∈ Di ∀ i ∈ {1, . . . ,n}.

• Fitness (vi,s) = ∑
vj∈N[vi],(vi ,vj)unsat

w(fi , f j)

is the cost associated withvi for solutions.

• Fitness (s) = 1
2

n
∑

i=1
Fitness(vi,s)

is the cost associated with solutions.

5.2 Presentation of AGA-MI-FAP

In this study, the MI-FAP problem is represented as a
weighted graphG=<V,E >. A chromosome is a set

Decomposition�Tehniques�for�Solving�Frequency�Assigment�Problems�(FAP)�-�A�Top-Down�Approach

481

of |V| genomes, where each genome corresponds to
the frequencyfi assigned to the vertexvi ∈V. In other
words a chromosome represents a possible solution to
the MI-FAP problem.

An initial population is defined and three opera-
tions (selection, mutation, crossover) are performed
to generate the next generation. This procedure is re-
peated until a convergence criterion is reached. The
sketch of AGA-MI-FAP is given by Algorithm 6.

Algorithm 6 : AGA-MI-FAP.
Input : pm0, pc0: initial mutation and crossover probabilities,∆pm, ∆pc: mutation and
crossover probabilities rates.

1: p← Initial Population;
2: if local mimimathen
3: pm = pm−∆pm ; pc = pc +∆pc

4: else
5: pm = pm0 ; pc = pc0

6: end if
7: old p = p

8: repeat
9: for all parenti chromosome in oldp, i is the ith chromosomedo
10: in parallel

11: parentj = a selected chromosome in oldp using the tournament algorithm

12: if pc ok then
13: offspring i ← Crossover(parenti, parentj), where offspringi will be

the ith chromosome in a future population.

14: else
15: offspring i = parenti

16: end if
17: if pm ok then
18: offspring i = Mutation (offspring i)

19: end if
20: end for
21: until convergence

Algorithm 7 : Crossover(p1, p2).

1: Fitnessnew[p1]= Fitness[p1]
2: Fitnessnew[p2]= Fitness[p2]

3: for all i = 1 to n do
4: Fitnessnew[p1](i)=Fitnessnew[p1](i)+ ∑

vj∈N[vi]
Fitness[p1](j)

5: Fitnessnew[p2](i)=Fitnessnew[p2](i)+ ∑
vj∈N[vi]

Fitness[p2](j)

6: end for
7: Temp = Fitnessnew[p1] - Fitnessnew[p2]

8: Let j = k such that Temp[k] is the largest element in Temp.

9: for all i = 1 to n do
10:

o f f spring[i] =

{

p1[i] if i 6= j and vi /∈ N[v j]
p2[i] otherwise

11: end for

The performance of AGA-MI-FAP is tightly de-
pendent on crossover and mutation operators. The
mutation operator is used to replace the values of a
certain number of genomes, randomly chosen in the
parent population, in order to improve the fitness of
the resulting chromosome. The mutation occurs with
a probability pm, named mutation probability. The
crossover operator is used to improve the fitness of a
part of the chromosome (Algorithm 7). Crossover ap-
pears with a probabilitypc called the crossover prob-
ability. pm and pc are two complementary parame-
ters which have to be fine tuned. A good value for
pc avoids the local optima (diversification) whilepm

enables the GA to improve the quality of solutions
(intensification). In the proposed AGA both parame-
ters are dynamically modified to reach a good balance
between the intensification and the diversification.

Since all chromosomes of a given population are
independent, crossover and mutation operations can
be processed concurrently. A classical GA has been
first implemented and tested. The AGA algorithm
has been then tested. The results demonstrate that
the AGA-MI-FAP significantly improves the quality
of the solution as compared with the classical GA.

6 EXPERIMENTAL RESULTS

6.1 Environment Considerations and
Description of Benchmarks

All implementations have been developped using
C++. The tests have been performed on the super-
computer Romeo1. Only one single 8-core processor
at 2.4 Ghz was used in this experimentation.

We tested our approach on real-life instances of
CALMA-project (CALMA-website, 1995). The set
of instances consists in two parts. The CELAR in-
stances are real-life problems from a military appli-
cation. The GRAPH instances are randomly gener-
ated problems. We only use the so-called MI-FAP in-
stances (Table 1). In this paper we are only concerned
by instances 6, 7 and 8 of CELLAR and instances 5,
6, 11 and 13 of GRAPH. Other instances were not
considered because they are easy.

Table 1: Benchmark characteristics.

Instance Original graph Reduced graph Best cost
|V| |E| |V| |E|

CELAR06 200 1322 100 350 3389
CELAR07 400 2865 200 816 343592
CELAR08 916 5744 458 1655 262
GRAPH05 200 1134 100 416 221
GRAPH06 400 2170 200 843 4123
GRAPH11 680 3757 340 1425 3080
GRAPH13 916 5273 458 1877 10110

6.2 BMCWD vs. BMCCD

This section presents comparative results obtained for
BMCWD and BMCCD algorithms by using 2 and
3 clusters. Notice that the instance CELAR08 is
excluded from this test and all tests concerning ap-
proaches based on decomposition because it is al-
ready decomposed in several and unbalanced clusters.
To compare these algorithms we based on the measure

1https://romeo1.univ-reims.fr/, University of Champagne-
Ardenne

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

482

parameters %cut previously defined, and %Bn cor-
responding to the ratio ofboundary nodesresulting
from the decomposition. This last parameter plays
an important role in our tests because our approach
is mainly focused on the number ofboundary nodes.
The balance threshold parameter is fixed to 0.8.

Table 2: % of cut andboundary nodesfound by BMCWD
and BMCCD with 2 and 3 clusters.

Instance Method k=2 k=3
% cut % Bn % cut % Bn

CELAR06 BMCWD 2.8 30.5 4 43
BMCCD 3.33 17 4.39 22.5

CELAR07 BMCWD 0.002 36.5 0.7 47.25
BMCCD 0.98 5.75 1.12 7.25

GRAPH05 BMCWD 6 54.5 7.1 75
BMCCD 7.85 47 12 61.5

GRAPH06 BMCWD 7.5 53.5 8.9 61.5
BMCCD 7.37 46.25 11.43 74.5

GRAPH11 BMCWD 5 61.76 8.5 75.29
BMCCD 8.86 51.91 11.71 63.38

GRAPH13 BMCWD 7.8 67.36 9.5 69.65
BMCCD 8.76 50.54 12.33 66.37

Table 2 shows that for 2 clusters the parameter
% cut is low, while for 3 clusters this parameter in-
creases. This is due to the hierarchical nature of our
decomposition algorithm. The number ofboundary
nodesvaries from instance to another for both algo-
rithms but BMCCD produces lessboundary nodesin
general.

6.3 AGA-MI-FAP Alone

In this section, we report the best costs (cost) and
average costs (avgcost) obtained by using AGA-
MI-FAP alone (50 executions). Initial Mutation and
Crossover probabilities are fixed experimentally to 1
and 0.2 respectively,∆pm= ∆pc = 0.1, and the popu-
lation size is fixed to 100.

Table 3 shows clearly the efficiency of AGA-
MI-FAP algorithm. Indeed, optimal solutions have
been obtained for the majority of instances and near-
optimal solutions are obtained on the rest.

Table 3: Performance of AGA-MI-FAP.

Instance cost(avgcost) cpu(s) Best cost
CELAR06 3389(3389) 37 3389
CELAR07 343691(343794) 312 343592
CELAR08 262(264) 571 262
GRAPH05 221(221) 35 221
GRAPH06 4124(4128) 222 4123
GRAPH11 3119(3191) 2246 3088
GRAPH13 10392(10812) 3700 10110

6.4 Approaches using Decomposition

In this section we present the results for Top-Down
and Iterative Top-Down on 2 clusters and 3 clusters.

6.4.1 Top-Down Algorithm

Table 5 reports the results obtained with Top-Down

Table 4: Results of Top-Down with 2 and 3 clusters.

Instance Method k=2 k=3
BMC cost(avgcost) cpu cost(avgcost) cpu

CELAR WD 3389(3822) 13 3422(5302) 10
06 CD 3389(3499) 15 3402(4922) 10

CELAR WD 363897(434297) 161 353800(2455320) 74
07 CD 343592(1374412) 120 343912(1385114) 84

GRAPH WD 221(382) 26 267(869) 15
05 CD 221(236) 21 257(844) 14

GRAPH WD 4126(4431) 160 5019(9090) 63
06 CD 4126(4311) 175 4193(7107) 83

GRAPH WD 3466(4038) 763 8779(19983) 310
11 CD 3256(4060) 677 7616(12367) 231

GRAPH WD 11015(14256) 1690 25140(32571) 690
13 CD 10796(12511) 1810 22333(31035) 575

Table 5: Results of Iterative Top-Down with 2 and 3 clus-
ters.

Instance Method k=2 k=3
BMC cost(avgcost) cpu cost(avgcost) cpu

CELAR WD 3401(3873) 20 3420(3820) 19
06 CD 3423(3861) 23 3401(4067) 20

CELAR WD 425218(1476655) 219 424126(1353999) 153
07 CD 343810(536322) 179 343691(444117) 164

GRAPH WD 255(391) 21 238(1897) 18
05 CD 221(345) 25 225(643) 20

GRAPH WD 4340(7810) 169 4861(8084) 151
06 CD 4298(5631) 147 4632(6569) 161

GRAPH WD 4119(7500) 751 4127(9751) 551
11 CD 4195(7182) 892 3673(7490) 632

GRAPH WD 17183(19495) 1998 19846(26701) 1456
13 CD 13278(18757) 1969 17255(25885) 1501

algorithm on 2 and 3 clusters. The quality of solutions
of Top-Down algorithm decreases when the number
of clusters increases. This is due to the increasing ra-
tio of boundary nodes leading to a search space reduc-
tion . We also observe that generally the results ob-
tained using Top-Down algorithm based on BMCCD
algorithm are better than those obtained by using BM-
CWD. This is due to the same observation made about
the parameter %cut .

6.4.2 Iterative Top-Down Algorithm

Table 4 reports results obtained by Iterative Top-
Down algorithm for 2 and 3 clusters. The populations
size considered is 30 and number of iterations is fixed
to 10. In general larger the population is better is the
solution. The results obtained by Iterative Top-Down
algorithm are encouraging and clearly improves the
simple Top-Down algorithm (k=3). In general, Iter-
ative algorithm maintains its performance even when
the number of clusters increases, while the execution
time decreases. The performance of the simple Top-
Down algorithm decreases considerably with increas-
ing number of clusters while the Iterative Top-Down
one is much more stable.

6.5 Direct vs. Decomposition

Table 6 summarizes the results obtained by direct al-
gorithm and best results obtained by approaches via
decomposition. The parameterσ cpu is the speed-up
defined as|CPU1|

CPU2 , where CPU1 and CPU2 are the ex-

Decomposition�Tehniques�for�Solving�Frequency�Assigment�Problems�(FAP)�-�A�Top-Down�Approach

483

Table 6: Comparing direct and decomposition approaches.

Instance Direct Via decomposition σ cost(%) σ cpu
cost cpu cost cpu

CELAR06 3389 37 3389 13 0.00 2.84
CELAR07 343691 312 343592 120 -0.02 2.60
GRAPH05 221 35 221 21 0.00 1.66
GRAPH06 4124 222 4126 160 0.04 1.38
GRAPH11 3119 1946 3256 677 4.39 2.87
GRAPH13 10392 3700 10796 1810 3.88 2.04

ecution times of direct approach and that via decom-
position respectively . The rowσ costshows clearly
that the results are comparable with the quality of the
solutions on all instances. However, the rowσ cpu
outlines clearly the benefit of approaches via decom-
position in term of cpu time. this corresponds to our
first objective aiming to solve large problems in short
time near to optimality.

Table 7: Comparison with recent decomposition algo-
rithms.

Instance Our approach All 10 Fon 13
cost cpu(s) cost cpu(s) cost cpu(s)

CELAR06 3389 13 3389 212 3389 93
CELAR07 343592 120 343592 607 343592 317
GRAPH05 221 21 - - 221 10
GRAPH06 4126 160 - - 4123 240
GRAPH11 3256 677 - - 3080 2762
GRAPH13 10796 1810 - - 10110 3196

6.6 Comparison with Related Works

Table 7 compare the best results we obtained by our
algorithms based on decomposition and the best re-
sults of (Allouche et al., 2010) and (Fontaine et al.,
2013)) which both exploit Tree Decomposition of
problems to be solved.

Our results are comparable to those presented in
(Fontaine et al., 2013) in terms of quality of the solu-
tion but are better in terms of CPU-time.

7 CONCLUSIONS

In this paper, a Top-Down approach is developed for
solving hard instances of MI-FAP problem near to op-
timality in short time.

To validate experimentally this approach:

• Two decomposition methods based on a Min-Cut
algorithm were implemented. The first one called
BMCWD aims to minimize the global weight of
the cut. The second one called BMCCD aims to
minimize the number of edges of the cut.

• An adaptive genetic algorithm (AGA-MI-FAP)
was proposed to solve the initial problem without
decomposition or for solving the sub-problems.

• The 1-opt local search heuristic was used to im-
prove the global solution.

The quality of the solutions and the runtime of the
different approaches, with and without decomposi-
tion, were compared on instances of CALMA project.
Almost instances were solved using AGA-MI-FAP.
When solving decomposed MI-FAP, optimal or near-
optimal solutions were obtained in a short time with
the proposed method. The Iterative Top-Down algo-
rithm have good performances even when the number
of clusters increases. This promising result leads to
investigate further this decomposition approach. The
first results obtained in this work indicate that the best
strategy proposed can significantly improve the com-
putation time without any significant loss of quality
of the solution.

Several perspectives to this work will be investi-
gated: different decomposition methods and criteria,
other exact or heuristic algorithms to solve the clus-
ters.

REFERENCES

Aardal, K., Van Hoessel, S., Koster, A., Mannino, C., and
Sassano, A. (2003). Models and solution techniques
for frequency assignment problems.4OR, Quaterly
Journal of the Belgian, French and Italian Operations
Research Sciences, 1:261–317.

Allouche, D., Givry, S., and Schiex, T. (2010). Towards
parallel non serial dynamic programming for solving
hard weighted csp. InProc. CP’2010, pages 53–60.

CALMA-website (1995). Euclid Calma project.
ftp://ftp.win.tue.nl/pub/techreports/CALMA/.

Colombo, G. and Allen, S. M. (2007). Problem decomposi-
tion for minimum interference frequency assignment.
In Proc. of the IEEE Congress in and Evolutionary
Computation, Singapor.

Fontaine, M., Loudni, M., and Boizumault, S. (2013).
Exploiting tree decomposition for guiding neighbor-
hoods exploration for vns.RAIRO-Operations Re-
search, 47/2:91–123.

Hale, W. K. (1980). Frequency assignment: Theory and
applications. 68/12:1497–1514.

Kolen, A. (2007). A genetic algorithm for the partial bi-
nary constraint satisfaction problem: an application
to a frequency assignment problem.Statistica Neer-
landica, 61/1:4–15.

Koster, A., Van Hoessel, S., and Kolen, A. (1998). The par-
tial constraint satisfaction problems: Facets and lifting
theorem.O. R. Letters, 23(3-5):89–97.

Maniezzo, V. and Carbonaro, A. (2000). An ants heuristic
for the frequency assignment problem.Computer and
Information Science, 16:259–288.

Stoer, M. and Wagner, F. (1997). A simple min-cut algo-
rithm. Journal of the ACM, 44/4:585–591.

Voudouris, C. and Tsang, E. (1995). Partial constraint sat-
isfaction problems and guided local search. Technical
report, Department of Computer Science,University
of Essex. Technical Report CSM-25.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

484

