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Abstract: In this contribution we present an optimization model for deciding on the best selection of advertising media
to be used in a promotional campaign. The effect of each single medium and each pair of media is estimated
from the evaluation data of past campaigns taking into account a similarity measure between the attributes and
goals of campaigns. The resulting discrete optimization model is a Quadratic Knapsack Problem which we
solve by a genetic algorithm. Then campaign budget is assigned to each selected advertising medium based
on a statistical estimation from previous campaigns. Our optimization tool is integrated in the marketing
management software solution MARMIND.

1 INTRODUCTION

Marketing is a crucial aspect for every company to
sell its products, whatever industry or market it is
concerned with. However, as a famous quotation
(sometimes attributed to Henry Ford) states: “Half the
money I spend on advertising is wasted, the trouble is,
I don’t know which half“. Indeed, it is a central ques-
tion of marketing management how to use the budget
of a promotional campaign. In particular, the avail-
able options have increased considerably in the last
decade with new possibilities such as targeted social
media advertising and context sensitive web banners.
Thus, the suitable selection of advertising media for
a promotional campaign, i.e. deciding on themedia
mix, has become an increasingly complex task with
only limited information on the actual impact of a
medium on the goals of the campaign.

Contributions to finding the best media mix were
given for particular industry sectors, e.g. in (Färe
et al., 2004) and (Reynar et al., 2010), and from an
optimization point of view in several papers going
back to (Balachandran and Gensch, 1974) and more
recently e.g. by (Sorato and Viscolani, 2011), (Nobi-
bon et al., 2011) and (Sönke, 2012).

The software platformMARMIND produced and
offered byUPPER Network1 provides a wide range
of tools to support the daily tasks of a marketing de-

1www.uppernetwork.com

partment from planning to realization. In collabora-
tion with the University of Graz, Austria, an opti-
mization tool was developed and added to the solution
which computes a suggestion for the media mix of a
planned promotional campaign. This tool is now an
integral part of MARMIND and starts being used by
marketing managers.

A central question of marketing planning concerns
the effect and efficiency of advertising media (see e.g.
the survey paper (Vakratsas and Ambler, 1999) and
(Pergelova et al., 2010) on internet advertisements).
While many statistical methods have been employed
to find partial answers to this questions, these require
survey data or other means of market research, which
is usually not available for the full range of marketing
options available to the decision maker in a typical
planning scenario. Therefore, we aim to gain infor-
mation from past campaigns.

The main outline of the optimization tool works
as follows. MARMIND keeps a data base of all past
promotional campaigns with ratings of their overall
success and an evaluation of the different goals of
the campaign. Based on these observations of past
campaigns, we estimate the effect of every advertis-
ing medium for the currently planned campaign. To
this end we take the “similarity” between planned
and past campaigns into account. Moreover, we de-
rive estimations for the pairwise effect of advertis-
ing media, since many media influence each other or

363Pferschy U., Schauer J. and Maier G..
Media Mix Optimization - Applying a Quadratic Knapsack Model.
DOI: 10.5220/0004825803630370
In Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems (ICORES-2014), pages 363-370
ISBN: 978-989-758-017-8
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



are dependent on each other and thus cannot be sepa-
rated into unconnected decisions. Based on these ef-
fect estimations we draw up an optimization model
which turns out to be aQuadratic Knapsack Problem
(QKP). After solving this model by an improved ge-
netic algorithm we assign the available budget to the
selected advertising media by considering the propor-
tional budget allocation of past campaigns.

In-house tests indicate that the media mix se-
lected by the optimization tool gets highly positive
appraisals from experts in the field. The various possi-
bilities of parametrization allow a flexible adaptation
for every domain.

2 FORMAL PROBLEM
FORMULATION

In our setting a promotional campaign is described by
a number of attributes, some of them represented by
nominal values such as target groups, product classes
and general strategic goals, others expressed by nu-
merical values such as desired market share, increase
in revenue, etc.

Formally, a promotional campaignt is defined by
a k-dimensional vector of parameterst(1), . . . , t(k),
where for some fixedk′ with 0≤ k′ ≤ k there are nom-
inal valuest(1), . . . , t(k′) and positive cardinal values
t(k′ + 1), . . . , t(k). A campaign may also consist of
only a subset of these parameters and leave the re-
maining entries of the vector empty.

To express and measure the goals of promotional
campaigns there is set of operative goalsg1, . . . ,gℓ de-
fined such as number of new customers, awareness
level, number of repeat customers, etc. Each promo-
tional campaignt is assigned a subsetGt of these op-
erative goals withℓt := |Gt |. For convenience we im-
pose an upper boundℓt ≤ L on the number of selected
goals, which is of moderate size in practice (think of
single digit numbers), i.e.L ≪ ℓ. Furthermore, the
chosen goals inGt are ranked in a total ordering to
indicate their relative importance. This preference re-
lation between goals is represented by a rank number
rt(g j) for each goalg j ∈Gt , wherert = ℓt signifies the
most important, i.e. highest ranked, goal andrt = 1
the least important. Clearly, each number in 1, . . . , ℓt
is assigned to exactly one goal as a rankrt .

Finally, there is a total budgetBt given for the pro-
motional campaignt.

After completion of the promotional campaignt
the responsible manager should be able to state the
degree of achievement of each operative goalg j ∈ Gt

of the campaign by assigning a numerical value repre-
senting the achieved percentage of the goal. For sim-
plicity we will assume that this value is scaled into an
achievement levelat(g j) ∈ [0,1] with at(g j) = 1 in-
dicating perfect achievement of goalg j . In addition,
the marketing manager will be asked to evaluate the
overall success of a completed promotional campaign
by assigning a discrete valuest ∈ {1, . . . ,S}, whereS
indicates the best outcome and 1 the worst. Usually,
S is a single digit number.

Of course, it would be desirable to extract more
information on the impact of the applied advertising
media. However, one should keep in mind that an
overly complicated feedback system will often be ig-
nored or filled with data of low quality. Practical ex-
perience suggests to keep the evaluation system as
simple as possible.

To reach the goals of a promotional campaign
there aren different advertising mediam1, . . . ,mn,
available (n ≈ 200), e.g. TV spots for different sta-
tions, newspaper ads in various publications, flyers,
catalogs, social media ads, promotional events, etc.,
each with different characteristics.

After choosing the parameters and operative goals
of a promotional campaign the central task of the mar-
keting manager as a decision maker consists of the
selection of a subset of advertising media and the al-
location of a budgetbi to each selected mediummi ,
such that the defined goals are met to a high degree
while the available budgetBt is not exceeded. The
decision on this so-called media mix is crucial for the
success of any campaign.

Unfortunately, the effect of each advertising
medium on the defined goals in connection with the
selected parameters of the promotional campaign are
mostly impossible to be quantified. Moreover, the ef-
fects of different media can not be separated but are
highly interdependent, e.g., a promotional event with
a celebrity will hardly have any effect without appro-
priate news coverage, and an evening TV spot will be
better remembered if its tune is repeated by a morning
radio spot. Under these circumstances, only educated
guesses and general rules of thumb gained from expe-
rience can be used by the decision maker to allocate
the promotional budget.

The existing software solution MARMIND can
keep track of all tasks involved with the realization of
a promotional campaign including accounting, man-
aging orders with advertisement companies, etc. In
this contribution we describe an optimization system
developed to give the decision maker an automatically
generated suggestion for the media mix.

There are two core features of our system: (1) an
estimation of the direct effect and the interdependen-
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cies between advertising media based on the evalua-
tion of past promotional campaigns by the managers,
(2) the incorporation of these values into a discrete
optimization model, which is basically a Quadratic
Knapsack Problem (QKP), possibly with additional
constraints.

3 QUADRATIC KNAPSACK
MODEL

Given the parameters and operative goals of a promo-
tional campaignt we will derive in Sections 4 and 5
an estimation of the following three values for all ad-
vertising media. For simplicity of notation we omit
the reference to the current campaignt.

1. direct effect pi on the promotional campaign
caused by selecting mediummi .

2. joint effect qi j on the promotional campaign
caused by selecting both mediami andmj .

3. estimated budgetbi allocated to mediummi , if it
is selected in the promotional campaign.

With these estimations we can set up the following
mathematical optimization model with binary vari-
ablesxi ∈ {0,1} representing the selection of adver-
tising mediummi . The objective function consists
of a convex combination of a linear (direct effect)
and a quadratic (joint effect) term with a parameter
λ ∈ (0,1) to be chosen appropriately. As a starting
value we setλ = 0.5.

max λ
n

∑
i=1

pixi +(1−λ)
n

∑
i=1

n

∑
j=1

qi j xix j (1)

s.t.
n

∑
i=1

bixi ≤ Bt (2)

xi ∈ {0,1} (3)

The model (1)-(3) is the well-known Quadratic
Knapsack Problem (QKP), see e.g. (Kellerer et al.,
2004, Chapter 12) or (Pisinger, 2007).

It may seem reasonable to restrict the number of
different advertising media selected for one promo-
tional campaign by adding a cardinality constraint

n

∑
i=1

xi ≤ K. (4)

However, it will turn out that the estimation of budget
allocationsbi produces values of a certain proportion
w.r.t. Bt which implicitly restricts the number of cho-
sen advertising media and thus makes (4) redundant.

Practical considerations also suggest that certain
advertising media (e.g. TV spots) are more costly and
require a minimum budget to make sense. Thus, we
will eliminate in a preprocessing step all advertis-
ing media whose minimum budget requirement would
consume most of the available budgetBt .

The final suggestion of the media mix presented
to the user of the system follows directly from the so-
lution of (1)-(3). Exactly those advertising mediami
should be used whose decision variables have value
xi = 1 in the solution. Allocating the final budget̄bi
to each selected mediummi requires a bit more care
and will be treated in Section 5.2.

4 LINEAR AND QUADRATIC
EFFECT ESTIMATION

It should be pointed out that all our estimations are
based on the evaluation of past promotional cam-
paigns and are not founded on some strict stochas-
tic model. They were developed in several rounds of
interaction with practitioners and validated with real-
world case data. The fact that the convex combina-
tion of several terms allows the setting of a number of
weighting parameters should be seen as an advantage
since it permits the adaptation of the optimization sys-
tem to the special customs and practices of the partic-
ular domain the system is applied in. By no means we
can expect to deliver a “plug-and-play” system ready
for use in any domain for every type of company.

Let T(i) be the set of all past promotional cam-
paigns containing advertising mediummi . The linear
profit valuepi will be expressed by a convex combi-
nation of the general success attributed to mediummi
in the past and the level of goal achievement reached
by similar campaigns if they includedmi , i.e.

pi := λp psi +(1−λp)pgi (5)

with λp∈ (0,1). The first termpsi represents the aver-
age scaled success of all past promotional campaigns
containing mediummi . The underlying argument says
that every medium contributed in some way to the
overall success of past campaigns. Formally, we have:

psi :=
1

|T(i)| ∑
t∈T(i)

st

S
(6)

Clearly,psi is in [0,1].

The second termpgi considers achievement of op-
erative goals and similarity of parameters in more de-
tail and will be described in the following subsection.
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4.1 Considering Similarity of
Campaigns

The valuepgi should reflect the principle that it is a
good idea to repeat strategies that worked well in the
past for campaigns with similar parameters. To for-
malize this principle we will express “working well”
by the degree of goal achievement and “similar pa-
rameters” by introducing a similarity measure be-
tween campaigns.

Let T̃( j) be the set of all past promotional cam-
paigns containing operative goalg j . Then the overall
goal achievementat of a promotional campaignt will
be defined as follows:

at :=
1

∑ j∈Gt
rt(g j )

(

∑
j∈Gt

rt(g j )· (7)





1
2



at(g j )−
1

|T̃( j)| ∑
τ∈T̃( j)

aτ(g j )



+
1
2









The term in the inner capital brackets computes
the difference of the goal achievement for goalg j
from the average goal achievement over all promo-
tional campaignsτ containing goalg j . This number
lies in (−1,1) and is transformed to lie in(0,1). Fi-
nally, the terms are weighted by their rank number
and scaled by the sum of rank numbers.

Now we introduce a measure to express the sim-
ilarity between two promotional campaignst and t ′.
Formally, we will define a functionsim(t, t ′)→ [0,1],
such that higher values ofsim indicate closer simi-
larity of two campaigns. Measures of distance and
similarity are used in many fields of applied mathe-
matics and statistics, in particular in cluster analysis
(see e.g. (Everitt et al., 2011), (Guldemir and Sengur,
2006)). Our similarity function will deal separately
with a linear combination of nominal and cardinal pa-
rameters of campaigns expressed bysim par and with
the similarity of the ordinally ranked operative goals
sim goal.

sim par(t, t ′) :=
1

∑k
i=1ci

(

k′

∑
i=1

ci ·sim nom(t(i), t ′(i))

+
k

∑
i=k′+1

ci ·sim card(t(i), t ′(i))

)

(8)

The weighting parametersci ∈ (0,1) can be used to
indicate the importance of different parameters.

Comparing nominal parameters is done simply
by an inverted Hamming distance, i.e. assigning
sim nom(t(i), t ′(i)) = 1 if t(i) = t ′(i) and 0 otherwise,

for i = 1, . . . ,k′. Clearly, also more complicated mea-
sures such as the Jaccard index, the Sørensen coef-
ficient or the Tanimoto distance might be used, see
e.g. (Tan et al., 2006).

For cardinal parametersi = k′+1, . . . ,k the simi-
larity is computed from the relative deviation by

sim card(t(i), t ′(i)) = 1−
|t(i)− t ′(i)|

max{t(i), t ′(i)}
, (9)

which is clearly in[0,1]. Basically, any Minkowski
metric could be used and scaled into the correspond-
ing similarity measure.

For comparing the ordered selection of goals
between two campaigns in a similarity measure
sim goal(t, t ′), classical distance measures of order-
ings such as Kendall tau rank distance (similar to Ke-
meny distance) could be used (see (Sculley, 2007)
and (Kumar and Vassilvitskii, 2010) for recent con-
tributions). In our case, out of the available set ofℓ

goals each campaign is assigned only subset of goals
of small, but varying size. Hence, we use the follow-
ing rather unorthodox approach.

Define a decreasing sequence of positive bonus
pointsβ1 > β2 > .. . > βL and translate rank numbers
into bonus points by assigning the goalg of a promo-
tional campaignt with rank rt(g) exactlyβℓt−rt (g)+1
points, i.e. the best ranked goal receivesβ1 points and
the lowest ranked goal withrt(g) = 1 getsβℓt points.
The remaining pointsβℓt+1, . . . ,βL are not assigned at
all.

For any pair(t, t ′) of campaigns we determine the
intersection of selected goals and add the bonus points
accrued by every such goal in both campaigns. I.e.
if some goalg′ is ranked on first position int and
on third position int ′, then g′ contributesβ1 + β3
to the total sum, while goals appearing in only one
of the two campaigns do not contribute at all. This
sum is scaled by the maximum possible number of

points∑
min{ℓt ,ℓt′}
j=1 2β j which guarantees a final value

sim goal(t, t ′) in [0,1], with the desired property that
identical orderings of goals yield a similarity of 1
while disjunctive sets of goals have similarity 0.

Finally, we put together the two similarity mea-
sures with a weighting parameterλg.

sim(t, t ′) := (1−λg)sim par(t, t ′)

+ λg ·sim goal(t, t ′) (10)

A drawback of the above definitions can be found
in the “averaging effect” which means that taking a
linear combination over many different factors may
dilute the effect of strong similarity or deviance in
some components and tends to produce moderate val-
ues for almost any pair of promotional campaigns.
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Thus, we aim at strengthening the influence
of strong or weak similarities by increasing val-
ues closer to 1 and decreasing values closer to
0. This will be done by applying the following
sigmoid function F(x) on every partial similarity
measuresim nom(t(i), t ′(i)), sim card(t(i), t ′(i)) and
sim goal(t, t ′). F(x) is depicted in the following fig-
ure. It contains a tuning parameterk which we set to
k= 10 in our implementation.

F(x) =
1

1+e(
k
2−kx)

+
1

1+e
k
2

· (2x−1) (11)

constantf (x) = x

sigmoid functionF(x)

1

10 0.5

0.5

It remains to put together the expressions of goal
achievement and similarity. This is done by simply
summing up achievement values of past campaigns
weighted by their similarity to the current campaign
tc. Formally, we have

pgi :=
1

|T(i)| ∑
t∈T(i)

sim(t, tc) ·at (12)

Again, pgi is in [0,1].

4.2 Estimation of Media Interaction

We proceed to estimate the effect of having two adver-
tising mediami andmj together in a promotional cam-
paign. This is done by separating from the set of all
past campaigns a subset of particularly effective cam-
paigns which stood out among the remaining cam-
paigns. Then we will simply count the occurrence of
every pair of advertising media in the effective cam-
paigns relative to all its occurrences. Thereby, we aim
to detect a systematic effect of successful pairs that

happened to be chosen together in conspicuous fre-
quency among the more effective campaigns. Note
that our existing sample of campaigns is too small to
allow statistical tests on this hypothesis.

Formally, we sort the set of past promotional
campaigns in decreasing order of their goal achieve-
mentat and determine a thresholdaT such that only
a prescribed percentage of campaigns exceeds this
achievement value, e.g. 25%. Then we set:

qi j :=
|T(i)∩T( j) with at ≥ aT |

|T(i)∩T( j)|
(13)

It turned out that there are certain pairs of me-
dia that marketing managers generally want to use to-
gether and which appear in pairs in almost all cam-
paigns (if they appear at all), no matter whether the
campaigns worked well or not. This effect is not cap-
tured by (13) which was hence extended to include
the presence of pairs of media in past campaigns with
strong similarities to the current campaigntc. Let
Tc := {t | sim(t, tc) ≥ δ} for some similarity thresh-
old δ. Then we define the final quadratic effect as:

q′i j := λq qi j +(1−λq) ·
|(T(i)∩T( j))∩Tc|

|Tc|
(14)

5 BUDGET ALLOCATION

5.1 Estimation of Budget Values

While it may seem quite reasonable that one can learn
from past promotional campaigns which advertising
media, resp. which combination of media, worked
well to reach certain goals for campaigns with a cer-
tain set of parameters, it is less clear how to assign
a budget value to an advertising medium after decid-
ing to use it. However, one can not separate media
selection from budget allocation since one may end
up with a collection of advertising media that can not
be realized within the given budgetBt considering the
natural lower bounds on the budget for each medium.

To allow a plausible estimation of the budget val-
uesbi in the optimization model, we consider a subset
of past campaignsTB with a budget in similar range
as the current campaigntc, i.e.

TB := {t | k1Btc ≤ Bt ≤ k2Btc} (15)

with suitably chosen parametersk1 < 1, k2 > 1. Then
we determine for each advertising medium the rel-
ative proportion of budget allocated in the past (de-
pending on its assigned budgetbt

i ) and take the mean
over these values as an estimation ofbi. Formally,

bi :=
Btc

|T(i)∩TB| ∑
t∈T(i)∩TB

bt
i

Bt
. (16)
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Note that different from Section 4 we do not take
similarity of campaigns into account in this estima-
tion. Discussions with marketing managers and anal-
ysis of available data exhibit that the choice of ad-
vertising media is very much tailored to the particu-
lar goals and parameters of a campaign. But once a
medium is selected the invested budget is mostly de-
pendent on technical constraints and the “size”, i.e.
budget, of the overall campaign. But clearly, it would
be straightforward to restrict the summation in (16) to
campaigns inTc with a certain similarity totc.

5.2 Actual Budget Allocation

After solving the optimization model (1) - (3) we ob-
tain a solution setS:= {i | xi = 1} of all selected ad-
vertising media. Assigning the actual budget valuesb̄i
to all mediami ∈ Scould be done by simply resorting
to the estimationsbi from (16).

We suggest a more refined procedure taking into
account two aspects: First, the discrete solution of
optimization model will most likely leave a certain
amount of budgetBt −∑i∈Sbi unused and thus miss
chances for a better utilization of the available bud-
get. Secondly, and more important, it should make
sense to consider the particular combination of me-
dia inS, which we already targeted specifically by the
quadratic coefficientsqi j .

To do so, we give the relative budget proportions

in a promotional campaignt, i.e.
bt

i
Bt

, more weight if
t shares more advertising media with the solution for
the current campaigntc. This is achieved by the fol-
lowing formula for every mediummi , i ∈ S:

b̄i :=
Btc

|S|−1 ∑
j∈S, j 6=i

1
|T(i)∩T( j)∩TB| ∑

t∈T(i)∩T( j)∩TB

bt
i

Bt

(17)
Allocating budgets according to (17) may result in

infeasible solutions or (as before) in leftover budget.
We propose the following allocation process to over-
come this issue.

The budget estimationbi in (16) can be seen as
an estimator in the strict statistical sense. Hence, we
can also compute the associated empirical standard
deviationσi based on the sum of squared distances
from the mean and defined as follows:

σi :=

√

√

√

√

Btc

|T(i)∩TB|−1 ∑
t∈T(i)∩TB

(

bt
i

Bt
−

bi

Btc

)2

(18)

Now we start the budget allocation procedure by
assigning each advertising mediummi ∈ S in decreas-
ing order of profit valuespi a conservative budget

value ofbi −σi , i.e. the estimated value reduced by
one standard deviation. Then we enter into a second
round and increase the budget tobi as long as the bud-
get Bt permits, again in decreasing order ofpi . Fi-
nally, if there is still budget left, we take a third round
and increase the allocated budget tobi +σi until Bt
is completely used up. Clearly, the last advertising
medium considered by this procedure may obtain a
budget allocation in between the three prescribed val-
ues by consuming all the remaining budget.

An analogous procedure is done for the more so-
phisticated budget values̄bi (with the corresponding
empirical standard deviation̄σi) where it can be ex-
pected to be more relevant, since there is a larger dif-
ference from the budget values used in the optimiza-
tion model. Note that in this case it may happen that
we run out of budget already in the first round of al-
locations, since the valuesbi used in the weight con-
straint of the optimization model may deviate consid-
erably fromb̄i .

6 SOLUTION OF THE
QUADRATIC KNAPSACK
PROBLEM

The model introduced in Section 3 is a standard
Quadratic Knapsack Problem (QKP) with no addi-
tional side-constraints. This is somewhat rare, since
practical applications usually require additional con-
straints and do not fit into the mould of standard mod-
els.

Important exact solution methods for QKP were
given by (Caprara et al., 1999) and (Billionnet and
Soutif, 2004). The former approach uses Lagrangian
relaxation and is able to solve instances containing
up to 200 variables. It is especially well suited for
dense instances. (Billionnet and Soutif, 2004) uses
Lagrangian decomposition and is able to solve in-
stances of roughly the same size, however it outper-
forms the previous approach on instances of medium
and low density.

The currently best working strategy was given by
(Pisinger et al., 2007). It succeeds in reducing the
size of many instances dramatically by fixing items
that will or will not occur in an optimal solution.
The reduced problem can then be solved by any al-
gorithm for QKP. Combining this approach with an
exact solution algorithm (Pisinger et al., 2007) were
able to solve instances with up to 1500 items. Unfor-
tunately, this code is not available, therefore we used
the implementation described in (Caprara et al., 1999)
for solving benchmark problems of MARMIND and
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managed to solve instances to optimality with up to
n= 200 advertising media in less than 10 minutes on
a simple standard PC with 2.2 GHz and 2 GB Ram.

For ensuring a good user experienceUPPER Net-
workhowever requested that the optimized marketing
campaign of MARMIND has to be computed in less
than 3 seconds. Moreover, we recall that all data of
our QKP instances is based on estimates and does not
represent assured values. Thus, we can easily settle
for a good approximate solution.

For our optimization tool we implemented a ge-
netic algorithm and imposed a time limit of 3 seconds.
It turned out that this gave solutions for all instances
of the required size (≥ 200 items) with an average de-
viation of less than 1% from optimality.

Our algorithm is a modified version of (Julstrom,
2005) which worked well for the random test in-
stances generated according to the same method used
in (Caprara et al., 1999). (Julstrom, 2005) reports test
data for ten instances of 100 items and ten instances
of 200 items. Every instance was solved 50 times and
the algorithm was able to find the optimal solution
value in about 90 percent of the runs, although the
running time sometimes exceeds 1 minute. Note that
our implementation was especially tuned for getting
high quality results in a very short time but often suc-
ceeded to yield results similar or better than (Julstrom,
2005).

Recently (Yang et al., 2013) published a well per-
forming metaheuristic that combined GRASP with
tabu search. On 100 randomly generated benchmark
instances that follow the same scheme as in (Caprara
et al., 1999) the metaheuristic was able to find the op-
timal solution 99 times in less than 0.8 seconds. In
the remaining case the gap to the optimal solution
was negligibly small. Moreover, they were able to get
good solutions for instances of up to 2000 variables
(the solution quality was justified by comparison to
known upper bounds) in less than 300 seconds.

Currently, we are working on a project to system-
atically test our genetic algorithm, compare it to the
other existing methods listed above and to introduce
harder benchmark instances for QKP. The results of
this comprehensive computational study will be pub-
lished as they become available.

7 CONCLUSIONS

We developed an optimization system to offer mar-
keting managers an evidence-based suggestion for the
media mix to be used for a given promotional cam-
paign. It relies on a comparison of the current cam-

paign to past campaigns based on their parameters
and goals.

Building an optimization model with the com-
puted direct and pairwise effect estimations gives
rise to a Quadratic Knapsack Problem which can be
solved almost to optimality in all real-world scenar-
ios within a time limit of 3 seconds. The optimization
tool is currently used within the industrial software
solution MARMIND.

Future developments include a revision of some of
the effect estimations by stochastic models as soon as
a suitable set of test data derived from real world ap-
plications is available. Furthermore, the estimations
will be adjusted to include a “memory” effect, i.e.,
giving a smaller weight to campaigns in the more dis-
tant past. It may also be interesting to take trends
into accounts. Based on classical tools of statistical
analysis it should be possible to detect certain trends
of advertising media increasing or decreasing in im-
portance, or in their effect for certain goals or target
groups.
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