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Abstract: Recent developments in sensor technology allows for capturing dynamic patterns in vehicle movements, tem-
perature changes, and sea-level fluctuations, just to name a few. A usual way for decision making on sensor
networks, such as detecting exceptional surface level changes across the Pacific ocean, involves collecting
measurement data from all sensors to build a predictor in a central processing station. However, data col-
lection becomes challenging when communication bandwidth is limited, due to communication distance or
low-energy requirements. Also, such settings will introduce unfavorable latency for making predictions on
unseen events. In this paper, we propose an alternative strategy for such scenarios, aiming to build a consensus
support vector machine (SVM) in each sensor station by exchanging a small amount of sampled information
from local kernel matrices amongst peers. Our method is based on decomposing a “global” kernel defined
with all features into “local” kernels defined only with attributes stored in each sensor station, sampling few
entries of the decomposed kernel matrices that belong to other stations, and filling in unsampled entries in
kernel matrices by matrix completion. Experiments on benchmark data sets illustrate that a consensus SVM
can be built in each station using limited communication, which is competent in prediction performance to an
SVM built with accessing all features.

1 INTRODUCTION

Sensors can monitor many different kinds of dynam-
ics in nature, generating numerous data, and thereby
embodying research challenges in machine learning
and data mining (Whittaker et al., 1997; Lippi et al.,
2010; Morik et al., 2012). There is a wide spectrum of
sensing devices available today, but they share a com-
mon property: communication is costly and should
be avoided whenever possible, due to restrictions in
bandwidth or in energy consumption. This is a clear
barrier for global decision making, for which it is typ-
ically required to agglomerate all local sensor mea-
surements into a central location for processing.

On the other hand, many sensors are stationed
within devices equipped with surprisingly powerful
and energy-efficient computation units. This has mo-
tivated us to use computation to save communication.
Specifically, we aim to build a support vector machine
(SVM) (Boser et al., 1992) in each of such devices,
called sensor stations, using local measurements and
a small amount of sampled information transmitted
from other stations. The goal is to obtain aconsensus
SVMin each station that behaves similarly to a global

SVM that could be constructed if we collect informa-
tion from all stations for central processing.

Our work is closely related to learning SVMs in
distributed environments, which can be split into two
categories. Case I: examples are distributed (fea-
tures are not distributed). In such cases a global
SVM can be trained using a distributed optimiza-
tion algorithm (Boyd et al., 2011), or separate SVMs
can be trained locally for data partitions with extra
constraints to produce similar models (Forero et al.,
2010). Alternatively, local SVMs can be trained in
their primal form independently on data partitions
and then combined to produce a model with a re-
duced variance (Lee and Bockermann, 2011; Cram-
mer et al., 2012). Case II: features are distributed (ex-
amples are not distributed). In such cases a central
coordination of local SVM training has been consid-
ered to improve global prediction performance (Lee
et al., 2012; Stolpe et al., 2013). Our work focuses on
the second case where features are distributed, con-
sidering communication-efficient approximations to a
global kernel matrix (which could be built by access-
ing all features) in each station, without any central
coordination.
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Our suggested method is based on decompositions
of a (global) kernel into separate parts, where each of
them is another kernel defined with attributes stored
locally in each sensor station. Each decomposed ker-
nel matrix is stored in a sensor station where corre-
sponding attributes are stored. Each station receives
few sampled entries of the decomposed kernel matri-
ces stored in remote stations, and then applies matrix
completion to approximate the values of unobserved
entries. Using these altogether, a consensus SVM is
created in each station, which can be applied for pre-
dicting future events using local and remote informa-
tion in a similar fashion.

We denote the Euclidean norm by‖·‖ and the car-
dinality of a finite setA by |A| throughout the paper.

2 SUPPORT VECTOR MACHINES
WITH DECOMPOSED
KERNELS

Let us consider sensor stations represented as nodes
n = 1,2, . . . ,N in a network, where each node stores
measurements from its own sensors, in a feature vec-
tor xi [n] ∈ℜpn, of sensing targetsi = 1,2, . . . ,m. For
simplicity we assume that communication between
any pair of nodes is allowed. A collection of all these
vectorsxi = (xi [1]T ,xi [2]T , . . . ,xi [N]T)T can be seen
as an input vector of lengthp= ∑N

n=1 pn.

2.1 Support Vector Machines

The dual formulation of SVMs is described as fol-
lows (Shawe-Taylor and Sun, 2011),

min
α∈ℜm

1
2

αTQα−1Tα ,

subject toyTα = 0,

0≤ α≤C1 .

(1)

Here1 := (1,1, . . . ,1)T andy := (y1,y2, . . . ,ym)
T are

column vectors of lengthm, andC is a given con-
stant. (Without loss of generality, we focus on the
case of classification – our method can be general-
ized for other types.) The matrixQ ∈ ℜm×m is a
scaled kernel matrix, that is,Q := YKY for a positive
semidefinite kernel matrixK , whereY := diag(y) is
the diagonal matrix whose elements are given by the
vectory. SVMs have been successful in many appli-
cations, including multitask multiclass learning prob-
lems (Ji and Sun, 2013) for example.

2.2 Decomposition of Kernels

We consider two different decompositions of the
kernel matrix K , especially those obtainable from
the popular Gaussian kernel. We refer to them
as “MULTIPLICATIVE ” and “ADDITIVE ”, defined as
follows for i, j = 1,2, . . . ,m,

(MULTIPLICATIVE )

[K ]i j =
N

∏
n=1

exp
(
−γ‖xi[n]− x j[n]‖2

)
, and

(ADDITIVE )

[K ]i j =
1
N

N

∑
n=1

exp
(
−γn‖xi[n]− x j [n]‖2

)
.

(2)
The MULTIPLICATIVE kernel is indeed the same as
the standard Gaussian kernel (Scholkopf and Smola,
2001), but our description above reveals that it can
be constructed by multiplying “local” Gaussian ker-
nels defined with attributes stored locally in sensor
stations. The construction of ADDITIVE is similar,
except that local Gaussian kernels are averaged, not
multiplied. ADDITIVE resembles how kernels are
used in the multiple kernel learning (Lanckriet et al.,
2002): the connection is further discussed in Sec-
tion 4.3. Note that MULTIPLICATIVE has a single pa-
rameterγ> 0, but ADDITIVE has a separate parameter
γn > 0 for each local kernel.

2.3 Local and Remote Parts in
Decomposition

From the definitions in (2), we identify the parts that
can be computed with attributes stored locally in each
node (local parts), and that need to be transferred from
other nodes in a sensor network (remote parts).

First, the expression of MULTIPLICATIVE can be
rewritten in the following way,

[K ]i j = exp

(
N

∑
n=1

−γ‖xi[n]− x j [n]‖2
)

= exp
(
−γ‖xi[n]− x j [n]‖2

)

∏
n′ 6=n

exp
(
−γ‖xi[n

′]− x j [n
′]‖2
)

= [Gn]i j [G−n]i j , (3)

where the “local” Gaussian kernelGn for a noden and
the productG−n of all “remote” kernels are defined
entrywise respectively by

[Gn]i j := exp
(
−γ‖xi[n]− x j[n]‖2

)
(local)

[G−n]i j := ∏
n′ 6=n

[Gn′ ]i j (remote) .

ICPRAM�2014�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

114



Similarly, ADDITIVE can be written as

[K ]i j =
1
N

(
[Hn]i j + ∑

n′ 6=n

[Hn′ ]i j

)

=
1
N
[Hn+H−n]i j , (4)

whereHn is the local part andH−n is the remote part
for noden, defined respectively by

[Hn]i j := exp
(
−γn‖xi[n]− x j [n]‖2

)
(local)

[H−n]i j := ∑
n′ 6=n

[Hn′ ]i j (remote) .

For a noden, the computation of the local partGn (or
Hn) is done exactly using local attributes, where the
remote partG−n (or H−n) is to be approximated.

3 KERNEL COMPLETION

Let us denote the kernel matrix to be estimated in the
nth node byK̃n, which is computed by

[K̃n]i j :=

{
[Gn]i j [G̃−n]i j (MULTIPLICATIVE )
1
N [Hn+ H̃−n]i j (ADDITIVE ) .

(5)
HereG̃−n (or H̃−n) is an estimate of the remote part
G−n (or H−n). Once we havẽKn, it can be plugged in
(1) replacingQ in the form ofQ̃n := YK̃nY.

In order to obtain the estimatẽG−n (or H̃−n), we
make use ofmatrix completion(Candès and Recht,
2009), which is a method to reconstruct a matrix from
only a few sampled entries from it. The purpose of
using matrix completion is (i) to reduce the number
of entries required to be sampled from remote kernel
parts in bandwidth-limited situations. Matrix comple-
tion will not be required if all nodes provide complete
information. And it is (ii) to avoid the complexity of
defining an optimal sampling strategy. That is, a sim-
ple uniform random sampling strategy is enough for
matrix completion to guarantee the perfect recovery
of the original kernel matrix with high probability.

We first discuss extra constraints we need to add
to matrix completion, so that the resulting matrix is to
be a valid kernel matrix.

3.1 Constraints onG̃−n and H̃−n

First,G̃−n has to be a symmetric matrix where diago-
nal entries are all ones. It becomes a valid kernel ma-
trix if and only if it is positive semidefinite (Scholkopf
and Smola, 2001), that is,zTG̃−nz≥ 0 for all z∈ℜm.
Since each entry of a local Gaussian kernelGn′ is

in the range(0,1] by definition, the product of such
entries inG̃−n should be in the same range as well.
Next, H̃−n shares the same properties asG̃−n, except
for that each diagonal element ofH̃−n is (N−1), not
one, by construction.

There is another possible way to decompose the
MULTIPLICATIVE kernel,

[K ]i j = exp
(
− γ‖xi[n]− x j[n]‖2

− γ ∑
n′ 6=n

‖xi[n
′]− x j [n

′]‖2
)

= exp([Dn+D−n]i j ) ,

with

[Dn]i j :=−γ‖xi[n]−x j [n]‖2, [D−n]i j := ∑
n′ 6=n

[Dn′ ]i j .

Then our task becomes making an estimateD̃−n of a
distance matrixD−n, which has zero diagonal entries.
The estimate defines a valid distance matrix if and
only if it is conditionally positive semidefinite, that is,
zTD̃−nz≥ 0 for all z∈ℜm with zT1= 0 (Schoenberg,
1938). This implies that̃D−n is positive semidefinite,
or it has a single negative eigenvalue. It turned out
that our kernel completion in forms of (3) performed
better in our experiments, so we did not pursue this
direction further.

3.2 Low-rank Matrix Completion

For the description of matrix completion, we follow
the line of discussion in (Recht and Ré, 2011). Matrix
completion reconstructs a full matrix from only a few
entries sampled from the original matrix. In general,
matrix completion works with matrices in any shape,
but we focus on square matrices here.

Suppose thatX ∈ ℜm×m is a matrix we wish to
recover, and that the entries at(i, j) ∈ Ω of X are
revealed and stored in another matrixM . Matrix
completion solves the following convex optimization
problem to recoverX,

min
X

∑
(i, j)∈Ω

(X i j −M i j )
2+λ‖X‖∗, ‖X‖∗ :=

m

∑
k=1

σk(X) .

Here ‖X‖∗ is the nuclear normof X, which is the
summation of singular valuesσk(X) of X and penal-
izes the rank ofX.

The nuclear norm simplifies when we assume that
the matrixX has the rankr, and consider a factoriza-
tion of X into LRT for someL ∈ℜm×r andR∈ℜm×r .
This leads toX i j = [LRT ]i j = L i·RT

j ·, and

‖X‖∗ = min
X=LRT

1
2
‖L‖2F +

1
2
‖R‖2F ,
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{[Mn]ij : (i, j) ∈ Ω} G1 GN

Completion

G̃
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Gn

G2

+ K̃n

Figure 1: A schematic of kernel completion, with MULTIPLICATIVE kernel. Each noden (i) collects and summarizes the
samples corresponding toΩ from remote kernel matricesGn′ as the known entries of the matrixMn, and then (ii) fills up the
unknown entries ofMn via matrix completion, producing̃G−n , (iii) forming an estimate of kernel matrices together withthe
exact local kernelGn.

where‖ · ‖F is the Frobenius norm. The equivalence
can be understood by taking a singular value decom-
positionX = UΣVT and settingL = UΣ1/2 andR =
VΣ1/2. Then‖X‖∗ = tr(Σ), ‖L‖2F = tr(LTL) = tr(Σ),
and‖R‖2F = tr(Σ), so the equality holds. For details,
we refer to (Recht et al., 2010; Recht and Ré, 2011).

Using the property of the nuclear norm on rank-r
matrices, we can reformulate the matrix completion
optimization as

min
L ,R

∑
(i, j)∈Ω

(L i·RT
j ·−M i j )

2+
λ
2
‖L‖2F +

λ
2
‖R‖2F . (6)

To obtain solutions, we use theJELLYFISH algo-
rithm (Recht and Ré, 2011), which is a highly par-
allel incremental gradient descent procedure to find
the minimizers, making use of the fact that the gra-
dient of the above objective depends on onlyL i· and
R j ·, and therefore the computation of each iteration
can be easily distributed for the pairs(i, j) ∈Ω.

3.2.1 Constrained Matrix Completion

To incorporate the constraints discussed in Sec-
tion 3.1, we need to find a matrix̃X∗ that is close
to L∗(R∗)T whereL∗ andR∗ are the solutions of (6)
(both arem by r, r ∈ (0,m]), belonging to a convex
setK of symmetric positive semidefinite rank-r ma-
trices,

K := {X̃ : X̃ � 0, (X̃)T = X̃, rank(X̃) = r} .

The following lemma shows that the description of
this set can be simplified.

Lemma 3.1. The elements̃X in K must have the form

X̃ = ZZT , whereZ ∈ℜm×r .

Proof. Suppose that̃X is in K . SinceX̃ is symmet-
ric and positive semidefinite, from the eigen decom-
position of X̃ there exists a factorU ∈ ℜm×m such
that X̃ = UΣUT whereΣ ≥ 0 is the diagonal matrix
of eigenvalues. Removing the columns ofU and the
part of Σ corresponding to the zero eigenvalues, we

obtainŨ ∈ℜm×r andΣ̃ ∈ℜr×r . ThenZ = ŨΣ̃
1/2

can
be constructed so that̃X = ZZT .

Conversely, anỹX in the form of X̃ = ZZT sat-
isfiesX̃T = X̃ (symmetric) andzT X̃z = ‖zTZ‖22 ≥ 0
for all z∈ℜm (positive semidefinite). ThereforẽX =
ZZT is an element ofK .

This lemma indicates that the setK can be rewritten
as simple as,

K = {ZZT : Z ∈ℜm×r} .

The next step is to find a matrixZ such thatZZT is
close toL∗(R∗)T . An ℓ2 projection ofL∗(R∗)T onto
K requires an iterative procedure which is as costly
as findingL∗ andR∗. Therefore we consider an al-
ternative projection for which we have a closed-form
solution,

Z∗ = argmin
Z∈ℜm×r

1
2
‖Z−L∗‖2F +

1
2
‖Z−R∗‖2F .

From the KKT conditions, the solution is obtained by

Z∗ =
L∗+R∗

2
.

Then a projectioñX∗ is obtained bỹX∗ = Z∗(Z∗)T ,
which has a guarantee on its quality as stated in the
next lemma:

ICPRAM�2014�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

116



Lemma 3.2. The trace-norm distance betweenX̃∗ =
Z∗(Z∗)T , whereZ∗ = (L∗+R∗)/2, andL∗(R∗)T is
bounded, that is,

tr(X̃∗−L∗(R∗)T)≤ 1
4
‖L∗−R∗‖2F .

Proof. UsingX̃∗=Z∗(Z∗)T , the result can be derived
as follows,

tr(X̃∗−L∗(R∗)T)

=
1
4

tr{(L∗+R∗)(L∗+R∗)T −4L∗(R∗)T}

=
1
4

tr{(L∗−R∗)(L∗−R∗)T}

=
1
4
‖L∗−R∗‖2F .

Here we have used the properties of the trace that
tr(X +Y) = tr(X)+ tr(Y) = tr(X)+ tr(YT) = tr(X +
YT) and tr(XXT) = ‖X‖2F .

The above lemma tells that the distance betweenX̃∗

andL∗(R∗) becomes small wheneverL∗ ≈R∗, which
is likely to happen in our case since we defineM and
Ω in such a way that if(i, j) ∈ Ω then( j, i) ∈Ω, and
M i j = M ji .

3.2.2 Sample Index Pair SubsetΩ

In our method, we assume that a single sample index
pair setΩ ⊂ {(i, j) : 1≤ i, j ≤ m} is fixed across all
nodes. It is more efficient than using multiple sample
sets, since otherwise we have to store and complete
each remote matrixGn′ , n′ ∈ {1, . . . ,N} \ {n}, sepa-
rately. Using a pre-definedΩ across nodes can be im-
plemented as using a fixed random seed for a pseudo
random number generator, so thatΩ does not have to
be transferred at all.

Given Ω, each noden receives information from
other nodesn′ and stores it inMn as follows for all
(i, j) ∈Ω,

[Mn]i j =






∏
n′∈{1,...,N}\{n}

[Gn′ ]i j (MULTIPLICATIVE )

∑
n′∈{1,...,N}\{n}

[Hn′ ]i j
N−1 (ADDITIVE ) .

That is, the communication cost for each noden is
O((N−1)|Ω|). The use of matrix completion makes
it possible to choose anΩ of relatively small size
(O(m1.2r logm) whenMn is a rank-r matrix, see The-
orem 4.1 for details) in a simple way, that is, via ran-
dom uniform sampling.

Once the matrixMn is obtained, the noden solves
the matrix completion (6) with[Mn]Ω to obtainZ∗n =
(L∗n +R∗n)/2, and then computẽG−n = Z∗n(Z

∗
n)

T or

H̃−n = (N− 1)Z∗n(Z
∗
n)

T , based on Lemmas 3.1 and
3.2. An estimate of the kernelK , obtained by (5), is
then used for training an SVM.

After training SVMs, we apply the same tech-
nique for new test examples to build the test kernel
matrix. This usually involves smaller matrix com-
pletion problems corresponding to the support vectors
and test examples.

3.3 Extra Saving with ADDITIVE

The description of the matrix completion optimiza-
tion (6) involves all training examples. However, if a
(super-)set of thesupport vectors(SVs), which fully
determines a prediction function, is known a priori,
then we can solve the completion problem only for
the set, reducing the cost of matrix completion.

Let us consider the SVs of the “global” SVM
problem (1) equipped with the exact ADDITIVE ker-
nel (2), which is constructed by accessing all features
in a central location. We denote this set of SVs asS∗.
Note thatS∗ is never obtained, since we do not solve
such a global problem.

We try to estimateS∗ from the sets of “local”
SVs. These local SVs are obtained from solving an
individual SVM (1) in each noden, using only the
local features, that is, setting the scaled kernel ma-
trix as Q = YHnY for the local kernel matrixHn =
exp(−γn‖xi [n]− x j [n]‖2). We denote the set of SVs
in the noden by Sn obtained in this way.

In the next theorem, we show that the union of the
local SV setsSn encompasses the global SV setS∗.
To shorten the length of our proof, here we show the
case for the SVMs without any intercept, that is, the
constraintyTα = 0 is removed (the same result holds
for the case with intercepts).

Theorem 3.3.Consider the global SVM problem with
theADDITIVE kernel and its set of SVs S∗,

α∗ := argmin
0≤α≤C1

1
2

αTY

(
1
N

N

∑
n=1

Hn

)
Yα−1Tα ,

S∗ := {i : [α∗]i > 0} ,

and the corresponding local SVM problem and its SVs
for each node n, n= 1,2, . . . ,N,

α∗n := argmin
0≤α≤C1

1
2

αTY (Hn)Yα−1Tα ,

S∗n := {i : [α∗n]i > 0} .

Then we have
S∗ ⊆ ∪N

n=1S∗n .

Proof. Let us consider an indexi ∈ S∗ of an SV of
the global SVM problem, such that[α∗]i > 0. Sup-
pose that theith component of the gradient of all local

Kernel�Completion�for�Learning�Consensus�Support�Vector�Machines�in�Bandwidth-limited�Sensor�Networks

117



SVM problems atα∗ is strictly positive, that is,

[YHnYα∗−1]i > 0, ∀n∈ {1,2, . . . ,N} . (7)

Let us look into the optimality condition of the global
SVM, regarding theith component of the optimizer
α∗. From the KKT conditions, we have

1
N

N

∑
n=1

[YHnYα∗−1]i− [p∗]i +[q∗]i = 0,

[p∗]i [α∗]i = 0, [q∗]i [C1−α∗]i = 0,

wherep∗ ∈ ℜm
+ andq∗ ∈ ℜm

+ are the Lagrange mul-
tipliers for the constraintsα≥ 0 andα ≤C1, respec-
tively. Then[α∗]i > 0 implies[p∗]i = 0, and therefore

1
N

N

∑
n=1

[YHnYα∗−1]i +[q∗]i = 0.

If (7) is true, then we have a contradiction here since
the first term above becomes strictly positive, where
the second term satisfies[q∗]i ≥ 0, and therefore the
equality cannot hold. This implies that there exists at
least one noden for which the condition in (7) is not
satisfied, that is,[YHnYα∗−1]i ≤ 0. This means that
if we search for the local SVM solution at the node
n starting fromα∗, we must increase the value of the
ith component from[α∗]i to reach the minimizer[α∗n]i
of this local SVM problem, since otherwise we will
increase the objective function value. That is,

[α∗n]i ≥ [α∗]i > 0.

This implies that the indexi also becomes an SV of at
least one local SVM problem. Therefore,i ∈ ∪N

n=1S∗n,
which implies the claim.

Theorem 3.3 enables us to restrict our attention to
the union SV set without losing any information for
the case of ADDITIVE , where the size of the union
SV set is typically much smaller than that of the en-
tire training examples index set. In effect, this leads
to more efficiency in solving the matrix completion
problem (6), by reducing the number of variables
from O(m2) to O(| ∪n S∗n|2).

3.4 Algorithm

Our kernel completion method for training SVMs is
summarized in Algorithm 1. There, we have used the
symbol◦ to represent elementwise multiplications be-
tween matrices.

We have implemented our algorithm as open-
source in C++, based on theJELLYFISH code1 (Recht

1Available for download at http://hazy.cs.wisc.edu/
hazy/victor/jellyfish/

and Ré, 2011) for matrix completion, andSVM-
LIGHT2 (Joachims, 1999) for solving SVMs. Our im-
plementation makes use of the union SVs set theorem
(Theorem 3.3) for the ADDITIVE approach to reduce
kernel completion time, but not for MULTIPLICATIVE

since the theorem does not apply for this case.

4 RELATED WORK

Here we present existing methods that are closely re-
lated to our development.

4.1 Separable Approximate
Optimization of SVMs

Lee, Stolpe, and Morik (Lee et al., 2012) have inves-
tigated the primal formulation of SVMs in a setting
close to ours. In their work, the distributed nature
of input features is considered via making an individ-
ual approximate feature mappingϕn for each noden,
such that for a given local kernel functionkn, it ap-
proximates kernel evaluations,

〈ϕn(xi),ϕn(x j)〉 ≈ kn(xi ,x j), ∀i, j .

Using this mapping, each node solves its own local
SVM in the primal, producing a decision vectorw∗[n].
Based upon the local solutions, a “global” SVM is ex-
plicitly constructed in a central node, which is defined
with the collection of local decision vectors and local
feature mappings (weighted byµn≥ 0), that is,

w :=




w[1]
...

w[N]


 , ϕ(x) :=




µ1ϕ1(x[1])
...

µNϕN(x[N])


 .

An interesting characteristic of this central SVM is
that if we have optimized the local SVMs using the
specific forms of loss functionsℓn whose weighted
summation forms an upper bound of the original loss
functionℓ, that is,

ℓ(wTϕ(x),y)≤
N

∑
i=1

µnℓn
(
w[n]Tϕn(x[n]),y

)
,

then it can be shown that this central SVM minimizes
an upper bound of the standard SVM objective with
the original loss function. The nonnegative weights
µ1,µ2, . . . ,µN are optimized in the central node, which
requires transferringO(m) numbers from each local
noden= 1,2, . . . ,N.

2Available at http://svmlight.joachims.org/
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Algorithm 1: Kernel Completion for SVMs.

input : A data set{(xi ,yi)}mi=1, a sample setΩ, and parametersγ, {γn}Nn=1.
(parallel: in each noden= 1,2, . . . ,N)

input : local measurements/labels{(xi[n],yi)}mi=1.
Compute local kernel matrixGn for MULTIPLICATIVE (or Hn for ADDITIVE );

if ADDITIVE then
// Make the union of SV index sets (ADDITIVE only)
Solve the SVM (1) withQ← YGnY, to obtain the SV index setS∗n;

ReceiveS∗n′ for all other nodesn′;

Trim Ω to fit ∪N
n=1S∗n;

end

// Collect samples from remote kernel matrices
Initialize:

[Mn]Ω←
{

11T (MULTIPLICATIVE )

0 (ADDITIVE )

for n′ ∈ {1,2, . . . ,N} \ {n} do
Receive[Gn′ ]Ω (MULTIPLICATIVE ), or [Hn′ ]Ω (ADDITIVE ).

[Mn]Ω←
{
[Mn]Ω ◦ [Gn′ ]Ω (MULTIPLICATIVE )

[Mn]Ω +[Hn′ ]Ω (ADDITIVE )
end

For ADDITIVE , scale[Mn]Ω← [Mn]Ω/(N−1);

// Kernel completion for K̃n
Solve matrix completion (6) with observed entries in[Mn]Ω, to obtainL∗n andR∗n;

Compute projections, to obtainZ∗n← (L∗n+R∗n)/2 ;

Compute the estimated kernel matrixK̃n by (5):
{

G̃−n← Z∗n(Z
∗
n)

T (MULTIPLICATIVE )
H̃−n← (N−1)Z∗n(Z

∗
n)

T (ADDITIVE )
, K̃n←

{
Gn◦ G̃−n (MULTIPLICATIVE )
1
N (Hn+ H̃−n) (ADDITIVE )

// Obtain an estimated consensus SVM

Solve the SVM problem (1) replacingQ with Q̃n← YK̃nY;
(end)

The kernel function of this central SVM is in-
deed a weighted approximation of our ADDITIVE ker-
nel (4), when each local feature mapping approxi-
mates a Gaussian kernel (parametrized byγn) with lo-
cal features, and the weights are fixed toµn = 1/

√
N.

However, our work is quite different from this ap-
proach in several ways. First, we do not require a spe-
cial node to build a central SVM, therefore avoiding
a communication complexity ofO(mN). Moreover,
to classify a test point in the central SVM approach,
O(N) elements have to be transferred to a central node
for each test point. However in our case testing can
be done in any node, although it also requires some

communication. Second, in our method estimation
happens only in kernel completion, whereas both ker-
nels and loss functions are approximated in the central
SVM approach. Lastly, we can use both ADDITIVE

and MULTIPLICATIVE kernels, but only ADDITIVE

kernels are allowed in the central SVM approach.

4.2 Consensus-based Distributed SVMs

Another closely related study is done by Forero,
Cano, and Giannakis (Forero et al., 2010). The mo-
tivation of this work is very similar to ours, in the
sense that it tries to construct a consensus SVM in a
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distributed fashion, without having a central process-
ing location. They have developed a fully distributed
SVM training algorithm based on the alternating di-
rection method of multipliers (Bertsekas and Tsitsik-
lis, 1997).

However, the consensus-based distributed SVM
considers situations whereexamplesare distributed
over connected nodes, notfeaturesare distributed as
in our work. Moreover, the consensus requirements
are expressed as extra constraints in a distributed
SVM optimization problem therein: in our case, con-
sensus SVMs are obtained by making approximations
in each node to a “global” kernel matrix that would
have constructed if we have collected all features to a
central location.

4.3 Multiple Kernel Learning

Our ADDITIVE kernel is closely related to the mul-
tiple kernel learning (MKL) approach. In MKL, we
consider a convex combination ofN kernel matrices:

k(xi ,x j) =
N

∑
n=1

βnkn(xi ,x j), βn≥ 0,
N

∑
n=1

βn = 1 .

MKL searches for the optimal mixing coefficients
β1,β2, . . . ,βN, as well as the optimal values of the
SVM dual variables. This requires to solve a semi-
definite program (Lanckriet et al., 2002), a quadrati-
cally constrained quadratic program (Lanckriet et al.,
2004) when we normalize kernels so thatkn(xi ,xi) =
1, or a quadratic program (Rakotomamonjy et al.,
2007) with further modifications.

In our ADDITIVE approach (4), we use fixed mix-
ing coefficients toβn = 1/N, in order to avoid storing
and completing individual local kernel matrices. We
could replace our SVM training with an MKL prob-
lem, and it might have a benefit to identify unimpor-
tant nodes that could be excluded from future commu-
nication, but MKL will impose overhead in computa-
tion and communication which may not be affordable.

4.4 Theory of Matrix Completion

Matrix completion provides guarantees under certain
conditions to recover the original full matrix using
only a few entries from it. Here we introduce the
idea following Candès and Recht (Candès and Recht,
2009; Candès and Recht, 2012).

Going back to the matrix completion problem (6),
we have defined a matrixM ∈ℜm×m with rankr, and
a sample setΩ such that for(i, j) ∈ Ω, the compo-
nentsM i j are known to us. The goal is to recover
the rest of the matrixM . Let us consider the reduced
singular value decomposition ofM ,

M = UΣVT , UTU = I , VTV = I ,

whereΣ ∈ ℜr×r is a diagonal matrix with singular
values. The columns ofU ∈ ℜm×r and V ∈ ℜm×r

compose orthonormal bases ofR (M) and R (MT),
respectively, whereR (X) denotes the range (column
space) of a matrixX. Based on these, we define a
measure called thecoherenceof R (M) (Candès and
Recht, 2009):

Definition For M = UΣVT , the coherence ofR (M)
is defined by

co(R (M)) :=
m
r

max
i=1,2,...,m

‖UUTei‖2 ∈ [1,m/r] ,

whereei is theith standard unit vector.

HereUUT defines the projection matrix ontoR (M).
Coherence co(R (M)) measures the alignment be-
tween the range space ofM and any of the standard
unit vectors. That is, the maximal coherencem/r is
achieved wheneverR (M) contains any of the stan-
dard basis vectorei , i = 1,2, . . . ,m. On the other hand,
coherence decreases as the basis vectors ofR (M) be-
comes more like random vectors. For example, sup-
pose thatU contains uniform random column vec-
tors, i.e. the value of each entry isO(1/m) in magni-
tude satisfyingUUT = I . Then we have‖UUTei‖2 =
‖UTei‖2 = O(r/m) for any i which gives the mini-
mum coherence value, using the fact thatUUT = I
andUTei ∈ℜr . Repeating the same argument forV,
we see thatM = UΣVT is likely to be a dense matrix
if both co(R (M)) and co(R (MT)) are small. That
is, it becomes harder that many entries ofM becomes
zero, which is a necessary property for matrix com-
pletion so that recovery would be possible from only
a few sampled entries (otherwise they will contain
many zero entries which are non-informative).

The next theorem states the required conditions of
M and the estimated size of the sample setΩ, so that
matrix completion will succeed with high probability.

Theorem 4.1(Candès and Recht, 2009). For a ma-
trix M = UΣVT ∈ℜm×m of rank r, suppose that there
exists constantsδ0 > 0 andδ1 > 0 such that

(i) max{co(R (M)),co(R (MT))} ≤ δ0 ,

(ii) max
i, j
|[UVT ]i j | ≤ δ1

√
r/m .

If we sample|Ω| elements ofM uniformly at random,
as many as

|Ω| ≥ ψmax(δ2
1,δ

0.5
0 δ1,δ0m0.25)mr(β logm)

for some constantsψ and β > 2, then the minimizer
of the matrix completion problem(6) is unique and
equal to the originalM with probability at least1−
zm−β for some constant z. If rank is small, that r≤
m0.2/δ0, then the requirement reduces to

|Ω| ≥ ψδ0m1.2r(β logm) .
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A natural conjecture from this theorem is that
Gaussian kernels would fit well for matrix comple-
tion, as they typically produces dense and numerically
low-rank matrices (note that they are always full-rank
in theory), whose entries are bounded above by 1. We
use this theorem in the following section to check how
well kernel matrices constructed from various data
sets satisfy the required conditions for matrix comple-
tion, and how they affect the prediction performance
of the resulting SVMs.

5 EXPERIMENTS

For experiments, we used five benchmark data sets
from the UCI machine learning repository (Bache and
Lichman, 2013), summarized in Table 1, and also
their subset composed of 5000 training and 5000 test
examples (denoted by 5k/5k) to study characteristics
of algorithms under various circumstances.

Table 1: Data sets and their training parameters. Different
values ofC were used for the full data sets (columnC) and
smaller 5k/5k sets (columnC(5k/5k)).

Name m (train) test p C C(5k/5k) γ
ADULT 40701 8141 124 10 10 0.001
MNIST 58100 11900 784 0.1 1162 0.01
CCAT 89702 11574 47237 100 156 1.0
IJCNN 113352 28339 22 1 2200 1.0
COVTYPE 464809 116203 54 10 10 1.0

For all experiments, we split the original input fea-
ture vectors into subvectors of almost equal lengths,
one for each node ofN = 3 nodes (for 5k/5k sets)
and N = 10 (for full data sets) nodes. The tuning
parametersC and γ were determined by cross val-
idation for the full sets, and theC values for the
5k/5k subsets were determined by independent val-
idation subsets, both withSVMLIGHT. The results
of SVMLIGHT were included for a comparison to a
non-distributed SVM training. Following (Lee et al.,
2012), the local Gaussian kernel parameters for AD-
DITIVE were adjusted toγn =

p
pn
≈ Nγ for a givenγ,

so thatγn‖xi[n]− x j [n]‖ will have the same order of
magnitudeO(γp) asγ‖xi− x j‖.

Throughput the experiments, we imposed that if
(i, j) ∈Ω then( j, i) ∈Ω as well, andM i j = M ji .

5.1 Characteristics of Kernel Matrices

The first set of experiments is to verify that how well
kernel matrices fit for matrix completion. For this,
we computed the two types of exact kernel matri-
ces defined in (2), MULTIPLICATIVE and ADDITIVE ,
accessing all features of the small 5k/5k subsets of

the five UCI data sets (the MULTIPLICATIVE kernels
were equivalent to the usual Gaussian kernels).

The important characteristics of the kernel matri-
ces with respect to matrix completion are its rank (r),
coherence (δ0 ∈ [1,m/r]), and the maximal value of
|[UVT ]i j | (whereU andV are the left and right factors
from singular value decomposition), as discussed in
Theorem 4.1. Whenδ0 is closer to its smallest value
of one, and|[UVT ]i j | is bounded above by a small
value, then matrix completion becomes well-posed.
Further, if the rank is small as well, then the theorem
indicates that we can recover the original matrix from
even smaller samples.

Table 2 summarizes these characteristics. Clearly,
the rank (numerically effective rank, with eigenvalues
larger than a threshold of 0.01) and coherence val-
ues were much smaller in case of ADDITIVE , indicat-
ing potential benefits of using this approach compared
to MULTIPLICATIVE . All numbers of|[UVT ]i j | ap-
peared to be small, especially for the ADDITIVE ker-
nels ofADULT, IJCNN, andCOVTYPE. Kernel matrices
of these three sets also had much lower ranks than the
rest. ForMNIST andCCAT, the numbers hinted that
matrix completion would suffer from difficulties, un-
less the sample set|Ω| was large.

5.2 The Effect of Sampling Size

Next, we have used the 5k/5k data sets to investigate
how the prediction performance of SVMs changed
over several difference sizes of the sample setΩ. We
define the sampling ratio as

Sampling Ratio := |Ω|/(m2) ,

where the value ofm is 5000 in this section. We
compared the prediction performance of using MUL-
TIPLICATIVE and ADDITIVE to that ofSVMLIGHT.

Figure 2 illustrates the test accuracy values for
five sampling ratios in up to 10%. The statistics are
over N = 3 nodes and over random selections ofΩ.
The performance onADULT, IJCNN, andCOVTYPE was
close to that ofSVMLIGHT, and it kept increasing with
the growth of|Ω|. This behavior was expected in
the previous section as their kernel matrices had good
conditions for matrix completion. On the other hand,
the performance onMNIST andCCAT was far inferior
to that ofSVMLIGHT, as also expected.

The bottom-right corner of Figure 2 shows the
concentration of eigenvalue spectrum in the five ker-
nel matrices. The height of each box represents the
magnitude of the corresponding normalized eigen-
value, so that the height a stack of boxes represents the
proportion of entire spectrum concentrated in the top
10 eigenvalues. The plot shows that 90% of the spec-
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Table 2: The density, rank, coherence (δ0), and maximal values of|[UVT ]i j | of kernel matrices. Effective numbers of ranks
are shown, which correspond to eigenvalues larger than a threshold (0.01). Coherence values are bounded by 1≤ δ0 ≤m/r.
Smaller values ofδ0, r, and max|[UVT ]i j | are indicative of better conditions for matrix completion.

MULTIPLICATIVE ADDITIVE

density r δ0 m/r max|[UVT ]i j | density r δ0 m/r max|[UVT ]i j |
ADULT 1.0 789 5.54 6.34 0.87 1.0 222 8.32 22.52 0.37
MNIST 1.0 4782 1.03 1.05 0.99 1.0 4568 1.07 1.10 0.98
CCAT 1.0 4984 1.00 1.00 1.00 1.0 4982 1.00 1.00 1.00
IJCNN 1.0 1516 3.19 3.30 0.97 1.0 698 1.75 7.16 0.25

COVTYPE 1.0 1423 3.32 3.51 0.95 1.0 424 1.56 11.79 0.13
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Figure 2: Prediction accuracy on test sets for 5k/5k subsetsof the five UCI data sets, over different sampling ratios in kernel
completion. The average and standard deviation over multiple trials with randomΩ andN = 3 nodes are shown. The bottom-
right plot illustrates the proportion of the entire eigen-spectrum concentrated in the top ten eigenvalues.
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Table 3: Test prediction performance on full data sets (meanand standard deviation). Two sampling ratios (2% and 10%)
are tried for our method. TheSVMLIGHT results are from using the classical Gaussian kernels with matching parameters.
|∪n S∗n|/m is the fraction of the union support vector sets to their corresponding training sets.

ADDITIVE
ASSET SVMLIGHT|∪n S∗n|/m 2% 10%

ADULT 0.61 81.4±1.00 84.2±0.18 80.0±0.02 84.9
MNIST 0.99 78.9±1.69 87.0±0.20 88.9±0.39 98.9
CCAT 0.84 87.2±1.00 92.0±0.35 73.7±1.00 95.8
IJCNN 0.56 96.0±0.35 96.5±0.23 90.9±0.88 99.3

trum in ADULT is concentrated in the top 10 eigenval-
ues, indicating that its kernel matrix has a very small
numerically effective rank. This would be the reason
why our method performed as good asSVMLIGHT for
ADULT.

Comparing MULTIPLICATIVE to ADDITIVE , both
showed similar prediction performance. However,
higher concentration of the eigen spectrum of ADDI-
TIVE indicated that it would make a good alternative
to MULTIPLICATIVE , also considering the extra sav-
ing with ADDITIVE discussed in Section 3.3.

5.3 Performance on Full Data Sets

In the last experiment, we used the full data sets for
comparing our method to one of the closely related
approaches,ASSET (Lee et al., 2012), introduced in
Section 4. SinceASSET admits only ADDITIVE ker-
nels, we have omitted MULTIPLICATIVE in compar-
ison. Among the several versions ofASSET in (Lee
et al., 2012), we used the “Separate” version with
central optimization.COVTYPE was excluded due to
extra-long runtimes ofSVMLIGHT and ours.

The results are in Table 3. The second column
shows the ratio between a union SV set and an en-
tire training set. The square of these numbers in-
dicates the saving we have achieved by the union
SVs trick, for example the size of matrix is reduced
to 37% of the original size forADULT. The saving
was substantial forADULT and IJCNN. In terms of
prediction performance, we have achieved test accu-
racy approaching to that ofSVMLIGHT (within 1%
point (ADULT), 3.8% points (CCAT), and 2.8% points
(IJCNN) on average) with 10% sampling ratio, except
for the case ofMNIST where the gap was significantly
larger (11.9%): this result was consistent to the dis-
cussion in Sections 5.1 and 5.2. Our method (with
10% sampling) also outperformedASSET (by 4.2%,
18.3%, and 5.6% on average forADULT, CCAT, and
IJCNN respectively) except for the case ofMNIST with
a small but not negligible margin (1.9%). We con-
jecture that the approximation of kernel mapping in
ASSET have fitted particularly well forMNIST, but it
remains to be investigated further.

6 CONCLUSIONS

We have proposed a simple algorithm for learning
consensus SVMs in sensor stations connected with
band-limited communication channels. Our method
makes use of decompositions of kernels, together
with kernel completion to approximate unobserved
entries of remote kernel matrices. The resulting
SVMs performed well with relatively small numbers
of sampled entries, when kernel matrices satisfied re-
quired conditions. A property of support vectors also
helped us further reduce computational cost.

Using matrix completion, there is no need to iden-
tify and execute an optimal sampling strategy to have
similar performance guarantees. Although sample
complexity could be reduced by a small factor by
identifying specific sample setsΩ for a given situa-
tion, such sets will depend on network topology and
cost/noise models, perhaps with the need for central
coordination.

Several aspects of our method remain to be inves-
tigated further. First, different types of kernels may
involve different types of decomposition, having dis-
similar characteristics in terms of matrix completion.
Second, although parameters of SVMs can be tuned
using small aggregated data, it would be desirable to
tune parameters locally, or to consider parameter-free
methods instead of SVMs. Also, despite the bene-
fits of the ADDITIVE kernel, it requires more kernel
parameters to be specified compared to the MULTI -
PLICATIVE kernel. Therefore when the budget for pa-
rameter tuning is limited, MULTIPLICATIVE would be
preferred to ADDITIVE . Finally, it would be worth-
while to analyze the characteristics of the suggested
algorithm in real communication systems to make it
more practical, considering non-uniform communica-
tion cost, for instance.

Considering kernel completion in the context of
privacy preserving learning would be an interesting
branch, if the number of entries required for kernel
completion to build a good classifier is less than the
number required to recover private information, or if
we can make kernel completion to fail unless it has
right credentials by possibly tweaking the coherence
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of kernel matrices.
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