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Abstract: Detecting overlapping groups is an important challenge in clustering offering relevant solutions for many
applications domains. Recently, Parametrized R-OKM method was defined as an extension of OKM to control
overlapping boundaries between clusters. However, the performance of both, OKM and Parametrized R-OKM
is considerably reduced when data contain outliers. The presence of outliers affects the resulting clusters and
yields to clusters which do not fit the true structure of data. In order to improve the existing methods, we
propose a robust method able to detect relevant overlapping clusters with outliers identification. Experiments
performed on artificial and real multi-labeled data sets showed the effectiveness of the proposed method to
produce relevant non disjoint groups.

1 INTRODUCTION

Data mining aims at modeling relationships and dis-
covering hidden patterns in large databases. Clus-
tering is an important task in data mining. It aims
to find groups from unlabeled data by organizing a
given set of data into coherent clusters, such that
all data within the same cluster are similar to each
other, while data from different clusters are dissimi-
lar. However, this definition of clustering could be a
crucial issue in many applications of clustering where
data need to be assigned to more than one cluster. For
example, in social network analysis, community ex-
traction algorithms should be able to detect overlap-
ping clusters because an actor can belong to multiple
communities (Wang et al., 2010). In video classifi-
cation, overlapping clustering is a necessary require-
ment while video can potentially have multiple genres
(Yang et al., 2007). In emotion detection, overlapping
clustering methods should be able to detect several
emotions for a specific piece of music (Trohidis et al.,
2008). In biology, many genes are multi-functional
and need to be assigned to multiple overlapping clus-
ters (Battle et al., 2005) (Eran et al., 2003). In infor-
mation retrieval and text mining, documents can dis-
cuss several themes (Sahami et al., 1996).

The possibility that an observation belongs to
more than one cluster is usually ignored. How-
ever, some researchers have focused on this prob-
lem known as ”overlapping clustering”. Recently, a

new clustering method referred to as Parametrized R-
OKM (Ben N’Cir et al., 2013), generalizes k-means
approach to detect non disjoint clusters. This method
extends OKM (Cleuziou, 2008) to control the sizes of
overlaps and offers for users the possibility to regu-
larize the overlaps. Although the ability of OKM and
Parametrized R-OKM to produce non-disjoint clus-
ters, their performance could be considerably reduced
in presence of outliers. Known that these methods are
based on centroids as representatives of each cluster,
the noisy observations lead to produce clusters which
do not fit the true structure of data.

In order to deal with this issue, we propose a
robust method referred to Robust Parametrized R-
OKM, taking into account the presence of outliers.
When performing the learning of data, the proposed
method identifies on each step observations which
will be classified as outliers to improve the quality of
obtained non-disjoint groups.

The remainder of this paper is organized as fol-
lows: Section 2 presents related works on overlapping
clustering. Then, Section 3 describes the motivation
of this work by presenting the importance of detect-
ing outliers. Section 4 describes the proposed Ro-
bust Parametrized R-OKM while Section 5 describes
experiments performed on artificial and real overlap-
ping data sets to check the effectiveness of the pro-
posed method. Finally Section 6 gives conclusions
and some future improvements of this work.
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2 OVERLAPPING CLUSTERING

Many methods were proposed to solve the issue
of overlapping clustering. Two classes of methods
have been led: Heuristic and Theoretical. Heuristic
methods are based on proposing new clustering
processes based on intuitive learning for example
CBC (Pantel and Dekang, 2002), POBOC (Cleuziou
et al., 2004) or the extension of results of well
known methods (Bezdek, 1981) (Krishnapuram and
Keller, 1993) (Dempster et al., 1977) to have non
disjoint clusters. These heuristic methods can lead
to non disjoint partitioning, but good results are not
ensured because they are not based on theoretical
model to introduce overlaps. However, this issue
is solved for theoretical methods where overlaps
are introduced in their optimized criteria. Example
of these Methods are OKM (Cleuziou, 2008) and
Parametrized R-OKM (Ben N’Cir et al., 2013).

• Parametrized R-OKM

In order to detect overlapping clusters with control of
overlaps, Parametrized R-OKM method generalizes
OKM and allows the user to parameterize the size of
the overlaps according to his expectations. Given a
data setX with N data and a numberK of expected
clusters, the aim of Parametrized R-OKM is to find
the binary assignment matrixΠ(N×K) and the clus-
ter representativesC= {C1, . . . ,CK} such that the fol-
lowing objective criterion is minimized:

J(Π,C) = ∑
xi∈X
|Πi |

α d(xi , imΠ,C (xi))
2 , (1)

with imΠ,C (xi) is the combination of clusters’ repre-
sentatives which represents the gravity center of clus-
ters prototypes to which observationxi belongs and is
defined by:

imΠ,C (xi) = ∑
πk∈Πi

Ck

|Πi |
, (2)

where πk the set of objects which belongs to the
kth cluster,Ck the prototype of clusterπk, |Πi |

α the
weight assigned to observationxi , Πi the set of clus-
ters to whichxi belongs to,|Πi | its cardinality and
α a positive parameter to control the size of the over-
laps. The parameterα is considered as a penalty term:
the penalization is more important whenα→+∞ and
then overlaps are reduced. However the penalization
is reduced whenα→ 0 and the method produces large
overlaps. Particularly whenα = 0 Parametrized R-
OKM coincides with OKM.

The objective function of Parametrized R-OKM
J(Π,C) is minimized by alternating two independent
steps:

1. Assignment of observations to one or several clus-
ters: This step orders the clusters from the nearest
cluster to farthest one then assigns the observation
to several clusters while the objective function is
minimized.

2. Update of clusters’ representatives: This step up-
date the clusters’ representatives after each as-
signment step. By using the lagrange multipliers
method, by differentiating with respect toCk and
setting derivative to zero, optimal clusters’ rep-
resentativesC∗k to made the objective function of
Parametrized R-OK minimized are defined by:

C∗k =

∑
xi∈πk

1

|Πi |
2−α Ck

i

∑
xi∈πk

1

|Πi |
2−α

, (3)

whereCk
i = |Πi | .xi− (|Πi |−1).imΠ,C(xi).

3 PROBLEM DESCRIPTION

In real life applications of overlapping clustering, data
are usually complex and contain outliers. Outliers,
also referred to as noise, are observations which are
grossly different from the remaining set of data. In-
tuitively, an outlier can be defined by an observation
that deviates so much from other observations.

The presence of outliers in data affects the clus-
tering algorithm by biasing the structure of obtained
clusters as the case of Parametrized R-OKM. Figure
1 shows patterns obtained with parametrized R-OKM
in two artificial data sets: the first example is free of
outliers while the second contains a noisy observa-
tion. The application of Parametrized R-OKM with 2
clusters using Euclidean distance in the first data set
leads to non disjoint clusters. However, in the sec-
ond data set the application of Parametrized R-OKM
results in two disjoint groups where the outlier itself
forms one cluster and all remaining observations are
grouped in the other cluster..

4 ROBUST PARAMETRIZED
R-OKM

In order to make robust the identification of over-
lapping clusters in presence of outliers, we propose
a new method denoted by Robust Parametrized
R-OKM. This proposed method takes into account
that data may contain noise. Therefore, it can detect
more relevant clusters by giving the possibility to
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Figure 1: Clusters obtained using Parametrized R-OKM ( K=2)in a two dimensional artificial data sets: (a) tow non disjoint
clusters obtained in a data set free of outliers and (b) two disjoint clusters obtained in a data set containing a noisy observation.

user to control the size of overlaps: Based on the
Noise Clustering approach (Davè, 1991), we propose
to add a newfictive cluster in which outliers will be
assigned to. All the observations whose distances
from the set of prototypes exceed a fixed threshold
are considered as outliers and assigned to the fictive
cluster.

4.1 Objective Function of Robust
Parametrized R-OKM

The Objective function of Robust Parametrized R-
OKM aims to model the local error on each obser-
vation xi defined by the squared Euclidean distance
betweenxi and its representative denoted as image
im(x). Given a data setX with N data overRP and
a numberK′ = K +1 of expected clusters, the aim of
Robust Parametrized R-OKM is to find the binary as-
signment matrixΠ(N×K′) and the cluster represen-
tativesC = {C1, . . . ,CK}∪C‡ such that the following
objective function is minimized:

J(Π,C,δ) = ∑
xi∈X,xi /∈C‡

|Πi |
α d(xi , imΠ,C (xi))

2

+ ∑
xi∈C‡

|Πi |
α δ2 , (4)

where |Πi |
α the weight of observationxi , |Πi | the

number of clusters to whichxi belongs to,α a pos-
itive parameter used to control the size of overlaps,
imΠ,C (xi) the image of observationxi , C‡ the noise
cluster andδ2 the distance between the cluster noise
and each observation denoted by noise distance.

4.2 Algorithm Resolution and
Optimization

The main algorithm of the Robust Parametrized R-
OKM is described by Algorithm 1.

Algorithm 1 : Robust Parametrized R-OKM.

Require: X :a set of input data.
K : a number of clusters.
ε : a minimum improvement in the objective function.
tmax :a maximum number of iterations.
δ2: the distance noise

Ensure: Π: assignment of observations over K clusters.
1: Initialize representatives of clustersC0 randomly over X
2: Initialize the distance noiseδ2

3: Initialize clusters memberships Π0
i using

Robust.Multi.ASSIGN(xi ,C0)
4: Compute the objective function J(J(Π0,C0,δ) ).
5: while J

(

Πt−1,Ct−1,δ
)

−J(Πt ,Ct ,δ)> ε andt < tmax do
6: Sett = t +1
7: Update clusters’ representativesCt

8: Update distance noiseδ2

9: Compute new assignments Πt using
Robust.Multi.ASSIGN(xi ,Ct ,Πt)

10: Compute objective functionJ(Πt ,Ct ,δ)
11: end while
12: return Πt the final cluster memberships matrix.

The optimization of the objective function is realized
by iterating 3 steps:

1. computation of cluster representatives ;

2. computation of distance noiseδ2 ;

3. multi-assignment(Π) of observations.

The above steps are iterated until a stopping criterion
is reached. The stopping rule of Robust Parametrized
R-OKM algorithm is characterized by two criteria:
the maximum number of iterations or the minimum
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improvement of the objective function between two
iterations.

We present in the next, a detailed description
of the optimisation steps of Robust Parametrized R-
OKM.

4.3 Computation of Cluster
Representatives

Given a clusterπh and a set ofK clusters’ represen-
tatives{Ck}

K
h=1\ {Ch} the problem of findingC∗k that

minimize the objective functionJ(Π,C,γ) can be ex-
pressed as a convex optimization problem which is
solved using the lagrange multipliers method. By dif-
ferentiatingJ(Π,C,γ) with respect toCk and setting
derivative to zero, optimal clusters’ representativeC∗k
which minimize the objective function are computed
as the following:

C∗k =

∑
xi∈πk,πk 6=C‡

1

|Πi |
2−αCk

i

∑
xi∈πk

1

|Πi |
2−α

, (5)

whereCk
i is defined by :

Ck
i = |Πi | .xi− (|Πi |−1).imΠ,C(xi) (6)

The computation of the new clusters’ prototypes en-
sures that the objective function is decreased after
each update of clusters’ prototypes.

4.4 Multi-assignment

Based on the assignment heuristic used for
Parametrized R-OKM, we derive a new heuris-
tic taking into account the possibility that an
observation be assigned to the noise cluster. It
looks for the nearest cluster of observationxi . If the
distance between this observation and the nearest
cluster exceeds the distance noise, this observation
is identified as outlier. Conversely, it scrolls through
the list of centers from the nearest to the farthest,
and assigns the observationxi to the nearest cluster.
The new assignment is kept only if it is better than
the old one. This assignment heuristic is detailed in
Algorithm 2.

4.5 Computation of Distance Noise

In order to determine the noise distance, we assume
that this distance depend on the variation of obser-
vations with respect to clusters prototypes which is
defined by:

Algorithm 2 : Robust.Multi.ASSIGN.

Require: xi :Vector inRd.
{C1, . . .,CK} : K clusters’ representatives.
Πold

i : Old assignment of observationxi .
γ : Parameter to control outliers.

Ensure: Πi : New assignment forxi .
1: Search C∗ the nearest cluster whereC∗ =

argmin
Ck

∑
k∈Πi

|Πi |
α ‖xi −Ck‖

2

2: Compute the distance between the observation and the
nearest cluster

3: if |Πi |
α ‖xi −C∗‖2 ≥ δ2 then

4: xi is an outlierΠi = {C‡}
5: ReturnΠi

6: else
7: Initialize Πi = {C∗} the nearest cluster whereC∗ =

argmin
Ck

ωi |Πi |
α ‖xi −Ck‖

2

8: Looking for the next nearest clusterC∗ which is not in-
cluded inΠi

9: ComputeimΠ′ ,c (xi) with assignmentsΠ′i = Πi ∪{C∗}
10: if |Π′i |

α ‖xi − imΠ′,C (xi)‖
2 < |Πi |

α ‖xi − imΠ,C (xi)‖
2

then
11: Πi ←Π′i and go to step 9
12: else
13: computeimold(xi) with assignmentΠold

i

14: if |Πi |
α ‖xi − imΠ,C (xi)‖

2≤ |Πi |
α
old‖xi − imΠ,C (xi)‖

2

then
15: ReturnΠi

16: else
17: ReturnΠold

i

18: end if
19: end if
20: end if

δ2 = γ

N

∑
i=1

K

∑
k=1

d2
ik

N×K
, (7)

whereγ is the value of the parameter used to obtainδ
from the average of distances. A proper selection of
the parameterγ will control the classification result
and the proportion of observations that are considered
as outliers. The specification of the parameterγ is
fixed by the user.

According to this definition, the noise distance
depends generally on the non-weighted distances
of all feature vectors to all prototype vectors. Thus
this distance is not fixed but it is modified in each
iteration of the algorithm after the update of clusters’
representatives.

5 EXPERIMENTS AND RESULTS

To check the effectiveness of Robust Parametrized R-
OKM to produce suitable overlapping clusters within
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Figure 2: Experiments on artificial data set: (a) the artificial data set, (b)two clusters obtained using Parametrized R-OKM
with α = 1 and (c)two clusters obtained using Robut Parametrized R-OKM with α = 1 andγ = 0.5.

noisy data, we perform experiments on artificial and
real overlapping data sets using a standard desktop
computer. Running times of each method are not re-
ported while all the methods need less than one 1 sec-
ond to return results.

5.1 Experiments on Artificial Data Sets

The examples included in Figure 2(b) and Figure
2(c) show the ability of Robust Parametrized R-OKM
method lead to clusters which fit the true structures in
data.

To check the effectiveness of Robust Parametrized
R-OKM, , we generate an artificial data set over two
dimensions as described in Figure 2(a). This data set
is characterized by two apparent groups in data and
some observations which have different characteris-
tics than the remaining data. We report obtained par-
titioning using Parametrized R-OKM withα = 1 and
Robut Parametrized R-OKM withα = 1 andγ = 0.5
as described in Figure 2(b) and Figure 2(c). These
figures show that Parametrized R-OKM leads to clus-
ters with large overlaps and does not identify the two
apparent groups. This problem is solved when using
the proposed Robust Parametrized R-OKM.
To illustrate sensitivity of Robust Parametrized R-
OKM to the parameterγ, we report obtained clusters
with different values ofγ using a fixed value ofα as
shwon in Figure 3. These results prove that the perfor-
mance of Robust Parametrized R-OKM depends on a
suitable configuration of the parameterγ. This corre-
lation can be explained by the fact that the parame-
ter γ is used to control the number of outlier points.
In fact, the parameterγ controls the distance between
each observation and the prototype of cluster in which
the outliers are assigned to. This distance depends on
this parameter. As well asγ is small and near to 0 the
distance noise becomes more smaller leading to large
detection of outliers.

5.2 Experiments on Real Data Set

In order to evaluate the performance of Robust
Parametrized R-OKM, results are compared through
external validation measures which are Precision, Re-
call, F-measure and Rand Index. The reported scores
are averages and standard deviations obtained over
ten runs.
Let X = {X1, . . . ,XN} be the set of observations,C=
{c1, . . . ,cK} a partition of X into K classes,R =
{r1, ..., rk1} a partition of X intoK1 clusters specified
by the clustering algorithm.
Given the notations:

• ”TP” designs the number of pairs of observations
in X that share at least one class in C and share at
least one cluster in R.

• ”TN” the number of pairs of observations in X
that do not share any class in C and do not share
any cluster in R;

• ”FN” designs the number of pairs of observations
in X that share at least one class in C and do not
share any cluster in R;

• ”FP” designs the number of pairs of observations
in X that do not share any class in C and share at
least one cluster in R

the validation measures are computed as follows:

Precision=
TP

TP+FP
.

Recall=
TP

TP+FN
.

F−measure=
(2×Recall×Precision)
(Recall+Precision)

.

Rand Index=
TP+TN

TP+FN+FP+TN
.

Experiments are performed in three domains where
data need to be assigned to more than one cluster. The
statistic of the used data sets are described in Table 1.
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Figure 3: Sensitivity of Robust Parametrized R-OKM method to the parameterγ.

Table 2: Comparison of Robust Parametrized R-OKM with existing overlapping clustering methods on Benchmark data sets.

Data sets Methods Precision Recall F-measure Rand Index

EachMovie fuzzy c-means (θ = 0.33) 0.610± 0.001 0.734± 0.001 0.666± 0.001 0.696± 0.001

OKM 0.465±0.020 0.921±0.055 0.618±0.001 0.532±0.032

Robust Parametrized R-OKM(γ = 0.8) 0.627±0.010 0.857±0.020 0.724± 0.02 0.621±0.03

Parametrized R-OKM(α = 0.1) 0.474±0.016 0.900±0.042 0.621±0.024 0.547±0.024

Robust Parametrized R-OKM(γ = 1.0) 0.680±0.024 0.727±0.084 0.699±0.024 0.640± 0.025

Emotion fuzzy c-means (θ= 0.1667) 0.493± 0.003 0.357± 0.001 0.414± 0.002 0.524± 0.002

OKM (α = 0) 0.483±0.000 0.647±0.029 0.553±0.011 0.508±0.001

Robust Parametrized R-OKM(γ = 10) 0.657±0.004 0.512±0.017 0.578±0.012 0.517±0.003

Parametrized R-OKM(α = 5.0) 0.506±0.002 0.213±0.007 0.300±0.008 0.531± 0.000
Robust Parametrized R-OKM(γ = 0.1) 0.698±0.000 0.222±0.021 0.337±0.024 0.440±0.004

Scene FCM(θ = 0.1667) 0.324±0.004 0.482±0.022 0.388±0.005 0.706±0.008

OKM 0.233±0.006 0.928± 0.013 0.372±0.008 0.397±0.019

Parametrized R-OKM(α = 2.0) 0.451±0.000 0.417±0.001 0.433±0.001 0.789± 0.000
Robust Parametrized R-OKM(γ = 0.8) 0.488±0.030 0.652±0.119 0.548±0.023 0.632±0.019

Table 1: Data sets description.

Data set Observation Dimension Labels Overlap

EachMovie 75 3 3 1.14

Music 593 72 6 1.86

Scene 2407 6 1.07 1.86

Table 2 and Table 3 report average scores and standard
deviations of Precision, recall, F-measure.

In Eachmovie, Emotion and Scene data sets, re-
sults obtained with Robust Parametrized R-OKM out-
perform results obtained with FCM and Parametrized
R-OKM. For example, in Eachmovie data set the
F-measure obtained with Robust Parametrized R-
OKM (0.724) outperform the F-measure obtained

with OKM (0.618) and the F-measure obtained with
FCM(0.666). The improvement of F-measure with
proposed methods is induced by the improvement of
classification precision compared to OKM and FCM
methods.

In Emotion and Scene data set, the improvement
of the F-measure obtained with the proposed method
compared to the F-measure obtained with Robust
Parametrized R-OKM is induced by the improvement
of classification precision. For example, in Emo-
tion data set, the average of Precision using Robust
Parametrized R-OKM withα = 5 andγ = 0.1 is equal
to 0.506 while the average of Precision when using
Parametrized R-OKM withα = 5 is equal to 0.698.
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Table 3: Sensitivity of proposed methods to the parameterγ on Benchmark data sets.

Data sets Methods Precision Recall F-measure Rand Index

EachMovie Robust Parametrized-OKM(α = 0,γ = 1) 0.632±0.02 0.886±0.05 0.737±0.03 0.635±0.04

Robust Parametrized-OKM(α = 0,γ = 0.8) 0.627±0.01 0.857±0.02 0.724±0.02 0.621±0.03

Robust Parametrized-OKM(α = 0,γ = 0.7) 0.623±0.01 0.868±0.04 0.725±0.01 0.619±0.02

Robust Parametrized R-OKM(α = 1,γ = 1) 0.691± 0.05 0.635±0.03 0.659±0.03 0.619±0.05

Robust Parametrized R-OKM(α = 1,γ = 0.7) 0.691±0.06 0.621±0.06 0.652±0.04 0.611±0.06

Robust Parametrized R-OKM(α = 1,γ = 0.5) 0.661±0.03 0.605±0.07 0.631±0.05 0.583±0.04

Robust Parametrized R-OKM(α = 1.5,γ = 1) 0.719±0.10 0.632±0.05 0.668±0.05 0.631±0.06

Robust Parametrized R-OKM(α = 1.5,γ = 0.7) 0.711±0.09 0.611±0.05 0.653±0.01 0.617±0.18

Robust Parametrized R-OKM(α = 1.5,γ = 0.5) 0.663±0.03 0.603±0.07 0.630±0.05 0.583±0.04

Emotion Robust Parametrized-OKM(α = 0,γ = 0.3) 0.659±0.005 0.519±0.038 0.580±0.022 0.521±0.007

Robust Parametrized-OKM(α = 0,γ = 0.4) 0.657±0.005 0.491±0.013 0.562±0.006 0.510±0.000

Robust Parametrized-OKM(α = 0,γ = 0.8) 0.654±0.003 0.492±0.039 0.561±0.024 0.507±0.009

Robust Parametrized-OKM(α = 0,γ = 5.0) 0.661±0.006 0.487±0.02 0.560±0.011 0.510±0.002

Robust Parametrized R-OKM(α = 5,γ = 0,1) 0.698±0.000 0.222±0.021 0.337±0.024 0.440±0.004

Robust Parametrized R-OKM(α = 5,γ = 0,5) 0.677±0.00 0.203±0.00 0.313±0.00 0.428±0.000

Robust Parametrized R-OKM(α = 5,γ = 0.7) 0.679±0.002 0.207±0.00 0.318±0.00 0.429±0.00

Robust Parametrized R-OKM(α = 5,γ = 1.0) 0.672±0.000 0.200±0.004 0.308±0.004 0.424±0.001

Robust Parametrized R-OKM(α = 0.1,γ = 0,1) 0.700±0.002 0.285±0.006 0.405±0.006 0.462±0.003

Robust Parametrized R-OKM(α = 0.1,γ = 0.3) 0.681±0.001 0.244±0.015 0.388±0.011 0.454±0.004

Robust Parametrized R-OKM(α = 0.1,γ = 0.5) 0.676±0.002 0.262±0.034 0.377±0.036 0.447±0.011

Robust Parametrized R-OKM(α = 0.1,γ = 1.0) 0.676±0.001 0.256±0.037 0.370±0.039 0.445±0.013

Scene Robust Parametrized-OKM(α = 2.0,γ = 0.2) 0.514±0.055 0.960±0.000 0.672±0.040 0.509±0.051

Robust Parametrized-OKM(α = 2.0,γ = 0.5) 0.480±0.050 0.557±0.048 0.511±0.009 0.578±0.025

Robust Parametrized-OKM(α = 2.0,γ = 0.8) 0.488±0.030 0.652±0.119 0.548±0.023 0.632±0.019

Robust Parametrized-OKM(α = 2.0,γ = 5.0) 0.514±0.000 0.682±0.005 0.586±0.001 0.688±0.000

Robust Parametrized R-OKM(α = 0.8,γ = 0.2) 0.514±0.053 0.960±0.000 0.668±0.045 0.509±0.051

Robust Parametrized R-OKM(α = 0.8,γ = 0.5) 0.492±0.041 0.585±0.064 0.529±0.002 0.593±0.013

Robust Parametrized R-OKM(α = 0.8,γ = 1.0) 0.471±0.020 0.672±0.110 0.548±0.023 0.631±0.018

Robust Parametrized R-OKM(α = 0.8,γ = 5.0) 0.514±0.000 0.726±0.039 0.586±0.002 0.688±0.000

Robust Parametrized R-OKM(α = 0.4,γ = 0.2) 0.514±0.053 0.960±0.000 0.668±0.045 0.509±0.051

Robust Parametrized R-OKM(α = 0.4,γ = 0.8) 0.473±0.018 0.639±0.135 0.536±0.038 0.623±0.009

Robust Parametrized R-OKM(α = 0.4,γ = 1.0) 0.525±0.002 0.672±0.003 0.590±0.003 0.686±0.000

Robust Parametrized R-OKM(α = 0.4,γ = 5.0) 0.516±0.002 0.684±0.008 0.588±0.004 0.689±0.001

Table 3 evaluates the sensitivity of proposed
method to the parameterγ respectively on Emotion,
EachMovie and Scene data sets. Using EachMovie
and Scene data sets, F-measure and Rand Index de-
crease whenγ decrease. However F-measure and
Rand Index decrease whenγ increase using Emotion
data set.

6 CONCLUSIONS

Overlapping clustering is a necessary requirement for
many applications of clustering where data need to
be assigned to more than one cluster. Existing over-
lapping clustering methods can produce non disjoint
clusters, but its is not well adapted for clustering noisy
data. The performance of these methods are reduced
when data contain noisy observations. The proposed
method, Robust Parametrized R-OKM solves this is-
sue and identifies more relevant clusters which fit the
true structures in data. Experiments performed in arti-

ficial and real data sets showed the robustness of pro-
posed method when data contain noise.

As future work, we plan to confirm preliminary
obtained results on other real overlapping data sets.
Instead, one could add an auto adjusted value ofγ to
automatically control the outliers boundaries in real
life applications of overlapping clustering.
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